請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7553
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李承叡(Cheng-Ruei Lee) | |
dc.contributor.author | Cheng-Yu Lo | en |
dc.contributor.author | 羅澄玉 | zh_TW |
dc.date.accessioned | 2021-05-19T17:46:18Z | - |
dc.date.available | 2021-08-01 | |
dc.date.available | 2021-05-19T17:46:18Z | - |
dc.date.copyright | 2018-08-01 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-20 | |
dc.identifier.citation | References
1. Mitchell-Olds, T., Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends in Ecology & Evolution, 2001. 16(12): p. 693-700. 2. Koornneef, M. and D. Meinke, The development of Arabidopsis as a model plant. Plant Journal, 2010. 61(6): p. 909-921. 3. The 1001 Genomes Consortium, 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell, 2016. 166(2): p. 481-491. 4. Lee, C.R., et al., On the post-glacial spread of human commensal Arabidopsis thaliana. Nature Communications, 2017. 8: p. 14458. 5. Rejmanek, M. and D.M. Richardson, What attributes make some plant species more invasive? Ecology, 1996. 77(6): p. 1655-1661. 6. Didham, R.K., et al., Are invasive species the drivers of ecological change? Trends in Ecology & Evolution, 2005. 20(9): p. 470-4. 7. van Kleunen, M., W. Dawson, and N. Maurel, Characteristics of successful alien plants. Molecular Ecology, 2015. 24(9): p. 1954-68. 8. Davidson, A.M., M. Jennions, and A.B. Nicotra, Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters, 2011. 14(4): p. 419-431. 9. Williams, D.G. and R.A. Black, Drought response of a native and introduced Hawaiian grass. Oecologia, 1994. 97(4): p. 512-519. 10. Williams, D.G., R.N. Mack, and R.A. Black, Ecophysiology of Introduced Pennisetum-Setaceum on Hawaii - the Role of Phenotypic Plasticity. Ecology, 1995. 76(5): p. 1569-1580. 11. Smith, H., Light Quality, Photoperception, and Plant Strategy. Annual Review of Plant Physiology and Plant Molecular Biology, 1982. 33: p. 481-518. 12. Franklin, K.A., Shade avoidance. New Phytologist, 2008. 179(4): p. 930-44. 13. Halliday, K.J., M. Koornneef, and G.C. Whitelam, Phytochrome B and at Least One Other Phytochrome Mediate the Accelerated Flowering Response of Arabidopsis-Thaliana L to Low Red/Far-Red Ratio. Plant Physiology, 1994. 104(4): p. 1311-1315. 14. Gilbert, I.R., P.G. Jarvis, and H. Smith, Proximity signal and shade avoidance differences between early and late successional trees. Nature, 2001. 411(6839): p. 792-5. 15. Borevitz, J.O., et al., Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics, 2002. 160(2): p. 683-96. 16. Ellstrand, N.C., et al., Crops gone wild: evolution of weeds and invasives from domesticated ancestors. Evolutionary Applications, 2010. 3(5-6): p. 494-504. 17. Alonso-Blanco, C., et al., Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. PNAS, 1999. 96(8): p. 4710-7. 18. Vidigal, D.S., et al., Altitudinal and climatic associations of seed dormancy and flowering traits evidence adaptation of annual life cycle timing in Arabidopsis thaliana. Plant, Cell & Environment, 2016. 39(8): p. 1737-48. 19. Lewontin, R.C. and J. Krakauer, Distribution of Gene Frequency as a Test of Theory of Selective Neutrality of Polymorphisms. Genetics, 1973. 74(1): p. 175-195. 20. Beaumont, M.A., Adaptation and speciation: what can F-st tell us? Trends in Ecology & Evolution, 2005. 20(8): p. 435-440. 21. Wright, S., The Genetical Structure of Populations. Annals of Eugenics, 1951. 15(4): p. 323-354. 22. Spitze, K., Population-Structure in Daphnia-Obtusa - Quantitative Genetic and Allozymic Variation. Genetics, 1993. 135(2): p. 367-374. 23. Merila, J. and P. Crnokrak, Comparison of genetic differentiation at marker loci and quantitative traits. Journal of Evolutionary Biology, 2001. 14(6): p. 892-903. 24. Whitlock, M.C., Evolutionary inference from Q(ST). Molecular Ecology, 2008. 17(8): p. 1885-1896. 25. Bomblies, K., et al., Local-scale patterns of genetic variability, outcrossing, and spatial structure in natural stands of Arabidopsis thaliana. PLoS Genetics, 2010. 6(3): p. e1000890. 26. Platt, A., et al., The scale of population structure in Arabidopsis thaliana. PLoS Genetics, 2010. 6(2): p. e1000843. 27. Filiault, D.L. and J.N. Maloof, A genome-wide association study identifies variants underlying the Arabidopsis thaliana shade avoidance response. PLoS Genetics, 2012. 8(3): p. e1002589. 28. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 2012. 9(7): p. 671-5. 29. Herridge, R.P., et al., Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods, 2011. 7(1): p. 3. 30. Dudley, S.A. and J. Schmitt, Testing the adaptive plasticity hypothesis: Density-dependent selection on manipulated stem length in Impatiens capensis. American Naturalist, 1996. 147(3): p. 445-465. 31. Robson, P.R., et al., Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nature Biotechnology, 1996. 14(8): p. 995-8. 32. Morgan, D.C. and H. Smith, A systematic relationship between phytochrome-controlled development and species habitat, for plants grown in simulated natural radiation. Planta, 1979. 145(3): p. 253-8. 33. Maloof, J.N., et al., Natural variation in light sensitivity of Arabidopsis. Nature Genetics, 2001. 29(4): p. 441-6. 34. Stenoien, H.K., et al., Quantifying latitudinal clines to light responses in natural populations of Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 2002. 89(10): p. 1604-8. 35. Balasubramanian, S., et al., The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nature Genetics, 2006. 38(6): p. 711-5. 36. Spano, D., R.L. Snyder, and C. Cesaraccio, Mediterranean Climates, in Phenology: An Integrative Environmental Science, M.D. Schwartz, Editor. 2003, Springer Netherlands: Dordrecht. p. 139-156. 37. Anderson, J.T., C.R. Lee, and T. Mitchell-Olds, Strong selection genome-wide enhances fitness trade-offs across environments and episodes of selection. Evolution, 2014. 68(1): p. 16-31. 38. Krannitz, P.G., L.W. Aarssen, and J.M. Dow, The Effect of Genetically Based Differences in Seed Size on Seedling Survival in Arabidopsis-Thaliana (Brassicaceae). American Journal of Botany, 1991. 78(3): p. 446-450. 39. Baker, H.G., Seed Weight in Relation to Environmental Conditions in California. Ecology, 1972. 53(6): p. 997-1010. 40. Exposito-Alonso, M., et al., Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana. Nature Ecology & Evolution, 2018. 2(2): p. 352-358. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7553 | - |
dc.description.abstract | 雜草所具的特徵過去已有許多研究探討過,但關於雜草演化的遺傳機制尚不明瞭。模式物種阿拉伯芥(Arabidopsis thaliana)經先前的研究發現現今分布於南歐半島、非洲的「孑遺族群」過去曾分布於整個歐亞大陸,但雜草般的「非孑遺族群」取代了孑遺族群並散佈至世界各地。儘管對於阿拉伯芥的性狀已有非常多的研究,但過去研究所使用的品系幾乎都來自於非孑遺族群,鮮少有研究探討不同族群間的差異。比較孑遺和非孑遺族群間的性狀差異可使我們能更進一步了解雜草的演化。本研究選了52個來自野外的阿拉伯芥自交品系,其中31個來自非孑遺族群,21個來自孑遺族群,將這些品系種植在相同的環境條件下以比較兩個族群由遺傳造成的性狀差異。研究中主要測量了兩個與雜草有關的性狀:幼苗避陰反應及種子產量。幼苗避陰實驗將阿拉伯芥種子種植在兩個不同光照環境下,比較不同族群在不同光照處理下幼苗下胚軸長度的差異。結果顯示幼苗下胚軸長度在不同處理下有顯著差異,但不同族群間幼苗下胚軸長度以及在不同處理下的可塑性並沒有顯著差異。種子產量的實驗中比較了兩個族群的果實及種子相關性狀。結果顯示不同族群的種子大小及種子產量有顯著差異,孑遺族群的種子大小平均比非孑遺族群的大了33%,但非孑遺族群平均能產出將近孑遺族群兩倍的總種子數。透過FST- QST的比較,我們認為這些存在於孑遺族群和非孑遺族群間的性狀差異很可能是天擇推動造成的。種子產量的差異使阿拉伯芥非孑遺族群很可能有著比孑遺族群高的適存度,使其能取代孑遺族群並廣泛散佈。此研究結果未來可進一步利用數量表徵基因座定位法及全基因組關聯分析找出控制阿拉伯芥非孑遺族群成為雜草的候選基因,以了解雜草演化的遺傳機制。 | zh_TW |
dc.description.abstract | The characteristics of weedy plants have been studied for a long time, but the genetics of weedy plant evolution remains unclear. Previous researches showed that the model plant Arabidopsis thaliana consists of multiple genetic groups. The “relict” populations currently found in Southern Europe and Africa once occupied most of Eurasia, but the weedy “non-relict” population rapidly replaced the relict populations and spread worldwide. While many traits of A. thaliana have been much studied, most laboratory strains were from non-relict populations, and few studies have investigated the differences between relicts and non-relicts. Comparing the phenotypic variances between these two groups provides a way to study the genetics of weedy plant evolution. Fifty-two accessions of A. thaliana were used in this study, including 31 non-relict and 21 relict accessions. All accessions were grown in controlled conditions to compare their phenotypic differences. Two types of traits associated with weediness were measured: shade avoidance response and seed productivity. For shade avoidance response, we treated the seedlings with two different light conditions. The hypocotyl length of seedlings showed significant differences between treatments but not between populations. For seed- and fruit-related traits, we observed significant differences for seed size and productivity: Seeds from relicts were about 33% bigger than non-relicts on average, but non-relicts yielded almost twice as many seeds as relicts. According to the results of FST-QST comparison, the phenotypic differences between relicts and non-relicts might be caused by natural selection. Owing to the differences of seed productivity, non-relicts might have higher fitness and spread faster than relicts. This research lay a foundation for further quantitative trait loci mapping and genome-wide association study to find candidate genes controlling weedy phenotypes. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:46:18Z (GMT). No. of bitstreams: 1 ntu-107-R05b44016-1.pdf: 2469187 bytes, checksum: 0c8f9155882766373a3f432f61653a3d (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Contents v Contents of Figures vi Contents of Tables vii Introduction 1 Materials and Methods 6 Plant material 6 Hypocotyl length measurements 6 Measurements of fruit and seed-related traits 8 Statistical analysis 10 FST – QST comparisons 11 Results 13 Hypocotyl length 13 Seed productivity and size 14 FST – QST comparisons 16 Discussion 18 Reference 23 Figures 27 Tables 38 | |
dc.language.iso | en | |
dc.title | 從阿拉伯芥不同族群之性狀差異探討雜草演化 | zh_TW |
dc.title | Investigating the phenotypic and genetic basis of weedy plant evolution in Arabidopsis thaliana | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 高文媛(Wen-Yuan Kao),何傳愷(Chuan-Kai Ho),董致韡(Chih-Wei Tung) | |
dc.subject.keyword | 阿拉伯芥,雜草,自然變異,避蔭反應,種子產量,FST-QST比較, | zh_TW |
dc.subject.keyword | Arabidopsis thaliana,weed,natural variation,shade avoidance response,seed productivity,FST-QST comparison, | en |
dc.relation.page | 42 | |
dc.identifier.doi | 10.6342/NTU201801769 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-07-23 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 2.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。