Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75305
完整後設資料紀錄
DC 欄位值語言
dc.contributor.authorYu-Yun Changen
dc.contributor.author張玉雲zh_TW
dc.date.accessioned2021-07-01T08:12:36Z-
dc.date.available2021-07-01T08:12:36Z-
dc.date.issued2002
dc.identifier.citationAgrawal, N., Marcu, O., Heslip, T. R. and Marsh, J. L. (2001). The heparan sulfate proteoglycan Syndecan exhibits multiple modes of action in developing tissues. A. Dros. Res. Conf 42, 457A.
Aikawa, J., Grobe, K., Tsujimoto, M. and Esko J. D. (2001). Multiple Isozymes of Heparan Sulfate/Heparin GlcNAc N-Deacetylase/GlcN N-Sulfotransferase. STRUCTURE AND ACTIVITY OF THE FOURTH MEMBER, NDST4. J. Biol. Chem. 276, 5876-5882.
Alcedo, J., Ayzenzon, M., Von Ollen, T., Noll, M. and Hooper, J.E. (1996). The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the Hedgehog signal. Cell 86, 221-232.
Alexandre, C., Jacinto, A., and Ingham, P. W. (1996). Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes and Development 10, 2003-2013.
Almeida, R., Levery, S. B., Mandel, U., Kressei, H., Schwientek, T., Bennett, E. P. and Henrik Clausen, H. (1999). Cloning and Expression of a Proteoglycan UDP-Galactose:b-Xylose bl,4-Galactosyltransferase I—a seventh member of the human b4-Galactosyltransferase gene family. J. Biol. Chem. 274, 26165-26171.
Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C., and Kornberg, T. B. (1997). Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043-1053.
Backstrom, G., Hook, M., Lindahl, U., Feingold, D. S., Malmstrom, A., Roden, L., and Jacobsson, I. (1979). Biosynthesis of heparin. Assay and properties of the microsomal uronosyl C-5 epimerase. J Biol Chem. 254, 2975-2982.
Baeg, G. -H., Lin, Z., Khare, N., Baumgartner, S. and Perrimon, N. (2001). Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128, 87-94.
Bai, X. and Esko, J. D. (1996). An Animal Cell Mutant Defective in Heparan Sulfate Hexuronic Acid 2-O-Sulfation. J. Biol. Chem. 271, 17711-17717.
Bai, X., Zhou, D., Brown, J. R., Crawford, B. E., Hennet, T. and Esko J. D. (2001). Biosynthesis of the Linkage Region of Glycosaminoglycans. Cloning and activity of Galactosyltransferase II, the sixth member of the 1,3-Galactosyltransferase family. J. Biol. Chem. 276, 48189-48195.
Bellaiche, Y., The, I. and Perrimon, N. (1998). Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for HH diffusion. Nature 394, 85-88.
Bell, A. W., Ward, M. A., Blackstock, W.P., Freeman, H. N. M., Choudhary, J. S., Lewis, A. P., Chotai, D., Fazel, A., Gushue, J. N., Paiementi, J., Palcy, S., Chevet, E., 're-Roula, M. L., Solari, R., Thomas, D. Y., Rowley, A. and Bergeron, J. J. M. (2001). Proteomics Characterization of Abundant Golgi Membrane Proteins. J. Biol. Chem. 276, 5152-5165.
Bidlingmaier, S. and Snyder, M. (2002). Large-scale identification of genes important for apical growth in Saccharomyces cerevisiae by directed allele replacement technology (DART) screening. Funct. Integr. Genomics 1, 345-356.
Binari, R. C., Staveley, B. E., Johnson, W. A., Godavarti, R., Sasisekharan, R. and Manoukian A. S. (1997). Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124, 2623-2632.
Bourin, M. C. and Lindahl, U. (1993). Glycosaminoglycans and the regulation of blood coagulation. Biochem J. 289, 313-330.
Bumcrot, D. A., Takada, R. and McMahon, A. P. (1995). Proteolytic processing yields two secreted forms of Sonic hedgehog. Mol. Cell. Biol. 15, 2297-2303.
Burke, R., Nellen, D., Bellotto, M., Hafen, E., Senti, K.-A., Kickson, B. J. and Basler, K. (1999). Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified Hedgehog from signaling cells. Cell 99, 803-815.
Chamoun, Z., Mann, R. K., Nellen, D., von Kessler, D. P., Bellotto, M., Beachy, P. A. and Basler K. (2001). Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the Hedgehog signal. Science 293, 2080-2084.
Caldwell, C. and Datta, S. (1998). The influence of trol on late G1 events in the larval CNS. A. Dros. Res. Conf. 39, 649C.
Cardin, A. D. and Weintraub, H. J. (1989). Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9, 21-32.
Chen, Y., Cardinaux, J. R., Goodman, R. H., and Smolik, S. M. (1999). Mutants of cubitus interruptus that are independent of PKA regulation are independent of hedgehog signaling. Development 126, 3607-3616.
Chen, Y. and Struhl, G. (1998). In vivo evidence that Patched and Smoothened constitute distinct binding and transducing components of Hedgehog receptor complex. Development 125, 4943-4948.
Chou, T. B. and Perrimon, N. (1992). Use of yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643-653.
Chou, T. B., Noll, E. and Perrimon, N. (1993). Autosomal P[ovoD1] dominant female sterile insertions in Drosophila and their use in generating germline chimeras. Development 119, 1359-1369.
Chou, T. B. and Perrimon, N. (1996). The autosomal FLP-DFS technology for generating mosaics in Drosophila melanogaster. Genetics 144, 1673-1679.
Datta, S., Park, Y., Rangel, C., Reynolds, M., Nayak, M., Welsh, J. and McDermott, S. (2002). The Drosophila Perelcan homolog trol modulates Bnl and Hh signaling. A. Dros. Res. Conf 43, 433A.
David, G., Bai, X. M., van der Schueren, B., Cassiman, J.-J. and van den Berghe, H. (1992). Developmental changes in heparan sulfate expression: in situ detection with mAbs. J. Cell Biol. 119, 961-975.
Desai, U. R., Wang, H. and Linhardt, R. J. (1993a). Substrate specificity of the heparin lyases from Flavobacterium heparinum. Arch. Biochem. Biophy. 2, 461-469.
Desai, U. R., Wang, H. and Linhardt, R. J. (1993b). Specificity studies on the heparin lyases from Flavobacterium heparinum. Biochemistry 32, 8140-8145.
Dhoot, G. K., Gustafsson, M. K., Ai, X., Sun, W., Standifrod, D. M. and Emerson Jr., C. P. (2001). Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293, 1663-1663.
Epstein, E. A., Martin, J. L., Haerry, T., Lincecum, J. and O'Connor, M. B. (2001). Genetic investigation of the sara and syndecan region. A. Dros. Res. Conf. 42, 409A.
Esko, J. D. and Selleck, S. B. (2002). Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 70, 435-471.
Gir?ldez, A. J., Copley, R. R. and Cohen, S. M. (2002). HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient. Developmental Cell 2, 667-676.
Gritli-Linde, A., Lewis, P., McMahon, A. P. and Linde, A. (2001). The whereabouts of a morphogen: direct evidence for short- and graded long-range activity of Hedgehog signaling peptides. Deve. Biol. 236, 364-386.
H?cker, U., Lin, X. and Perrimon, N. (1997). The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565-3523.
Haerry T. E., Heslip, T. R., Marsh, J. L. and O'Connor M. B. (1997). Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124, 3055-64.
Han, C., Lin, X., Zhao, C., Opoka, R., Wang, K. and Lin, X. (2001). Identification of botv, a new segment polarity gene that encodes a protein of the putative tumor suppressor EXT family. A. Dros. Res. Conf. 42, 411C.
Han, C., Belenkaya, T., Lin, X., Opoka, R. and Lin, X. (2002). Functional analysis of EXT family of tumor suppressor genes in Drosophila. A. Dros. Res. Conf. 43, 582C.
Ho, G., Broze Jr., G. J. and Schwartz, A. L. (1997). Role of heparan sulfate proteoglycans in the uptake and degradation of tissue factor pathway inhibitor-coagulation factor Xa complexes. J. Biol. Chem. 272, 16838-16844
Hough, C. D. and Datta, S. (1998). Identification of loci that interact with trol, an activator of larval neuroblast proliferation. A. Dros. Res. Conf. 39, 513A.
Irvine, K. D. and Wieschaus, E. (1994). Fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 82, 795-802.
Jackson, S. M., Nakato, H., Sugiura, M., Jannuzi, A., Oakes, R., Kaluza, V., Golden, C. and Selleck, S. B. (1997). dally, a Drosophila glypican, controls cellular responses to the TGF-β-related morphogen. Dpp. Development 124, 4113-4120.
Jacobsson, I., Lindahl, U., Jensen, J. W., Roden, L., Prihar, H., and Feingold, D. S. (1984). Biosynthesis of heparin. Substrate specificity of heparosan N-sulfate D-glucuronosyl 5-epimerase. J Biol Chem. 259, 1056-1063.
Jiang, J., and Struhl, G. (1998). Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493-496.
Khare, N. and Baumgartner, S. (2000). Dally-like protein, a new Drosophila glypican with expression overlapping with wingless. Mech. Deve. 99, 199-202.
Kim, B. T., Kitagawa, H., Tamura, J., Saito, T., Kusche-Gullberg, M., Lindahl, U. and Sugahara, K. (2001). Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode alpha 1,4- N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/ heparin biosynthesis. Proc. Natl. Acad. Sci. 98, 7176-7181.
Kim, B. T., Kitagawa, H., Tamura, J., Gullberg, M. K., Lindahl, U. and Sugahara, K. (2002). Demonstration of a novel gene DEXT3 of Drosophila melanogaster as the essential N-acetylg luconsamine transferase in the heparan sulfate biosynthesis: chain initiation and elongation. J. Biol. Chem. In press.
Kitagawa, H., Shimakawa, H. and Sugahara, K. (1999). The tumor suppressor EXT-like gene EXTL2 encodes an alphal,4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protoin linkage region. The key enxyme for the chain initiation of heparan sulfate. J. Biol. Chem. 274, 13933-13937.
Klein, T. and Arias, A. M. (1998). Interactions among Delta, Serrate and Fringe modulate Notch activity during Drosophila wing development. Development 125, 2951-2962.
Kolset, S. O. and Salmivirta, M. (1999). Cell surface heparan sulfate proteoglycan and lipoprotein metabolism. Cell. Mol. Life Sce. 56, 857-870.
Kondylis, V., Goulding, S. E., Dunne, J. C. and Rabouille, C. (2001). Biogenesis of Golgi stacks in imaginal discs of Drosophila melanogaster. Mole. Biol. Cell 12, 2308-2327.
Kooyman, D. L., Byrne, G.W., McClellan, S., Nielsen, D., Tone, M., Waldmann, H., Coffman, T. M., McCurry, K. R., Platt, J. L. and Logan, J. S. (1995). In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science 269, 89-92.
Lee, J. D., Treisman, J.E. (2001). Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein. Curr. Biol. 11,1147-1152.
Lee, J. J. Ekker, S. C., von Kessler, D. P., Porter, J. A., Sun, B. I. and Beachy, P. A. (1994). Autoproteolysis in hedgehog protein biogenesis. Science 266, 1528-1537.
Lewis, P. M., Dunn, M., McMahon, J. A., Logan, M., Martin, J. F., St-Jacques, B. and McMahon, A. P. (2001). Cholesterol modification of Sonic Hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptcl. Cell 105, 599-612.
Lin, X., Buff, E. M., Perrimon, N. and Micheison, A. (1999). Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126, 3715-3723.
Lin, X. and Perrimon, N. (1999). Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signaling. Nature 100, 281-284.
Lin X., Wei, G., Shi, X., Dryer, L., Esko, J. D., Wells, D. E. and Matzuk, M. M. (2000). Disruption of gastrulation and heparan sulfate biosynthesis in EXT -deficient mice. Deve. Biol. 224, 299-311.
Lindahl U., Jacobsson I., H??k, M., B?ckstr?m, G. and Feingold, D. S. (1976). Biosynthesis of heparin. Loss of C-5 hydrogen during conversion of D-glucuronic to L-iduronic acid residues. Biochem. Biophys. Res. Commun. 70, 492-429.
McCormick, C., Duncan, G., Goutsos, K. T. and Tufaro, F. (2000). The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heapran sulfate. Proc. Natl. Acad. Sci. 97, 668-673.
McMahon, A. P. (2000). More surprises in the Hedgehog signaling pathway. Cell 100, 185-188.
Merry, C. L. R., Bullock, S. L., Swan, D. C., Backen, A. C., Lyon, M., Beddington, R. S. P., Wilson, V. A. and Gallagher, J. T. (2001). The Molecular Phenotype of Heparan Sulfate in the Hs2st Mutant Mouse. J. Biol. Chem. 276, 35429-35434.
Nakano, Y., Guerrero, I., Hidalgo, A., Taylor, A., Whittle, J. R. S. and Ingham, P. W. (1989). A protein with several possible membrane-spanning domains encodes by the Drosophila segment polarity gene patched. Nature 341, 508-513.
Nakato, H., Futch, T. A. and Selleck, S. B. (1995). The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division pattering during postembryonic development of the nervous system in Drosophila. Development 121, 3687-3702
Ohlmeyer, J. T., Kalderon, D. (1998). Hedgehog stimulates maturation of Cubitus interruptus into a labile transcriptional activator. Nature 396, 749-753.
Ornitz, D. M. (2000). FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioassay 22, 108-112.
Panin, V. M., Papayannopoulos, V., Wilson, R. and Irvine, K. D. (1997). Fringe modulates Notch-ligand interactions. Nature 387, 908-912.
Pepinsky, R B., Zeng, C., Wen, D., Rayhorn, P., Baker, D. P., Williams, K. P., Bixler, S. A., Ambrose, C. M., Garber, E. A., Miatkowski, K., Taylor, F. R., Wang, E. A. and Galdes, A. (1998). Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037-14045.
Perrimon, N., Lanjuin, A., Arnold, C. and Noll, E. (1996). Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. Loci on the second and third chromosomes identified by P-element-induced mutations. Genetics 144, 1681-1692.
Pham, A., Therond, P., Alves, G., Tournier, F. B., Busson, D., Lamour-Isnard, C., Bouchon, B. L., Pr?at, T. and Tricoire, H. (1995). The suppressor of fused gene encodes a novel PEST protein involved in Drosophila segment polarity establishment. Genetics 140, 587-598.
Porter, J. A., Young, K. E. and Beachy, P. A. (1996). Cholesterol modification of Hedgehog signaling proteins in animal development. Science 274, 255-259.
Pr?at, T. (1992). Characterization of suppressor of fused, a complete suppressor of the fused segment polarity gene of Drosophila melanogaster. Genetics 132, 725-736.
Rubin, J. B., Choi, Y. and Segal, R. A. (2002). Cerebellar proteoglycans regulate Sonic hedgehog responses during development. Development 129, 2223-2232.
Robertson, D. A., Freeman, C., Morris, C. P. and Hopwood, J. J. (1992). A cDNA clone for human glucosamine-6-sulphatase reveals differences between arylsulphatases and non-arylsulphatases. Biochem. J. 288, 539-544.
Rosenberg, R. D., Shworak, N. W., Liu, J., Schwartz, J. J. and Zhang, L. (1997). Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated J. Clin. Invest. 99, 2062-2070.
Selleck, S. B. (2000). Proteoglycans and pattern formation. Trends in Genetics 16, 206-212.
Selva, E. M., Hong, K., Baeg, G.-H., Beverley, S. M., Turco, S. J., Perrimon, N. and H?cker, U. (2001). Dual role of the fringe connection gene in both heparan sulphate and fringe-depnedent signaling events. Nature Cell Biol. 3, 809-815.
Sen, J., Goltz, J. S., Stevens, L., and Stein, D. (1998). Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell 95, 471-481.
Shukla, D. and Spear, P. G. (2001). Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest. 108, 503-510.
Shworak, N. W., Liu, J., Petros, L. M., Zhang, L., Kobayashi, M., Copeland, N. G., Jenkins, N. A. and Rosenberg, R. D. (1999). Multiple Isoforms of Heparan Sulfate D-Glucosaminyl 3-O-Sulfotransferase. ISOLATION, CHARACTERIZATION, AND EXPRESSION OF HUMAN cDNAs AND IDENTIFICATION OF DISTINCT GENOMIC LOCI. J. Biol. Chem. 274, 5170-5184.
Sisson, C. J., Ho, K. S., Suyama, K. and Scott, M. P. (1997). Costal-2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90, 235-245
Song, H.H. (2001). A novel putative Golgi gene, rotini, is required for the production and transportation of Drosophila Hedgehog. Master Thesis. National Taiwan University. Taiwan.
Spring, J., Paine-Saunders, S. E., Hynes, R. O. and Bernfield, M. (1994). Drosophila syndecan: Conservation of a cell-surface heparan sulfate proteoglycan. Proc. Natl. Acad. Sci. 91, 3334-3338.
Standiford, D. M., Sun, W., Lai, M. and Emerson, C. P. (2001). Drosophila sulfated encodes an extracellular sulfatase enzyme that is required for normal pattern formation during development. A. Dros. Res. Conf. 42, 23.
Stanley, H., Botas, J. and Malhotra V. (1997). The mechanism of Golgi segregation during mitosis is cell type-specific. Proc. Natl. Acad. Sci. 94, 14467-14470.
Strigini, M. and Cohen, S. M. (1997). A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124, 4697-4705.
Strigini, M. and Cohen, S. M. (2000). Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293-300.
Terayama, K., Oka, S., Seiki, T., Miki, Y., Nakamura, A., Kozutsumi, Y., Takio, K. and Kawasaki T. (1997). Cloning and functional expression of a novel glucuronyltransferase involved in the biosynthesis of the carbohydrate epitope HNK-1. Proc. Natl. Acad. Sci. 94, 6093-6098.
The, I., Bellaiche, Y. and Perrimon, N. (1999). Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell 4, 633-639.
Toyoda, H., Knoshita-Toyoda, A., Fox, B. and Selleck, S. B. (2000). Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless and tout-velu. J. Biol. Chem. 275, 21856-21861.
Tsuda, M., Kamimura, K., Nakato, H., Archer, M., Staatz, W., Fox, B., Humphrey, M., Olson, S., Futch, T., Kaluza, V., Siegfried, E., Stam, L. and Selleck, S. B. (1999). The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276-280.
Tumova, S., Woods, A. and Couchman, J. R. (2000). Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int. J. Biochem. & Cell Biol. 32, 269-288.
Ueno, M., Yamada, S., Zako, M., Bernfield, M. and Sugahara K. (2001). Structural Characterization of Heparan Sulfate and Chondroitin Sulfate of Syndecan-1 Purified from Normal Murine Mammary Gland Epithelial Cells. COMMON PHOSPHORYLATION OF XYLOSE AND DIFFERENTIAL SULFATION OF GALACTOSE IN THE PROTEIN LINKAGE REGION TETRASACCHARIDE SEQUENCE. J. Biol. Chem. 276, 29134-29140.
van den Heuvel, M. and Ingham, P. W. (1996). smoothened encodes a receptor-like serpentine protein required for hedgehog signaling. Nature 382, 547-551.
Wei, Z., Swiedler, S. J., Ishihara, M., Orellana, A. and Hirschberg, C.B. (1993). A Single Protein Catalyzes Both N-Deacetylation and N-Sulfation During the Biosynthesis of Heparan Sulfate. Proc. Natl. Acad. Sci. 90, 3885-3888.
Wu, C. C., Taylor, R. S., Lane, D. R., Ladinsky, M. S., Weisz, J. A. and Howell, K. E. (2000). GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1, 963-975.
Xu, T. and Rubin, G. (1993). Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223-1237.
Yip, G. W., Ferretti, P. and Copp, A. J. (2002). Heparan sulfate proteoglycans and spinal neurulation in the mouse embryo. Development 129, 2109-2119.
Zhang, L., Beeler, D. L., Lawrence, R., Lech, M., Liu, J., Davis, J. C., Shriver, Z., Sasisekharan, R. and Rosenberg R. D. (2001). 6-O-Sulfotransferase-1 Represents a Critical Enzyme in the Anticoagulant Heparan Sulfate Biosynthetic Pathway. J. Biol. Chem. 276, 42311-42321.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75305-
dc.description.abstract在果蠅翅碟中,Hedgehog(Hh)在翅碟後端細胞合成,經由膽固醇和棕櫚酸的修飾後,被分泌到細胞膜上。Dispatched(Disp)為一個在Hh分泌細胞上的膜蛋白,具有SSD區域(sterol-sensing domain)可以幫助釋放嵌在細胞膜上的Hh蛋白質。在前端Hh接收細胞中,Tout-velu (Ttv)所合成的heparan sulfate proteoglycans (HSPGs)則可以促進Hh蛋白質在這些細胞間的傳遞。
rotini (rti)基因經由P-element所造成的突變株中顯現出其功能。此P-element插入一個轉錄複合體中,此複合體包含兩個在5'UTR互相重疊的註釋基因,CG7085和CG15387。由CG7085所合成的假定Rti為一個高基氏體蛋白質,廣泛地分佈在胚胎和翅碟中。Rti蛋白質的表現量影響了它的突變性狀。在rtiGLC胚胎中表現出絕對的母源效應產生扭曲及齒毛癒合(lawn-of-denticles)的突變性狀。我們確定rti會影響Hh在翅碟中的生成和訊息傳遞。在野生型翅碟中,約有5?6顆的前端細胞會表現Hh的標的基因Patched(Ptc)。當rti突變發生在Hh接收細胞時,僅有2?3顆細胞能表現Ptc。此Hh訊息減損的現象,與ttv突變的性狀相似但並非完全相同。特別地,rti突變會減少Hh生成細胞中Hh蛋白質的表現量。rti為目前所知第一個會影響Hh生成細胞中Hh表現量的基因。
除了對Hh生成及其訊息傳遞的影響外,rti也影響了HSPGs的表現量。rti對HSPGs影響的性狀相似於負責HSPGs聚合的ttv和負責HSPGs去乙醯化及硫酸化的sulfateless (sfl)所展現的性狀。rti,ttv和sfl這三個基因表現出未被發表過的相似性狀,即分別在Hh接收細胞和生成細胞中減少Ptc和Hh的表現量。我們認為ttv所影響的HSPGs並非只有幫助Hh蛋白質在Hh接收細胞間傳遞的功能。
由本論文的研究顯示,HSPGs和Hh之間具有交互作用,並且HSPGs可以維持Hh的有效濃度。因此我們推論HSPGs藉由和Hh的接合以達成對Hh蛋白質的保護,以拮抗其他分子對Hh所造成的分解作用。
zh_TW
dc.description.abstractIn Drosophila wing disc, Hh is produced by posterior compartment cells where Hh is translated, modified by cholesterol and paltomitate, and secreted to the cell membrane afterward. Dispatched (Disp), a SSD-containing transmembrane protein, on the membrane of these secreting cells, helps the releasing of Hh from the cell membrane. In anterior compartment cells, the capability of Hh being transported across the Hh receiving cells is promoted by heparan sulfate proteoglycans (HSPGs) synthesized by tout-velu (ttv).
The rotini (rti) gene function is manifested by P-element insertion mutations in a transcripts complex composed by two annotated genes, CG7085 and CG15387, which transcribe complementally with an overlapping region in 5'UTRs. The putative Rti is a Golgi protein encoded by CG7085 and expresses ubiquitously in embryo and wing disc. The quantity of Rti protein influences its mutational phenotypes. rti GLC embryos displayed strict maternal effect phenotype with twisted and lawn-of-denticles phenotype. Rti is confirmed its role in Hh production and signaling in wing disc. When rti mutant is in Hh receiving cells, only two to three cells expressing Patched (Ptc), one of the Hh target genes, comparing to the five Ptc-expressing cells in wild type. This Hh signaling defect is similar, but not the same, to that displayed in ttv mutant. More surprising, rti mutant reduces the expression of Hh in Hh producing cells. rti is the first gene known to affect Hh expression in producing cells till now.
Besides its effects in Hh production and signaling, rti also affects HSPGs expression, the same phenotype displayed by ttv, a gene for polymerization of HSPGs, and sulfateless (sfl), which encodes an N-deacetylase/N-sulfotransferase. As the results were not reported previously, these three genes, rti, ttv and sfl, show the similar reduced Ptc expression in Hh receiving cells and the reduction of Hh protein in Hh producing cells. HSPGs do not simply assist the transportation of Hh as demonstrated by previously ttv study.
From the study of this thesis, it suggests that HSPGs can interact with Hh and maintain its effective protein concentration. We propose that HSPGs protect Hh by binding to Hh and antagonize its degradation executed by other molecules on cell surface.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:12:36Z (GMT). No. of bitstreams: 0
Previous issue date: 2002
en
dc.description.tableofcontentsIntroduction…………………………………………………………………………………………………………1
The Hedgehog signal transduction pathway……………………………………………………………………1
The production, secretion and reception of Hedgehog……………………………………………………2
The synthesis of heparan sulfate proteoglycans……………………………………………………………3
Chain initiation……………………………………………………………………………………………………4
Chain polymerization………………………………………………………………………………………………5
Polymer modification………………………………………………………………………………………………5
The biological function of heparan sulfate proteoglycan………………………………………………6
Genes involved in HSPGs synthesis in Drosophila…………………………………………………………7
(1) division abnormally delayed and dally-like……………………………………………………………8
(2) perlecan and syndecan………………………………………………………………………………………9
(3) sugarless and sulfateless…………………………………………………………………………………9
(4) tout-velu, DEXT2 and DEXT3………………………………………………………………………………10
(5) fringe connection……………………………………………………………………………………………11
(6) Sulfated………………………………………………………………………………………………………12
(7) pipe……………………………………………………………………………………………………………12
(8) Notum……………………………………………………………………………………………………………13
rotini, a novel segment polarity gene, affects Hh production and Ptc expression………………14
The relationship between HSPGs and Hh signaling…………………………………………………………15
Materials and Methods……………………………………………………………………………………………17
Fly stocks and maintenance……………………………………………………………………………………17
The autosomal FLP-DFS technique………………………………………………………………………………17
Heat shock treatment……………………………………………………………………………………………18
GAL4-UAS system……………………………………………………………………………………………………18
Antibody preparation……………………………………………………………………………………………18
Generation of recombinant clones in somatic tissues……………………………………………………19
Immunohistochemistry……………………………………………………………………………………………20
(a) Fluorescence imaginal discs antibody staining………………………………………………………20
Fixation and blocking……………………………………………………………………………………………20
Primary antibody…………………………………………………………………………………………………20
Secondary antibody………………………………………………………………………………………………21
Heparinase III treatment………………………………………………………………………………………21
(b) Fluorescence embryo antibody staining…………………………………………………………………21
Immunoblotting……………………………………………………………………………………………………22
Membrane Stripping………………………………………………………………………………………………22
Results………………………………………………………………………………………………………………24
P1164A4 mutation affects the putative CG7085 protein, Rti……………………………………………24
Rti expresses ubiquitously in embryo and wing disc……………………………………………………25
Rti is a putative Golgi protein………………………………………………………………………………26
The expression of Rti decreases in rti1164A4 mutant clones in wing and eye disc………………27
rti2170 affects Rti protein without giving any GLC phenotype………………………………………27
rti is a new gene affects HSPGs expression………………………………………………………………28
Both rti and ttv behave similarly and affect Hh, Ptc and HSPGs expression pattern……………30
sgl mutation does not affect 3G10, Ptc and Hh staining pattern……………………………………31
frc mutation has no effect on 3G10, Ptc and Hh expression……………………………………………32
sfl mutation causes reduced Ptc and Hh expression but not the 3G10 staining……………………33
Discussion…………………………………………………………………………………………………………35
rti1164A4 and rti2170 alleles…………………………………………………………………………………35
Rti is a putative Golgi protein………………………………………………………………………………37
The function of Rti………………………………………………………………………………………………39
HSPGs interact with Hh…………………………………………………………………………………………41
The possible mechanism of the interaction between HSPGs and Hh……………………………………42
The same or the different HSPGs……………………………………………………………………………45
HSPGs have non-autonomous effect……………………………………………………………………………47
Future prospects…………………………………………………………………………………………………48
Acknowledgement……………………………………………………………………………………………………50
References…………………………………………………………………………………………………………51
dc.language.isozh-TW
dc.titleHeparan sulfate proteoglycans調節果蠅翅碟中Hedgehog蛋白質的穩定度zh_TW
dc.titleHeparan sulfate proteoglycans modulate Hedgehog maintenance in Drosophila wing discsen
dc.date.schoolyear90-2
dc.description.degree碩士
dc.relation.page61
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved