Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7533
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳誠亮(Cheng-Liang Chen)
dc.contributor.authorJia-Juen Chiangen
dc.contributor.author江家諄zh_TW
dc.date.accessioned2021-05-19T17:45:48Z-
dc.date.available2023-08-02
dc.date.available2021-05-19T17:45:48Z-
dc.date.copyright2018-08-02
dc.date.issued2018
dc.date.submitted2018-08-01
dc.identifier.citation[1] U.N. Water, “Water and energy,” World water development report 2014, vol. 1, pp.
2–7, 2014. [Online]. Available: http://www.unesco.org/new/en/natural-sciences/
environment/water/wwap/wwdr/2014-water-and-energy/
[2] B. W. Eakins and G. F. Sharman, “Volumes of the world’s oceans from etopo1,”
NOAA National Geophysical Data Center, 2010.
[3] THE WORLD BANK, “Renewable internal freshwater resources per capita,”
Food and Agriculture Organization, AQUASTAT data, 2014. [Online]. Available:
https://data.worldbank.org/indicator/ER.H2O.INTR.PC
[4] World Economic Forum, “Global risks report 2017,” p. 18, 2017. [Online].
Available: http://www3.weforum.org/docs/GRR17 Report web.pdf
[5] M. M. Mekonnen and A. Y. Hoekstra, “Four billion people facing severe
water scarcity,” Science Advances, vol. 2, no. 2, 2016. [Online]. Available:
http://advances.sciencemag.org/content/2/2/e1500323
[6] IEA-ETSAP and IRENA, “Water desalination using renewable energy: Technology
brief,” 2012. [Online]. Available: www.irena.org/Publications
[7] DesalData, “Worldwide desalination inventory (ms excel format),” 2014.
[8] DESWARE, “Energy requirements of desalination processes,” 2013. [Online].
Available: http://www.desware.net/Energy-Requirements-Desalination-Processes.
aspx
[9] H. El-Dessouky, I. Alatiqi, S. Bingulac, and H. Ettouney, “Steady-state
analysis of the multiple effect evaporation desalination process,” Chem.
Eng. Technol., vol. 21, pp. 437–451, 1998. [Online]. Available: http:
//refhub.elsevier.com/S0011-9164(16)30435-0/rf0130
[10] K. H. Mistry, M. A. Antar, and J. H. Lienhard, “An improved model for multiple
effect distillation,” Desalination and Water Treatment, vol. 51, no. 4-6, pp.
807–821, 2013. [Online]. Available: hGotoISIi://WOS:000313794400017
[11] P. Druetta, P. Aguirre, and S. Mussati, “Optimization of multi-effect evaporation
desalination plants,” Desalination, vol. 311, pp. 1–15, 2013. [Online]. Available:
hGotoISIi://WOS:000315012500001
[12] A. Christ, K. Regenauer-Lieb, and H. T. Chua, “Boosted multi-effect distillation for
sensible low-grade heat sources: A comparison with feed pre-heating multi-effect
distillation,” Desalination, vol. 366, pp. 32–46, 2015. [Online]. Available:
hGotoISIi://WOS:000355035100005
[13] A. Christ, X. Wang, K. Regenauer-Lieb, and H. T. Chua, “Low-grade
waste heat driven desalination technology,” International Journal for Simulation
and Multidisciplinary Design Optimization, vol. 5, 2014. [Online]. Available:
http://refhub.elsevier.com/S0011-9164(16)30435-0/rf0110
[14] B. Rahimi, A. Christ, K. Regenauer-Lieb, and H. T. Chua, “A novel process for
low grade heat driven desalination,” Desalination, vol. 351, pp. 202–212, 2014.
[Online]. Available: hGotoISIi://WOS:000342248800022
[15] X. L. Wang, A. Christ, K. Regenauer-Lieb, K. Hooman, and H. T. Chua, “Low
grade heat driven multi-effect distillation technology,” International Journal of
Heat and Mass Transfer, vol. 54, no. 25-26, pp. 5497–5503, 2011. [Online].
Available: hGotoISIi://WOS:000296035300036
[16] H. Zhao and P. Peterson, “Advanced med using waste heat from closed gas brayton
cycles,” Transactions of the ANS, vol. 96, pp. 791–792, 2007.
[17] S. M. Alcocer and G. Hiriart, “An applied research program on water desalina-
tion with renewable energies,” American Journal of Environmental Sciences, vol. 4,
no. 3, pp. 204–211, 2008.
[18] A. Christ, K. Regenauer-Lieb, and H. T. Chua, “Application of the boosted med
process for low-grade heat sources — a pilot plant,” Desalination, vol. 366, pp. 47
– 58, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0011916414005554
[19] H. R. Dastgerdi, P. B. Whittaker, and H. T. Chua, “New med based desalination
process for low grade waste heat,” Desalination, vol. 395, pp. 57–71, 2016.
[Online]. Available: hGotoISIi://WOS:000379637400008
[20] A. Christ, K. Regenauer-Lieb, and H. T. Chua, “Thermodynamic optimisation of
multi effect distillation driven by sensible heat sources,” Desalination, vol. 336, pp.
160 – 167, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0011916413005791
[21] C. L. Chen, P. Y. Li, and S. N. T. Le, “Organic rankine cycle for waste heat recovery
in a refinery,” Industrial & Engineering Chemistry Research, vol. 55, no. 12, pp.
3262–3275, 2016. [Online]. Available: https://doi.org/10.1021/acs.iecr.5b03381
[22] I. C. Kemp, Pinch analysis and process integration, 2nd ed. Elsevier, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7533-
dc.description.abstract近年來,台灣南部的缺水壓力因氣候變化和水庫淤積變得更加險
峻。海水淡化技術在必要時能夠緩解這個即將到來的問題並能夠持續
供應民生及工業用淡水,其中,多效蒸發技術已經廣泛應用於海水淡
化,並具有低電力消耗的特點。在這篇論文中,吾人首先建構多效蒸
發系統的數學模型,並討論如何增加使用低溫顯熱之效率。該模型主
要根據質量和能量平衡,為一個高度非線性的規劃問題。同時也對新
的架構-增強型多效蒸發系統,基於廢熱性能比進行研究。廢熱性能
比定義為餾出物的焓與熱源的可利用能量之比。對於傳統多效蒸發系
統,廢熱的離開溫度仍高導致廢熱無法被有效利用。在討論廢熱性能
比中,增強型多效蒸發系統優於傳統多效蒸發系統,同時更能降低其
熱交換面積。增強型多效蒸發系統能夠在指定的低廢熱出口溫度下充
分利用顯熱廢熱。此外,廢熱的出口溫度是選擇不同系統的關鍵要
素。當指定的廢熱出口溫度高於傳統多效蒸發系統的最低可行溫度
時,使用傳統多效蒸發系統將在產水效率更有優勢。
zh_TW
dc.description.abstractIn recent years, water stress becomes more severe in southern Taiwan due
to climate change and reservoir siltation. Desalination technology can mit-
igate this upcoming issue and supply fresh water persistently. Multi-Effect
Evaporation (MEE) system is one of thermal desalination technologies which
has features of high efficiency in power consumption. A mathematical model
ofMEEsystemisdevelopedtoeffectivelyutilizethesensiblelowgradewaste
heat. The model is based on mass and energy balances and it is highly non-
linear. Besides conventional configuration, an advanced process, namely the
Boosted MEE (BMEE) is also investigated on the basis of waste heat perfor-
mance ratio. Waste heat performance ratio is defined as the ratio of the en-
thalpy of the distillate to the maximum exploitable energy of the heat source.
For MEE system, the leaving temperature of waste heat is quite high and
waste heat can not be efficiently exploited. To improve the operating effi-
ciency, BMEE system is studied and the results show that the BMEE system
is superior to the conventional MEE system in both waste heat performance
ratio (up to 8%) and heat transfer area (up to 14%). The BMEE system has
shown the capability to fully utilize the sensible waste heat at specified low
waste heat outlet temperature. Moreover, the outlet temperature of waste heat
is the key to choose either MEE system or BMEE system in terms of fresh-
water production. While the specified waste heat outlet temperature is higher
than the lowest possible temperature of the MEE system, it becomes more
appropriate to use the MEE system rather than the BMEE system.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:45:48Z (GMT). No. of bitstreams: 1
ntu-107-R05524103-1.pdf: 7893065 bytes, checksum: bc931c596cff4e571c2454b7e933456e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
List of Figures viii
List of Tables ix
Nomenclature x
1 Introduction 1
1.1 Water Scarcity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Desalination Technologies . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 MEE Brief Process Description . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Key Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Design of Multi-Effect Evaporation Systems 10
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Thermodynamics properties . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Evaporator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Flash Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Preheater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Mixing Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.6 Additional formulations for first effect . . . . . . . . . . . . . . . 17
2.3.7 Additional formulations for last effect . . . . . . . . . . . . . . . 18
2.3.8 Operational Constrains . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.9 NLP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Case 1: Influence of increasing waste heat outlet temperature . . . 21
2.4.2 Case 2: Influence of reducing waste heat outlet temperature . . . 22
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Design of Boosted Multi-Effect Evaporation Systems 26
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Evaporator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Mixing Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 NLP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Case 1: Influence of inlet temperature of heat source on booster . 30
3.3.2 Case 2: Influences of inlet temperature of heat source and number
of effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 MEE/BMEE Systems for Waste Heat Recovery in Refinery 37
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 Additional Models . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 NLP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Conclusion 49
Bibliography 50
dc.language.isoen
dc.title低溫多效蒸發海水淡化系統之最適化zh_TW
dc.titleOptimization of Multi-Effect Evaporation Desalination System for Low Grade Sensible Heaten
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee錢義隆(I-Lung Chien),李豪業(Hao-Yeh Lee),李瑞元(Jui-Yuan Lee)
dc.subject.keyword海水淡化,最適化,多效蒸發,非線性規劃,zh_TW
dc.subject.keywordDesalination,Optimization,Multi-Effect Evaporation,Non-linear programming (NLP),en
dc.relation.page52
dc.identifier.doi10.6342/NTU201802352
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2023-08-02-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf7.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved