請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75399
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chun-Hui Chang | en |
dc.contributor.author | 張鈞惠 | zh_TW |
dc.date.accessioned | 2021-07-01T08:13:01Z | - |
dc.date.available | 2021-07-01T08:13:01Z | - |
dc.date.issued | 2003 | |
dc.identifier.citation | Aggleton JP (2000), The amygdala: a functional analysis, 2nd edition, Oxford university press Inc., New York Amorapanth P, LeDoux JE and Nader K (2000), Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus, Nature Neurosci. (3): 74-79 Brioni JD, Nagahara AH and McGaugh JL (1989), Involvement of the amygdala GABAergic system in the modulation of memory storage, Brain Research (487): 105-112 Cahill L and McGaugh JL (1998), Mechanisms of emotional arousal and lasting declarative memory, Trends in Neuroscience (21): 294-299 Cahill L, Weinberger NM, Roozendaal B and McGaugh JL (1999), Is the amygdala a locus of conditioned fear Some questions and Caveats, Neuron (23): 227-228 Coleman-Mesches K and McGaugh JL (1995a), Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training, Brain Res. (670): 75-81 Coleman-Mesches K and McGaugh JL (1995b), Muscimol injected into the right or left amygdaloid complex differentially affects retention performance following aversively motivated training, Brain Res. (676): 183-188 Coleman-Mesches K and McGaugh JL (1995c), Differential effects of pretraining inactivation of the right or left amygdala on retention of inhibitory avoidance training, Behav. Neurosci. (109): 642-647 Fanselow MS and Kim JJ (1994), Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-Amino-5-Phosphonovaleric acid to the basolateral amygdala, Behav. Neurosci. (108): 210-212 Fanselow MS and LeDoux JE (1999), Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala, Neuron (23): 229-232 Fries P, Guill?n F and Jensen O (2003), When neurons form memories, Trends in neurosciences (26): 123-124 Gray CM, K?nig P, Engel AK and Singer W (1989), Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties, Nature (338): 334-337 Izquierdo I, Quillfeldt JA, Zanatta MS, Quevedo J, Schaeffer E, Schmitz PK and Medina JH (1997), Sequential role of hippocampus and amygdala, entorhinal cortex and parietal cortex in formation and retrieval of memory for inhibitory avoidance in rats, European Journal of Neurosci. (9): 786-793 Killcross S, Robbins TW and Everitt BJ (1997), Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala, Nature (388): 377-380 LeDoux JE, Cicchetti P, Xagoraris A and Romanski LM (1990), The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning, J. Neurosci. (10): 1062-1069 LeDoux JE (1995), Emotion: clues from the brain, Annu. Rev. Psychol. (46): 209-235 LeDoux JE (2000), Emotion circuits in the brain, Annu. Rev. Neurosci. (23): 155-184 Liang KC and McGaugh JL (1983), Lesions of the stria terminalis attenuate the enhancing effect of posttraining epinephrine on retention of an inhibitory avoidance response, Behav. Brain Res. (9): 49-58 Liang KC, Juler RG and McGaugh JL (1986), Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system, Brain Research (368): 125-133 Liang KC, Hon W and Davis M (1994), Pre- and posttraining infusion of N-Methyl D-Aspartate receptor antagonists into the amygdala impair memory in an inhibitory avoidance task, Behav. Neurosci. (108): 241-253 Liang KC, Hu SJ and Chang SC (1996), Formation and retrieval of inhibitory avoidance memory: differential roles of glutamate receptors in the amygdala and medial prefrontal cortex, Chinese Journal of Physiology (39): 155-166 Liang KC (1999), Pre- or post-training injection of buspirone impaired retention in the inhibitory avoidance task: involvement of amygdala 5-HT1A receptors, European J. Neurosci (11): 1491-1500 Maren S, Aharonov G and Fanselow MS (1996), Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: absence of a temporal gradient, Behav. Neurosci. (110): 718-726 McGaugh JL, Cahill L and Roozendaal B (1996), Involvement of the amygdala in memory storage: interaction with other brain systems, Proc. Natl. Acad. Sci. USA (93): 13508-13514 McGaugh JL, Ferry B, Vazdarjanova A and Roozendaal B (2000), Amygdala: role in modulation of memory storage, In The Amygdala: a functional analysis, 2nd edition (ed. Aggleton JP), pp. 391-423. Oxford University Press Inc., New York Nicolelis MAL (1999), Methods for neural ensemble recordings, CRC Press LLC, Florida Packard MG and McGaugh JL (1992), Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks, further evidence for multiple memory systems, Behav. Neurosci (106): 439-446 Packard MG, Cahill L and McGaugh JL (1994), Amygdala modulation of hippocampal-dependent and caudate nucleus-dependent memory processes, Proc. Natl. Acad. Sci. USA (91): 8477-8481 Packard MG and Tether L (1998), Amygdala modulation of multiple memory systems: hippocampus and caudate-putamen, Neurobio. Learn. Mem. (69): 163-203 Parent MB and McGaugh JL (1994), Posttraining infusion of lidocaine into the amygdala basolateral complex impairs retention of inhibitory avoidance training, Brain Research (661): 97-103 Par? D and Collins DR (2000), Neuronal correlates of fear in the lateral amygdala: multiple extracellular recording in conscious cats, J. Neurosci. (20): 2701-2710 Par? D, Collins DR and Pelletier JG (2002), Amygdala oscillations and the consolidation of emotional memories, Trends in Cognitive Sciences (6): 306-314 Paxinos G and Watson C (1999), the rat brain in stereotaxic coordinates, San Diego: Academic Quirk GJ, Repa JC and LeDoux JE (1995), Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recording in the freely behaving rat, Neuron (15): 1029-1039 Repa KC, Muller J, Apergis J, Desrochers TM, Zhou Y and LeDoux JE (2001), Two different lateral amygdala cell populations contribute to the initiation and storage of memory, Nature Neurosci. (4): 724-731 Romanski LM, LeDoux JE, Clugnet MC and Bordi F (1993), Somatosensory and auditory convergence in the lateral nucleus of the amygdala, Behav. Neurosci. (107): 444-450 Sakurai Y (1999), How do cell assemblies encode information in the brain Neuroscience and behavioral reviews (23): 785-796 Skaggs WE and McNaughton BL (1996), Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience, Science (271): 1870-1873 Squire LR, Knowlton B and Musen G (1993), The structure and organization of memory, Annu. Rev. Psychol. (44): 453-495 Vazdarjanova A and McGaugh JL (1998), Basolateral amygdala is not critical for cognitive memory of contextual fear conditioning, Proc. Natl. Acad. Sci. USA (95): 15003-15007 Vazdarjanova A and McGaugh JL (1999), Basolateral amygdala is involved in modulating consolidation of memory for classical fear conditioning, J. Neurosci (19): 6615-6622 Wilson MA and McNaughton BL (1994), Reactivation of hippocampal ensemble memories during sleep, Science (265): 676-679 Woof NJ and Butcher LL (1981), Cholinergic neurons in the caudate-putaman complex proper are intrinsically organized: a combined evans blue and acetylcholinesterase analysis, Brain Res. Bull. (7): 487-507 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75399 | - |
dc.description.abstract | 本研究利用細胞外單一神經元活性記錄,來探討杏仁核在兩種形式的抑制型躲避學習作業中(熱板踏下式抑制型躲避學習作業及傳統穿越式抑制型躲避學習作業)所扮演的角色。簡言之,大鼠分為實驗組(n=8)和控制組(n=5),實驗組大鼠在制約前,共進入作業環境三次,然後在制約後一天再進行測試。控制組和實驗組的差別在於控制組的大鼠其制約階段是在一個和原作業環境全然不同的地方進行。我們成功的利用嫌惡刺激,讓大鼠學會了這兩種作業。透過神經元反應的記錄顯示,隨著大鼠進入作業環境的次數增加,杏仁核細胞放電的頻率隨之下降,而在制約之後,放電的頻率在實驗組中再度上升,但在控制組中則沒有這種現象,故杏仁核可能藉由放電的強度來傳遞訊息。初級體感覺皮層的細胞在此兩種作業中扮演的角色並不一致,在熱板踏下式抑制型躲避學習作業中,此部位細胞的放電和學習歷程無關,但在傳統穿越式抑制型躲避學習作業中,放電頻率則表現出和杏仁核細胞相似的模式。神經系統可能藉由參與於某一事件的神經區域間同步放電的增加來記錄訊息,但在本實驗中,並沒有觀察到杏仁核和初級體感覺皮層的細胞在制約後同步放電增加的現象。抑制型躲避學習作業牽涉到工具制約和古典制約,從本研究及杏仁核各核區毀除實驗得到的結果,熱板踏下式抑制型躲避學習作業可能主要是藉由工具制約來達成,而古典制約則是學習傳統穿越式抑制型躲避學習作業很重要的因素之一。我們並沒有得到支持性的證據顯示學習抑制型躲避學習作業時,右側杏仁核比左側杏仁核更重要。有些研究顯示杏仁核可能有神經元分工的現象,但本研究中沒有得到決定性的支持證據。5-12Hz的慢腦波(theta rhythm band)是大鼠清醒且警戒時杏仁核主要的慢腦波成份,於本實驗中,大鼠由等待箱進入作業環境時,此成份明顯的增加,但實驗組大鼠在制約成功後,於等待箱中時此成份即明顯出現,表示實驗組大鼠於制約成功後,在測試時,即使是在等待箱中,依然保持警戒的狀態。因此,綜合從本研究得到的結果及前人相關的研究,提出雖然杏仁核不一定是長期記憶儲存的所在,但至少本核區在制約後一天仍密切參與於行為調控中,調控的機制可能是利用整體放電的增加。大鼠可能是利用不同的策略來學習此研究中所使用的兩種抑制型躲避學習作業,於熱板踏下式抑制型躲避學習作業中,工具制約的成分主導了學習,而於傳統抑制型躲避學習作業中,古典制約的成分是很重要的學習因素。 | zh_TW |
dc.description.abstract | This study examined the functional role of the amygdala in two versions of inhibitory avoidance tasks, the step-down avoidance motivated by heat and the step-through avoidance motivated by electric shock, with single-unit recording during task sessions. Long-Evans rats successfully acquired these two conditioning paradigms. Rats were divided into the experimental group (n = 8) and the control group (n = 5). Briefly, rats in the experimental group were allowed to adapt the task environment three times, then received the conditioning session, and followed by the test session. Rats in the control group received the unconditioned noxious stimuli in an environment distinct from the original task apparatus. Changes in the neuronal response showed that as the animal got used to the task environment from the first-entry session to the habituated session (the third-entry), neuronal firing rates in the amygdala decreased. After the conditioning session, firing rates increased again in the experimental group, but not in the control group. These results imply that the amygdala may code information by neuronal firing rates. The role of the primary somatosensory cortex in these two tasks was unclear. Data obtained from the experimental group showed that in the step-down avoidance task, firing rates decreased from the first-entry session to the habituated session, and showed further decrement in the test session. This result implies that the primary somatosensory cortex may not be involved in the step-down conditioning process. However, in the step-through avoidance task, firing rates decreased from the first-entry session to the habituated session and increased again in the test session, which implies that the primary somatosensory cortex may be involved in the step-through conditioning process. We failed to find changes in the synchronization among neurons after the conditioning session between the primary somatosensory cortex and the amygdala. Inhibitory avoidance learning may engage both the operant component and the classical component. The present data combined with the lesion data obtained in our lab suggest that the operant component dominated in the step-down avoidance task, and the classical component is an important factor in learning the step-through avoidance task. Our experiment design failed to yield supporting evidence for more involvement of the right amygdala than the left one. It is possible that the neurons in the amygdala are functionally segregated, but this notion needs further examination. We found out that the theta rhythm dominates as the rats entered the task apparatus from the waiting cage, and rats in the experimental group showed dominant theta rhythm in both the waiting cage and the task apparatus after conditioning. Since theta rhythm correlates with awake and alert state in the amygdala, these results imply that the rats in the experimental group may stay alert even in the waiting cage after the conditioning session. From previous related studies, although the amygdala may not be the storage site of long-term memory in this kind of inhibitory avoidance learning, we suggest that the amygdala could pivot avoidance behavior through increase in population firing rate, at least within one day after the conditioning session. Further, the animal may adopt different strategies in acquiring the two inhibitory avoidance tasks: learning in the step-down avoidance task was coped with more active behavior than in the step-through avoidance task. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:13:01Z (GMT). No. of bitstreams: 0 Previous issue date: 2003 | en |
dc.description.tableofcontents | 中文摘要…………………………………………………………………………………………………………………………1 Abstract…………………………………………………………………………………………………………………………3 Introduction……………………………………………………………………………………………………………………5 The classical fear conditioning…………………………………………………………………………………………5 The amygdala in classical fear conditioning…………………………………………………………………………6 The operant fear conditioning……………………………………………………………………………………………7 The amygdala in operant fear conditioning……………………………………………………………………………7 Overview of the experiment design………………………………………………………………………………………9 Goals in this study…………………………………………………………………………………………………………10 Material and methods………………………………………………………………………………………………………12 Subjects………………………………………………………………………………………………………………………12 Surgical implantation of recording electrodes………………………………………………………………………12 Neuronal data collection…………………………………………………………………………………………………13 Behavioral tasks……………………………………………………………………………………………………………14 Histology………………………………………………………………………………………………………………………17 Unit criteria…………………………………………………………………………………………………………………18 Data analysis…………………………………………………………………………………………………………………18 Results…………………………………………………………………………………………………………………………20 Histological determination of the recording sites…………………………………………………………………20 Behavior changes in the two tasks………………………………………………………………………………………20 Changes in unit firing rate during task sessions in the amygdala and the primary somatosensory cortex, the population analysis…………………………………………………………………………………………21 Changes in unit firing rate during task sessions in the amygdala and the primary somatosensory cortex, the single-unit analysis………………………………………………………………………………………22 Differential function between the CeA and BLC, and differential function between the right and left amygdala………………………………………………………………………………………………………………………24 Strength of theta rhythm…………………………………………………………………………………………………25 Synchronization among units in the primary somatosensory cortex and the amygdala………………………26 Discussion……………………………………………………………………………………………………………………27 The importance and advantages about modification of the two tasks…………………………………………27 Importance of the amygdala in performing the fear response……………………………………………………28 Possible roles of the primary somatosensory cortex in the two tasks………………………………………29 Possibility of functional segregation among the amygdaloid neurons in the two tasks…………………31 Different strategies in learning the two tasks……………………………………………………………………32 Possible mechanism in coding information: synchronization……………………………………………………35 Possible mechanism in coding information: ensembled activity…………………………………………………35 Theta rhythm in the amygdala……………………………………………………………………………………………35 Conclusion……………………………………………………………………………………………………………………37 References……………………………………………………………………………………………………………………38 Tables and figures…………………………………………………………………………………………………………43 | |
dc.language.iso | zh-TW | |
dc.title | 大鼠學習抑制型躲避學習作業前後杏仁核神經元活性的變化 | zh_TW |
dc.title | Amygdaloid unit activity changes induced by inhibitory avoidance learning | en |
dc.date.schoolyear | 91-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 66 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 動物學研究所 | zh_TW |
顯示於系所單位: | 動物學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。