Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7555
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張永祺
dc.contributor.authorYi-Hsuan Chenen
dc.contributor.author陳逸萱zh_TW
dc.date.accessioned2021-05-19T17:46:21Z-
dc.date.available2023-08-01
dc.date.available2021-05-19T17:46:21Z-
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-18
dc.identifier.citation1 Patterson, M. J. in Medical Microbiology (eds th & S. Baron) (1996).
2 Walker, M. J. et al. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 27, 264-301, doi:10.1128/CMR.00101-13 (2014).
3 Dale, J. B. et al. in Streptococcus pyogenes : Basic Biology to Clinical Manifestations (eds J. J. Ferretti, D. L. Stevens, & V. A. Fischetti) (2016).
4 Shulman, S. T. et al. Clinical practice guideline for the diagnosis and management of group A streptococcal pharyngitis: 2012 update by the Infectious Diseases Society of America. Clin Infect Dis 55, e86-102, doi:10.1093/cid/cis629 (2012).
5 Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of group A streptococcal diseases. Lancet Infect Dis 5, 685-694, doi:10.1016/S1473-3099(05)70267-X (2005).
6 Su, Y. F. et al. Changing epidemiology of Streptococcus pyogenes emm types and associated invasive and noninvasive infections in Southern Taiwan. J Clin Microbiol 47, 2658-2661, doi:10.1128/JCM.01078-09 (2009).
7 Luk, E. Y. et al. Scarlet fever epidemic, Hong Kong, 2011. Emerg Infect Dis 18, 1658-1661, doi:10.3201/eid1810.111900 (2012).
8 Whitehead, B. D., Smith, H. V. & Nourse, C. Invasive group A streptococcal disease in children in Queensland. Epidemiol Infect 139, 623-628, doi:10.1017/S0950268810001378 (2011).
9 Turner, C. E. et al. Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014. Emerg Infect Dis 22, 1075-1078, doi:10.3201/eid2206.151726 (2016).
10 Steer, A. C., Law, I., Matatolu, L., Beall, B. W. & Carapetis, J. R. Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis 9, 611-616, doi:10.1016/S1473-3099(09)70178-1 (2009).
11 Facklam, R. F. et al. Extension of the Lancefield classification for group A streptococci by addition of 22 new M protein gene sequence types from clinical isolates: emm103 to emm124. Clin Infect Dis 34, 28-38, doi:10.1086/324621 (2002).
12 Bessen, D. E. & Lizano, S. Tissue tropisms in group A streptococcal infections. Future Microbiol 5, 623-638, doi:10.2217/fmb.10.28 (2010).
13 Metzgar, D. & Zampolli, A. The M protein of group A Streptococcus is a key virulence factor and a clinically relevant strain identification marker. Virulence 2, 402-412, doi:10.4161/viru.2.5.16342 (2011).
14 Bessen, D. E. Tissue tropisms in group A Streptococcus: what virulence factors distinguish pharyngitis from impetigo strains? Curr Opin Infect Dis 29, 295-303, doi:10.1097/QCO.0000000000000262 (2016).
15 Bhakdi, S., Tranum-Jensen, J. & Sziegoleit, A. Mechanism of membrane damage by streptolysin-O. Infect Immun 47, 52-60 (1985).
16 Molloy, E. M., Cotter, P. D., Hill, C., Mitchell, D. A. & Ross, R. P. Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 9, 670-681, doi:10.1038/nrmicro2624 (2011).
17 Terao, Y. et al. Fba, a novel fibronectin-binding protein from Streptococcus pyogenes, promotes bacterial entry into epithelial cells, and the fba gene is positively transcribed under the Mga regulator. Mol Microbiol 42, 75-86 (2001).
18 Telford, J. L., Barocchi, M. A., Margarit, I., Rappuoli, R. & Grandi, G. Pili in gram-positive pathogens. Nat Rev Microbiol 4, 509-519, doi:10.1038/nrmicro1443 (2006).
19 Mora, M. et al. Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci U S A 102, 15641-15646, doi:10.1073/pnas.0507808102 (2005).
20 Kratovac, Z., Manoharan, A., Luo, F., Lizano, S. & Bessen, D. E. Population genetics and linkage analysis of loci within the FCT region of Streptococcus pyogenes. J Bacteriol 189, 1299-1310, doi:10.1128/JB.01301-06 (2007).
21 Falugi, F. et al. Sequence variation in group A Streptococcus pili and association of pilus backbone types with lancefield T serotypes. J Infect Dis 198, 1834-1841, doi:10.1086/593176 (2008).
22 Nakata, M. et al. Mode of expression and functional characterization of FCT-3 pilus region-encoded proteins in Streptococcus pyogenes serotype M49. Infect Immun 77, 32-44, doi:10.1128/IAI.00772-08 (2009).
23 Crotty Alexander, L. E. et al. M1T1 group A streptococcal pili promote epithelial colonization but diminish systemic virulence through neutrophil extracellular entrapment. J Mol Med (Berl) 88, 371-381, doi:10.1007/s00109-009-0566-9 (2010).
24 Becherelli, M. et al. The ancillary protein 1 of Streptococcus pyogenes FCT-1 pili mediates cell adhesion and biofilm formation through heterophilic as well as homophilic interactions. Mol Microbiol 83, 1035-1047, doi:10.1111/j.1365-2958.2012.07987.x (2012).
25 Tsai, J. C., Loh, J. M., Clow, F., Lorenz, N. & Proft, T. The Group A Streptococcus serotype M2 pilus plays a role in host cell adhesion and immune evasion. Mol Microbiol 103, 282-298, doi:10.1111/mmi.13556 (2017).
26 Necas, J., Bartosikova, L., Brauner, P. & Kolar, J. Hyaluronic acid (hyaluronan): a review. Veterinarni medicina 53, 397-411 (2008).
27 Crater, D. L. & van de Rijn, I. Hyaluronic acid synthesis operon (has) expression in group A streptococci. J Biol Chem 270, 18452-18458 (1995).
28 Kass, E. H. & Seastone, C. V. The Role of the Mucoid Polysaccharide (Hyaluronic Acid) in the Virulence of Group a Hemolytic Streptococci. J Exp Med 79, 319-330 (1944).
29 Foley, M. J. & Wood, W. B., Jr. Studies on the pathogenicity of group A streptococci. II. The antiphagocytic effects of the M protein and the capsular gel. J Exp Med 110, 617-628 (1959).
30 Cole, J. N. et al. M protein and hyaluronic acid capsule are essential for in vivo selection of covRS mutations characteristic of invasive serotype M1T1 group A Streptococcus. MBio 1, doi:10.1128/mBio.00191-10 (2010).
31 Schrager, H. M., Rheinwald, J. G. & Wessels, M. R. Hyaluronic acid capsule and the role of streptococcal entry into keratinocytes in invasive skin infection. J Clin Invest 98, 1954-1958, doi:10.1172/JCI118998 (1996).
32 Wessels, M. R., Moses, A. E., Goldberg, J. B. & DiCesare, T. J. Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proc Natl Acad Sci U S A 88, 8317-8321 (1991).
33 Dinkla, K. et al. Upregulation of capsule enables Streptococcus pyogenes to evade immune recognition by antigen-specific antibodies directed to the G-related alpha2-macroglobulin-binding protein GRAB located on the bacterial surface. Microbes Infect 9, 922-931, doi:10.1016/j.micinf.2007.03.011 (2007).
34 Flores, A. R., Jewell, B. E., Fittipaldi, N., Beres, S. B. & Musser, J. M. Human disease isolates of serotype m4 and m22 group a streptococcus lack genes required for hyaluronic acid capsule biosynthesis. MBio 3, e00413-00412, doi:10.1128/mBio.00413-12 (2012).
35 Cray, C., Zaias, J. & Altman, N. H. Acute phase response in animals: a review. Comp Med 59, 517-526 (2009).
36 Gabay, C. & Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340, 448-454, doi:10.1056/NEJM199902113400607 (1999).
37 Gruys, E., Toussaint, M. J., Niewold, T. A. & Koopmans, S. J. Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci B 6, 1045-1056, doi:10.1631/jzus.2005.B1045 (2005).
38 Baumann, H., Prowse, K. R., Marinkovic, S., Won, K. A. & Jahreis, G. P. Stimulation of hepatic acute phase response by cytokines and glucocorticoids. Ann N Y Acad Sci 557, 280-295, discussion 295-286 (1989).
39 Kasvosve, I., Speeckaert, M. M., Speeckaert, R., Masukume, G. & Delanghe, J. R. Haptoglobin polymorphism and infection. Adv Clin Chem 50, 23-46 (2010).
40 Kohler, W. & Prokop, O. Relationship between haptoglobin and Streptococcus pyogenes T4 antigens. Nature 271, 373 (1978).
41 Delanghe, J. et al. Effect of haptoglobin phenotypes on growth of Streptococcus pyogenes. Clin Chem Lab Med 36, 691-696, doi:10.1515/CCLM.1998.122 (1998).
42 Rohde, K. H. & Dyer, D. W. Analysis of haptoglobin and hemoglobin-haptoglobin interactions with the Neisseria meningitidis TonB-dependent receptor HpuAB by flow cytometry. Infect Immun 72, 2494-2506 (2004).
43 Kasvosve, I. et al. Haptoglobin polymorphism and mortality in patients with tuberculosis. Int J Tuberc Lung Dis 4, 771-775 (2000).
44 Kristiansen, M. et al. Identification of the haemoglobin scavenger receptor. Nature 409, 198-201, doi:10.1038/35051594 (2001).
45 Philippidis, P. et al. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ Res 94, 119-126, doi:10.1161/01.RES.0000109414.78907.F9 (2004).
46 Oh, S. K., Pavlotsky, N. & Tauber, A. I. Specific binding of haptoglobin to human neutrophils and its functional consequences. J Leukoc Biol 47, 142-148 (1990).
47 Hanasaki, K., Powell, L. D. & Varki, A. Binding of human plasma sialoglycoproteins by the B cell-specific lectin CD22. Selective recognition of immunoglobulin M and haptoglobin. J Biol Chem 270, 7543-7550 (1995).
48 El Ghmati, S. M., Van Hoeyveld, E. M., Van Strijp, J. G., Ceuppens, J. L. & Stevens, E. A. Identification of haptoglobin as an alternative ligand for CD11b/CD18. J Immunol 156, 2542-2552 (1996).
49 Rossbacher, J., Wagner, L. & Pasternack, M. S. Inhibitory effect of haptoglobin on granulocyte chemotaxis, phagocytosis and bactericidal activity. Scand J Immunol 50, 399-404 (1999).
50 Xie, Y. et al. Haptoglobin is a natural regulator of Langerhans cell function in the skin. J Dermatol Sci 24, 25-37 (2000).
51 Billadeau, D. D. & Leibson, P. J. ITAMs versus ITIMs: striking a balance during cell regulation. J Clin Invest 109, 161-168, doi:10.1172/JCI14843 (2002).
52 Macauley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14, 653-666, doi:10.1038/nri3737 (2014).
53 Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nat Rev Immunol 7, 255-266, doi:10.1038/nri2056 (2007).
54 Ravetch, J. V. & Lanier, L. L. Immune inhibitory receptors. Science 290, 84-89 (2000).
55 Khatua, B., Roy, S. & Mandal, C. Sialic acids siglec interaction: a unique strategy to circumvent innate immune response by pathogens. Indian J Med Res 138, 648-662 (2013).
56 Janeway Jr, C. A., Travers, P., Walport, M. & Shlomchik, M. J. Principles of innate and adaptive immunity. (2001).
57 Angata, T. & Varki, A. Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs. Evidence for co-evolution with sialic acid synthesis pathways. J Biol Chem 275, 22127-22135, doi:10.1074/jbc.M002775200 (2000).
58 Zhang, J. Q., Nicoll, G., Jones, C. & Crocker, P. R. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J Biol Chem 275, 22121-22126, doi:10.1074/jbc.M002788200 (2000).
59 Avril, T., Floyd, H., Lopez, F., Vivier, E. & Crocker, P. R. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells. J Immunol 173, 6841-6849 (2004).
60 Ando, M., Tu, W., Nishijima, K. & Iijima, S. Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs. Biochem Biophys Res Commun 369, 878-883, doi:10.1016/j.bbrc.2008.02.111 (2008).
61 Spence, S. et al. Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation. Sci Transl Med 7, 303ra140, doi:10.1126/scitranslmed.aab3459 (2015).
62 Chang, Y. C. & Nizet, V. The interplay between Siglecs and sialylated pathogens. Glycobiology 24, 818-825, doi:10.1093/glycob/cwu067 (2014).
63 Carlin, A. F. et al. Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. J Exp Med 206, 1691-1699, doi:10.1084/jem.20090691 (2009).
64 Chang, Y. C. et al. Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog 10, e1003846, doi:10.1371/journal.ppat.1003846 (2014).
65 Secundino, I. et al. Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation. J Mol Med (Berl) 94, 219-233, doi:10.1007/s00109-015-1341-8 (2016).
66 Yan, J. J. et al. Molecular analysis of group A streptococcal isolates associated with scarlet fever in southern Taiwan between 1993 and 2002. J Clin Microbiol 41, 4858-4861 (2003).
67 Chen, Y. Y. et al. Molecular epidemiology of group A streptococcus causing scarlet fever in northern Taiwan, 2001-2002. Diagn Microbiol Infect Dis 58, 289-295, doi:10.1016/j.diagmicrobio.2007.01.013 (2007).
68 Thern, A., Stenberg, L., Dahlback, B. & Lindahl, G. Ig-binding surface proteins of Streptococcus pyogenes also bind human C4b-binding protein (C4BP), a regulatory component of the complement system. J Immunol 154, 375-386 (1995).
69 Zhang, S. et al. N-linked glycan changes of serum haptoglobin beta chain in liver disease patients. Mol Biosyst 7, 1621-1628, doi:10.1039/c1mb05020f (2011).
70 Vitali, L. A., Zampaloni, C., Prenna, M. & Ripa, S. PCR m typing: a new method for rapid typing of group a streptococci. J Clin Microbiol 40, 679-681 (2002).
71 Tolker-Nielsen, T. Biofilm Development. Microbiol Spectr 3, MB-0001-2014, doi:10.1128/microbiolspec.MB-0001-2014 (2015).
72 Hirsch, J. G. Bactericidal action of histone. J Exp Med 108, 925-944 (1958).
73 Weksler, B. B. & Nachman, R. L. Rabbit platelet bactericidal protein. J Exp Med 134, 1114-1130 (1971).
74 Kreikemeyer, B., McIver, K. S. & Podbielski, A. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol 11, 224-232 (2003).
75 Unnikrishnan, M., Cohen, J. & Sriskandan, S. Growth-phase-dependent expression of virulence factors in an M1T1 clinical isolate of Streptococcus pyogenes. Infect Immun 67, 5495-5499 (1999).
76 Pancotto, L. et al. Expression of the Streptococcus pneumoniae pilus-1 undergoes on and off switching during colonization in mice. Sci Rep 3, 2040, doi:10.1038/srep02040 (2013).
77 Kehl-Fie, T. E. et al. Examination of type IV pilus expression and pilus-associated phenotypes in Kingella kingae clinical isolates. Infect Immun 78, 1692-1699, doi:10.1128/IAI.00908-09 (2010).
78 Boyd, C. R. et al. Siglec-E is up-regulated and phosphorylated following lipopolysaccharide stimulation in order to limit TLR-driven cytokine production. J Immunol 183, 7703-7709, doi:10.4049/jimmunol.0902780 (2009).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7555-
dc.description.abstractStreptococcus pyogenes又稱為A型鏈球菌 (Group A Streptococcus),是一以人類為唯一天然宿主,可以引起咽喉炎、壞死性筋膜炎及菌血症的細菌。已知莢膜能幫助A型鏈球菌造成侵入性感染,是一重要的毒力因子。而M4血清型A型鏈球菌雖然缺少莢膜,卻是主要造成A型鏈球菌侵入性感染的血清型,顯示M4血清型A型鏈球菌可能有其他毒力因子能夠抵抗宿主的免疫系統。我們實驗室與其他研究均發現,由fibronectin-binding, collagen-binding, T antigen (FCT) region所編碼的線毛 (Pilus) 能幫助A型鏈球菌貼附到宿主的皮膚和咽喉細胞、形成生物膜並造成小鼠的皮膚感染。除此之外,實驗室之前的研究進一步發現,以腹腔注射M4血清型A型鏈球菌感染小鼠時,野生株較缺乏線毛的spy0116突變株更能引起小鼠的死亡,且野生株在人類全血中有較佳的存活率,顯示線毛的存在對M4血清型A型鏈球菌躲避免疫攻擊,並造成系統性感染有其必要性。血紅素結合蛋白 (haptoglobin) 是一種急性期蛋白,先前有研究指出可藉由與白血球表面的受器結合來調控細胞的反應。實驗室發現M4血清型A型鏈球菌的線毛能與haptoglobin結合,因此我的實驗主軸在研究 (1) 線毛本身是否能幫助M4血清型A型鏈球菌抵抗宿主的免疫系統,(2) M4血清型A型鏈球菌是否可以藉由鍵結haptoglobin來抑制宿主抗菌反應。實驗發現野生株在血清中有存活較好的趨勢,但是野生株及突變株被補體標記的程度相當且野生株對於抗菌胜肽較敏感,顯示線毛本身不足以使野生株較利於存活。然而預先與haptoglobin結合的野生株較能抵抗血清、血小板和嗜中性白血球胞外網狀結構 (Neutrophil extracellular traps,NETs) 的殺菌作用,進而使M4血清型A型鏈球菌野生株在全血中存活較好。Siglec-9是一種能和唾液酸結合的抑制受器 (inhibitory receptor),主要表現在人類巨噬細胞和嗜中性白血球表面。我們先前發現Siglec-9可以和其鏈具有大量的唾液酸修飾的haptoglobin結合,因此我們推測M4血清型A型鏈球菌可能利用haptoglobin去與Siglec-9鍵結並抑制免疫反應。為了驗證我們的假說,我們建立了能夠穩定表現人類Siglec-9的RAW/Sig9細胞株及及控制組RAW/vector,之後將同時使用人類嗜中性白血球為實驗模型來驗證我們的假說,確認M4血清型A型鏈球菌與haptoglobin結合後是否能透過與Siglec-9結合來增加存活率。雖然尚無法確認M4血清型A型鏈球菌是否可利用haptoglobin與免疫細胞上的Siglec-9結合來幫助存活,但是我們的實驗結果仍顯示M4血清型A型鏈球菌利用線毛與haptoglobin結合是M4血清型A型鏈球菌能造成侵入性疾病的重要機轉。zh_TW
dc.description.abstractStreptococcus pyogenes (group A streptococcus, GAS) is a human pathogen causing various diseases such as pharyngitis, necrotizing fasciitis and bacteremia. It is known that hyaluronic acid capsule (HA capsule) of GAS is an important virulence factor contributing to its invasive infection. GAS serotype M4 (M4 GAS), lacking the important HA capsule, is one of the major serotype causing invasive GAS infection. These observations indicate that M4 GAS may have alternative virulence factors to counteract host defense mechanisms. We and others found that pilus encoded by the fibronectin-binding, collagen-binding, T antigen (FCT) region is dedicated in host skin and pharynx adherence, biofilm formation and mice skin infection. Our previous data further demonstrated that M4 GAS wild-type (WT) causes more mortality in mice intraperitoneal infection and survives better in human blood compare to M4 GAS spy0116 mutant deficient in pilus formation. These data suggest that the pilus of M4 GAS contributes to host immune evasion and systemic infection. Haptoglobin is an acute phase protein that have been reported to regulate leukocyte functions. Our previous data showed that M4 GAS binds haptoglobin via its protruding pilus; therefore, my specific aims of this project are to investigate whether (1) M4 GAS pilus its self can counteract host immune system, (2) haptoglobin bound M4 GAS can downregulate host antibacterial responses. Our data showed that M4 GAS WT survives better in human serum than the M4 GAS spy0116 mutant. However, comparable complement deposition between M4 GAS WT and spy0116 mutant and increased AMP sensitivity in M4 GAS WT was observed, which suggests that pilus itself is not sufficient to confer to the whole survival advantage of M4 GAS WT. When precoated with haptoglobin, M4 GAS WT was more resistant to serum antimicrobials, plalets and NET-mediated killing, which together resulted in the better survival in the human whole blood. We previously found that Siglec-9, a sialic acid-binding inhibitory receptor expressed primarily on human macrophages and neutrophils, can bind to the heavily siaylatedchain of haptoglobin, which lead to the hypothesis that M4 GAS may suppress immune activation via engaging Siglec-9 with pilus bound haptoglobin. To address this question, we generated Siglec-9-expressing RAW264.7 stable cell line, and will apply this system together with human primary neutrophil system to directly address the role of Siglec-9 and haptoglobin in the immune suppression upon GAS infection. Although the detailed mechanism has not been fully elucidated, our results clearly demonstrated the binding of haptoglobin to M4 GAS pilus is essential to provide the beneficial survival advantage to subvert host antibicrobial immune responses.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:46:21Z (GMT). No. of bitstreams: 1
ntu-107-R05445126-1.pdf: 3285826 bytes, checksum: 749a28ed7f95f83f159fb96531b3ce29 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
目錄 vii
第一章、 研究背景與動機 1
一、 A型鏈球菌 1
1. A型鏈球菌 (Group A Streptococcus,GAS) 1
2. A型鏈球菌之流行病學 1
3. A型鏈球菌之毒力因子 2
4. A型鏈球菌之線毛 (pilus) 3
5. A型鏈球菌之莢膜 4
二、急性期蛋白 (Acute phase proteins,Apps) 5
1. 急性期蛋白 5
2. 血紅素結合蛋白 (haptoglobin,Hp) 5
三、 Sialic acid-binding immunoglobulin-like lectins (Siglecs) 受體 6
1. Siglec受體 6
2. Siglec-9 7
四、 研究動機 8
第二章、 研究材料與實驗方法 10
一、 研究材料 10
1. 實驗菌株 (Bacteria strain) 10
2. 細胞株 (Cell lines) 11
3. 引子 (Primer) 11
4. 質體 (Plasmid) 12
5. 抗體 (Antibody) 13
6. 抗菌胜肽 (Antimicrobial peptide) 14
7. 酵素免疫分析法試劑組 14
8. 萃取細菌細胞壁之試劑 14
9. 銀染 (Silver stain) 之試劑 14
二、 實驗方法 15
1. 核酸萃取 15
2. DNA洋菜膠電泳 (DNA agarose electrophoresis) 16
3. 聚合酶連鎖反應 (Polymerase Chain Reaction,PCR) 16
4. 勝任細胞的製備及電穿孔作用 17
5. 同源置換 (Homologous recombination) 18
6. 預先結合GAS與haptoglobin 18
7. 預先使用唾液酸酶處理GBS 18
8. GAS與血清中之haptoglobin結合試驗 19
9. 流式細胞儀分析與流式細胞分選 19
10. 生物膜 (biofilm)生成試驗 21
11. 全血殺菌試驗 22
12. 血清與血漿殺菌試驗 22
13. 血小板殺菌試驗 23
14. 抗菌胜肽抑菌試驗 23
15. 組織蛋白抑菌試驗 23
16. 嗜中性白血球殺菌試驗 24
17. NETs殺菌試驗 24
18. 細胞感染之基因表現量測定 25
19. RAW細胞之細胞激素表現量測定 26
20. RAW細胞之殺菌試驗 26
21. 細胞壁萃取物之分析 26
22. 小鼠皮下感染 27
23. RAW/vector、RAW/Sig9、RAW/R120K細胞株的建立 28
第三章、 研究結果 30
一、 建立M4血清型A型鏈球菌Dspy0116突變株之互補菌株和臨床分離M4血清型A型鏈球菌之Dspy0116突變株 30
1. 建立M4血清型A型鏈球菌Dspy0116突變株之互補菌株並確認其表現 30
2. 建立剔除spy0116的臨床分離菌株並確認其表現型 31
二、 線毛在M4血清型A型鏈球菌抵抗免疫系統之角色 32
1. 具線毛之M4血清型A型鏈球菌野生株在人類全血中存活較佳 32
2. 線毛不會增加M4血清型A型鏈球菌對補體、抗菌胜肽和組織蛋白的抗性 32
3. 線毛不影響M4血清型A型鏈球菌與NETs反應後之存活率 34
4. 線毛不影響M4血清型A型鏈球菌與血小板反應後之存活率沒有差別 34
5. M4血清型A型鏈球菌Dspy0116突變株之互補菌株和臨床分離之M4血清型A型鏈球菌野生株在人類全血中之存活率 34
6. M4血清型A型鏈球菌Dspy0116突變株之互補菌株及控制組之LL-37結合能力沒有差別 35
三、 M4血清型A型鏈球菌利用線毛與血紅素結合蛋白結合來抵抗免疫系統攻擊 35
1. M4血清型A型鏈球菌的線毛能與人類血清中之haptoglobin結合 35
2. 預先與haptoglobin結合能幫助M4血清型A型鏈球菌在人類全血和血清中存活 36
3. Haptoglobin無法幫助M4血清型A型鏈球菌抵禦C3補體標記和抗菌胜肽 36
4. 預先與haptoglobin結合能幫助M4血清型A型鏈球菌抵抗NETs和血小板的殺菌作用 37
四、 M4血清型A型鏈球菌與血紅素結合蛋白結合後,可能藉由與Siglec-9鍵結來調控免疫反應 37
1. 建立RAW/vector和RAW/Sig9細胞株 37
2. 與haptoglobin結合可增加M4血清型A型鏈球菌之存活率,但RAW細胞是否表現Siglec-9不影響M4血清型A型鏈球菌之存活 39
第四章、 討論與未來研究方向 40
參考文獻 44
圖表目錄 50
附錄 68
dc.language.isozh-TW
dc.title探討無莢膜之M4血清型A型鏈球菌躲避免疫系統的機制zh_TW
dc.titleCharacterization of the Immune Evasion Mechanisms of the Nonencapsulated M4 Group A Streptococcusen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱清良,顧家綺
dc.subject.keywordA型鏈球菌,線毛,侵入性感染,血紅素結合蛋白,Siglecs,zh_TW
dc.subject.keywordGroup A Streptococcus,pilus,invasive infection,haptoglobin,Siglecs,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201801671
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-07-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
dc.date.embargo-lift2023-08-01-
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf3.21 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved