請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7533完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳誠亮(Cheng-Liang Chen) | |
| dc.contributor.author | Jia-Juen Chiang | en |
| dc.contributor.author | 江家諄 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:45:48Z | - |
| dc.date.available | 2023-08-02 | |
| dc.date.available | 2021-05-19T17:45:48Z | - |
| dc.date.copyright | 2018-08-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-01 | |
| dc.identifier.citation | [1] U.N. Water, “Water and energy,” World water development report 2014, vol. 1, pp.
2–7, 2014. [Online]. Available: http://www.unesco.org/new/en/natural-sciences/ environment/water/wwap/wwdr/2014-water-and-energy/ [2] B. W. Eakins and G. F. Sharman, “Volumes of the world’s oceans from etopo1,” NOAA National Geophysical Data Center, 2010. [3] THE WORLD BANK, “Renewable internal freshwater resources per capita,” Food and Agriculture Organization, AQUASTAT data, 2014. [Online]. Available: https://data.worldbank.org/indicator/ER.H2O.INTR.PC [4] World Economic Forum, “Global risks report 2017,” p. 18, 2017. [Online]. Available: http://www3.weforum.org/docs/GRR17 Report web.pdf [5] M. M. Mekonnen and A. Y. Hoekstra, “Four billion people facing severe water scarcity,” Science Advances, vol. 2, no. 2, 2016. [Online]. Available: http://advances.sciencemag.org/content/2/2/e1500323 [6] IEA-ETSAP and IRENA, “Water desalination using renewable energy: Technology brief,” 2012. [Online]. Available: www.irena.org/Publications [7] DesalData, “Worldwide desalination inventory (ms excel format),” 2014. [8] DESWARE, “Energy requirements of desalination processes,” 2013. [Online]. Available: http://www.desware.net/Energy-Requirements-Desalination-Processes. aspx [9] H. El-Dessouky, I. Alatiqi, S. Bingulac, and H. Ettouney, “Steady-state analysis of the multiple effect evaporation desalination process,” Chem. Eng. Technol., vol. 21, pp. 437–451, 1998. [Online]. Available: http: //refhub.elsevier.com/S0011-9164(16)30435-0/rf0130 [10] K. H. Mistry, M. A. Antar, and J. H. Lienhard, “An improved model for multiple effect distillation,” Desalination and Water Treatment, vol. 51, no. 4-6, pp. 807–821, 2013. [Online]. Available: hGotoISIi://WOS:000313794400017 [11] P. Druetta, P. Aguirre, and S. Mussati, “Optimization of multi-effect evaporation desalination plants,” Desalination, vol. 311, pp. 1–15, 2013. [Online]. Available: hGotoISIi://WOS:000315012500001 [12] A. Christ, K. Regenauer-Lieb, and H. T. Chua, “Boosted multi-effect distillation for sensible low-grade heat sources: A comparison with feed pre-heating multi-effect distillation,” Desalination, vol. 366, pp. 32–46, 2015. [Online]. Available: hGotoISIi://WOS:000355035100005 [13] A. Christ, X. Wang, K. Regenauer-Lieb, and H. T. Chua, “Low-grade waste heat driven desalination technology,” International Journal for Simulation and Multidisciplinary Design Optimization, vol. 5, 2014. [Online]. Available: http://refhub.elsevier.com/S0011-9164(16)30435-0/rf0110 [14] B. Rahimi, A. Christ, K. Regenauer-Lieb, and H. T. Chua, “A novel process for low grade heat driven desalination,” Desalination, vol. 351, pp. 202–212, 2014. [Online]. Available: hGotoISIi://WOS:000342248800022 [15] X. L. Wang, A. Christ, K. Regenauer-Lieb, K. Hooman, and H. T. Chua, “Low grade heat driven multi-effect distillation technology,” International Journal of Heat and Mass Transfer, vol. 54, no. 25-26, pp. 5497–5503, 2011. [Online]. Available: hGotoISIi://WOS:000296035300036 [16] H. Zhao and P. Peterson, “Advanced med using waste heat from closed gas brayton cycles,” Transactions of the ANS, vol. 96, pp. 791–792, 2007. [17] S. M. Alcocer and G. Hiriart, “An applied research program on water desalina- tion with renewable energies,” American Journal of Environmental Sciences, vol. 4, no. 3, pp. 204–211, 2008. [18] A. Christ, K. Regenauer-Lieb, and H. T. Chua, “Application of the boosted med process for low-grade heat sources — a pilot plant,” Desalination, vol. 366, pp. 47 – 58, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0011916414005554 [19] H. R. Dastgerdi, P. B. Whittaker, and H. T. Chua, “New med based desalination process for low grade waste heat,” Desalination, vol. 395, pp. 57–71, 2016. [Online]. Available: hGotoISIi://WOS:000379637400008 [20] A. Christ, K. Regenauer-Lieb, and H. T. Chua, “Thermodynamic optimisation of multi effect distillation driven by sensible heat sources,” Desalination, vol. 336, pp. 160 – 167, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0011916413005791 [21] C. L. Chen, P. Y. Li, and S. N. T. Le, “Organic rankine cycle for waste heat recovery in a refinery,” Industrial & Engineering Chemistry Research, vol. 55, no. 12, pp. 3262–3275, 2016. [Online]. Available: https://doi.org/10.1021/acs.iecr.5b03381 [22] I. C. Kemp, Pinch analysis and process integration, 2nd ed. Elsevier, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7533 | - |
| dc.description.abstract | 近年來,台灣南部的缺水壓力因氣候變化和水庫淤積變得更加險
峻。海水淡化技術在必要時能夠緩解這個即將到來的問題並能夠持續 供應民生及工業用淡水,其中,多效蒸發技術已經廣泛應用於海水淡 化,並具有低電力消耗的特點。在這篇論文中,吾人首先建構多效蒸 發系統的數學模型,並討論如何增加使用低溫顯熱之效率。該模型主 要根據質量和能量平衡,為一個高度非線性的規劃問題。同時也對新 的架構-增強型多效蒸發系統,基於廢熱性能比進行研究。廢熱性能 比定義為餾出物的焓與熱源的可利用能量之比。對於傳統多效蒸發系 統,廢熱的離開溫度仍高導致廢熱無法被有效利用。在討論廢熱性能 比中,增強型多效蒸發系統優於傳統多效蒸發系統,同時更能降低其 熱交換面積。增強型多效蒸發系統能夠在指定的低廢熱出口溫度下充 分利用顯熱廢熱。此外,廢熱的出口溫度是選擇不同系統的關鍵要 素。當指定的廢熱出口溫度高於傳統多效蒸發系統的最低可行溫度 時,使用傳統多效蒸發系統將在產水效率更有優勢。 | zh_TW |
| dc.description.abstract | In recent years, water stress becomes more severe in southern Taiwan due
to climate change and reservoir siltation. Desalination technology can mit- igate this upcoming issue and supply fresh water persistently. Multi-Effect Evaporation (MEE) system is one of thermal desalination technologies which has features of high efficiency in power consumption. A mathematical model ofMEEsystemisdevelopedtoeffectivelyutilizethesensiblelowgradewaste heat. The model is based on mass and energy balances and it is highly non- linear. Besides conventional configuration, an advanced process, namely the Boosted MEE (BMEE) is also investigated on the basis of waste heat perfor- mance ratio. Waste heat performance ratio is defined as the ratio of the en- thalpy of the distillate to the maximum exploitable energy of the heat source. For MEE system, the leaving temperature of waste heat is quite high and waste heat can not be efficiently exploited. To improve the operating effi- ciency, BMEE system is studied and the results show that the BMEE system is superior to the conventional MEE system in both waste heat performance ratio (up to 8%) and heat transfer area (up to 14%). The BMEE system has shown the capability to fully utilize the sensible waste heat at specified low waste heat outlet temperature. Moreover, the outlet temperature of waste heat is the key to choose either MEE system or BMEE system in terms of fresh- water production. While the specified waste heat outlet temperature is higher than the lowest possible temperature of the MEE system, it becomes more appropriate to use the MEE system rather than the BMEE system. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:45:48Z (GMT). No. of bitstreams: 1 ntu-107-R05524103-1.pdf: 7893065 bytes, checksum: bc931c596cff4e571c2454b7e933456e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv List of Figures viii List of Tables ix Nomenclature x 1 Introduction 1 1.1 Water Scarcity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Desalination Technologies . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 MEE Brief Process Description . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Key Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Design of Multi-Effect Evaporation Systems 10 2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Thermodynamics properties . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Evaporator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 Flash Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.4 Preheater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.5 Mixing Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.6 Additional formulations for first effect . . . . . . . . . . . . . . . 17 2.3.7 Additional formulations for last effect . . . . . . . . . . . . . . . 18 2.3.8 Operational Constrains . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.9 NLP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.1 Case 1: Influence of increasing waste heat outlet temperature . . . 21 2.4.2 Case 2: Influence of reducing waste heat outlet temperature . . . 22 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Design of Boosted Multi-Effect Evaporation Systems 26 3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Evaporator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 Booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.3 Mixing Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.4 NLP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 Case 1: Influence of inlet temperature of heat source on booster . 30 3.3.2 Case 2: Influences of inlet temperature of heat source and number of effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 MEE/BMEE Systems for Waste Heat Recovery in Refinery 37 4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.1 Additional Models . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.2 NLP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Conclusion 49 Bibliography 50 | |
| dc.language.iso | en | |
| dc.title | 低溫多效蒸發海水淡化系統之最適化 | zh_TW |
| dc.title | Optimization of Multi-Effect Evaporation Desalination System for Low Grade Sensible Heat | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 錢義隆(I-Lung Chien),李豪業(Hao-Yeh Lee),李瑞元(Jui-Yuan Lee) | |
| dc.subject.keyword | 海水淡化,最適化,多效蒸發,非線性規劃, | zh_TW |
| dc.subject.keyword | Desalination,Optimization,Multi-Effect Evaporation,Non-linear programming (NLP), | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU201802352 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-02 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 7.71 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
