Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75421
完整後設資料紀錄
DC 欄位值語言
dc.contributor.authorPei-Ju Jihen
dc.contributor.author紀姵如zh_TW
dc.date.accessioned2021-07-01T08:13:07Z-
dc.date.available2021-07-01T08:13:07Z-
dc.date.issued2003
dc.identifier.citation曾伊貞(1997)水稻含錳超氧歧化?在細菌中之表達及性質研究。國立台灣大學植物科學研究所碩士論文。
曾博文(2000)甘藷傷害誘導基因ipomoelin的表現與性質測定。國立台灣大學植物科學研究所碩士論文。
張萌惠(2001)百日咳抗元於轉殖菸草之表現與老鼠口服免疫反應。國立台灣大學植物科學研究所碩士論文。
A-H-Mackerness S, John CF, Jordan B and Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489: 237-242
Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107: 1049-1054
Alvarez ME, Penell RI, Meijer P-J, Ishikawa A, Dixon RA and Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92: 773-784
Beligni MV and Lamattina L (1999a) Is nitric oxide toxic or protective Trends Plant Sci 4: 299
Beligni MV and Lamattina L (1999b) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 210: 215-221
Beligni MV and Lamattina L (2000) Nitric oxide induces seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210: 215-221
Beligni MV and Lamattina L (2001) Nitric oxide in plants: the history in just beginning. Plant Cell Environ 24: 267-278
Beligni MV, Fath A, Bethke PC, Lamattina L and Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129: 1642-1650
BishopPD, Makus DJ, Pearce G and Ryan CA (1981) Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proc Natl Acad Sci USA 78: 3536-3540
Bolwell GP (1999) Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol 2: 287-294
Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR and Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351: 714-717
Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58: 79-110
Chanodok MR, Ytterberg AJ, Wijk KJ and Klessig DF (2003) The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell 113: 469-482
Chomzynski P and Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156-159
Dat J, Vandenabeele S, Vranova E, Montagu MV, Inze D and Breusegem FV (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57: 779-795
Delledonne M, Xia Y, Dixon RA and Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585-588
Delledonne M, Polverari A and Murgia I (2003) The function of nitric oxide-mediated signaling and changes in gene expression during the hypersensitive response. Antioxid redox signal 5: 33-41
Dempsey DA, Shah J and Kiessig DF (1999) Salicylic acis and disease resistance in plant. Crit Rev Plant Sci 18: 547-575
Dong X (2001) Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4: 309-314
Farmer EE and Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of preoteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87: 7713-7716
Farmer EE and Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129-134
Foissner I, Wendehenne D, Langebartels C and Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23: 817-824
Garcia-Mata C and Lamattina L (2003) Abscisic acid, nitric oxide and sstomatal closure- is nitrate reducttase one of the missing links Trends Plant Sci 8: 20-26
Gouv?a CMCP, Souza JF, Magalh?es ACN and Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21: 183-187
Hanania U, Furman-Matarasso N, Ron M and Avni A (1999) Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant Journal 19: 533-541
Hancock JT, Desikan R and Neill SJ (2001) Hydrogen peroxide and nitric oxide in plant defence: revealing potential targets for oxidative stress tolerance Biofactors 15: 99-101
Imanishi S, Kito-Nakamura K, Matsuoka K, Morikami A and Nakamura K (1997) A major jasmonate-inducible protein of sweet potato, ipomoelin, is an ABA-independent wound-inducible protein. Plant Cell Physiol 38: 643-652
Jabs T, Dietrich RA and Dang JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273: 1853-1856
Keeley JE and Fotheringham CJ (1997) Trace gas emissions and smoke-induced seed germination. Science 276: 1248-1250
Kim KI, Baek SH and Chung CH (2002) Versatile protein tag, SUMO: its enzymology and biological function. J Cell Physiol 191: 257-268
Klessig DF and Durner J (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2: 369-374
Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY and Vierstra RD (2003) The small Ubiquitin-like modifier (SUMO) protein modification system in arabidopsis. J Biol Chem 278: 6862-6872
Lamb C and Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251-275
Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27: 969-978
Leshem Y, Wills RBH and Ku VV (1998) Evidence for the function of the free radical gas - nitric oxide (NO) - as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Bioch 36: 825-833
Levine A, Tenhaken R, Dixon R and Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance. Cell 79: 583-593
Li L, Li C, Lee GI and Howe GA (2002) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99: 6416-6421
Low PS and Merida JR (1996) The oxidative burst in plant defense: Function and signal transduction. Physiol Plantarum 96: 533-542
Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15: 473-497
Numberger T and Scheel D (2001) Signal transmission in the plant immune response. Trends Plant Sci 6: 372-379
Orozco-C?rdenas ML and Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96: 6553-6557
Orozco-C?rdenas ML, Narv?ez-V?squez J and Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13: 179-191
Orozco-C?rdenas ML and Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130: 487-493
Parker JE and Feys BJ (2000) Interplay of signaling pathways in plant disease resistance. Trends genetics 16: 449-455
Pedroso MC, Magalhaes JR and Durzan D (2000) A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. J Exp Bot 51: 1027-1036
Pena-Cortes H, Sanchez-Serano JJ, Mertens R and Willmitzer L (1989) Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor gene in potato and tomato. Proc Natl Acad Sci USA 86: 9854-9855
Pieterse CMJ and Van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trans Plant Sci 4: 52-58
Reinbothe S, Mollenhauer B and Reinbothere C (1994) JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6: 1197-1209
Repka V (1999) Improved histochemical test for in situ detection of hydrogen peroxide in cells undergoing oxidative burst or lignification. Biol Plantarum 42: 599-607
Ryan CA (2000) Thesystemin signaling pathway: differential activation of defensive genes. Biochem Biophys Acta 1477: 112-122
Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor: N.Y
Scandalios JG (1992) Molecular biology of free radical scanvenging systems. Cold Spring Harbor Laboratory Press, USA
Vierstra RD and Callis J (1999) Polypeptide tags, ubiquitous modifiers for plant protein regulation. Plant Mol Biol 41: 435-442
Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19: 195-216
Wang CS, Walling LL, Eckard KJ and Lord EM (1992) Patterns of protein accumulation in developing anthers of lilum longiflorum correlate with histological events. American Journal of Botany 79: 118-127
Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J and Mitchell JB (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 90: 9813-9817
Yamasaki H, Sakihama Y and Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4: 128-129
Yamasaki H and Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468: 89-92
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75421-
dc.description.abstract當植物受到外來生物性逆境,如病原菌感染、物理性傷害等,體內會產生許多蛋白質以抵禦這逆境的入侵與擴大,此過程稱為植物防禦機制。植物防禦機制的啟動是受到一連串嚴密的訊息分子來調控,這些訊息分子包含了細胞壁被破壞時所釋放出的多醣類、植物荷爾蒙茉莉酸(methyl jasmonate, MeJA)與活性氧類(reactive oxygen species, ROS)。
ROS包含了hydrogen peroxide (H2O2)、superoxide(O2-)。適量的ROS是擔任訊息分子很好的角色,但過量的ROS反而會破壞細胞膜並導致細胞死亡,所以其中必有一嚴謹的機制來調控ROS在細胞中的含量。
Nitric oxide(NO)近年來被發現參與許多植物生長發育的過程,也發現植物遭受病原菌入侵時會有大量的NO產生。部分學者認為NO可能會引起大量ROS產生,進一步導致細胞死亡,部份學者則推論在植物防禦機制上NO可能會降低ROS的含量,而擔任一保護者的角色,確切的功能與作用機制目前仍不清楚。
本實驗利用甘藷為實驗材料,藉由傷害誘導基因ipomoelin(IPO)作為分子標記(molecular marker),以外加的方式供給植物NO或H2O2,藉由IPO基因的表現情形來探討NO與H2O2在植物防禦機制中所扮演的角色。同時藉由偵測H2O2和NO影像的染劑來觀察植物在葉片受傷後兩者的表現情形與相互作用。在以上實驗結果分析均指出,NO會降低植物體本身因傷害而產生H2O2之含量,推論在植物防禦機制上扮演一保護者的角色。
另一方面,因希望對NO的作用機制能有進一步的瞭解,在此藉由蛋白質二維電泳的方式找尋出受NO所誘導而表現的蛋白質,經由蛋白質定序後得到六種蛋白質序列,分別為:thylakoid lumenal protein, SUMO protein, nucleoside diphosphate kinase (NDPK), sporamin B precursor,與兩種CuZnSOD 。同時經由SOD與catalase活性染的方式發現,NO處理後的葉片會引起SOD與catalase的大量表現。綜合以上結果明確指出在植物防禦機制上,NO會藉由降低因傷害產生的H2O2之含量,避免植物體本身因過多的ROS而造成的傷害。
zh_TW
dc.description.abstractPlants respond to insect attack and mechanical wounding by activating the expression of defense genes. This process involves a series of signal transduction factors which include methyl jasmonat (MeJA) and reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and superoxide (O2-). When ROS are generated at a controlled level, cell can use them as signals to activate defense genes. However, the excess amount of ROS present may damage cells, and hence cells have evolved an antioxidant system involving superoxide dismutase (SOD), catalase, and nitric oxide (NO) to protect cells from ROS destruction. In this study, we used the Ipomoelin (IPO) gene isolated from sweet potato as a molecular marker to investigate the molecular events of NO and H2O2 after sweet potato was mechanically wounded. Results indicate that mechanical wounding can induce leaves to produce H2O2, which further stimulate the expression of the IPO gene. On the contrary, NO delays the expression of the IPO gene by reducing the production of H2O2. Meanwhile, six NO-induced proteins were isolated from two-dimensional electrophoresis, and one of them is SOD as expected. In conclusion, when sweet potato is wounded, both H2O2 and NO are produced to modulate the defense response, which may protect plants from insect and pathogen invasion and at the same time prevent plant from damage caused by ROS.en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:13:07Z (GMT). No. of bitstreams: 0
Previous issue date: 2003
en
dc.description.tableofcontents中文摘要
英文摘要
第一章、前言
一、植物的防禦機制……………………………………………………1
二、實驗方向與目的……………………………………………………6
第二章、材料與方法
一、材料……………………………………………………8
二、甘藷葉片處理實驗……………………………………………………8
三、甘藷葉片RNA的萃取……………………………………………………10
四、甘藷葉片蛋白質的萃取……………………………………………………12
五、蛋白質SDS膠體電泳分析……………………………………………………14
六、北方墨點分析……………………………………………………16
七、西方墨點分析……………………………………………………18
八、蛋白質二維電泳分析……………………………………………………19
九、蛋白質共同免疫沉澱……………………………………………………22
十、SOD蛋白質活性測試與鑑定……………………………………………………25
十一、Catalase蛋白質活性分析……………………………………………………27
十二、NO染色之影像分析……………………………………………………28
十三、H2O2染色之影像分析……………………………………………………29
第三章、結果
一、H2O2誘導IPO基因之表現……………………………………………………30
二、NO與IPO基因表現之關係……………………………………………………32
三、NO與H2O2兩者之相互關係……………………………………………………34
四、由蛋白質二維電泳分析分離NO誘導蛋白質……………………………………………………36
五、NO誘導蛋白質初步功能分析……………………………………………………37
六、NO誘導SOD與catalase的蛋白質活性測試……………………………………………………38
第四章、討論
一、NO與H2O2兩者對於IPO基因表現之影響……………………………………………………41
二、NO誘導蛋白質之分離與初步分析……………………………………………………47
第五章、參考文獻……………………………………………………53
圖表……………………………………………………59
dc.language.isozh-TW
dc.titleHydrogen Peroxide與Nitric Oxide對於甘藷防禦機制之功能探討zh_TW
dc.titleFunctional analysis of hydrogen peroxide and nitric oxide in the defense response of sweet potatoen
dc.date.schoolyear91-2
dc.description.degree碩士
dc.relation.page88
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved