Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75289
完整後設資料紀錄
DC 欄位值語言
dc.contributor.author王怡人zh_TW
dc.date.accessioned2021-07-01T08:12:32Z-
dc.date.available2021-07-01T08:12:32Z-
dc.date.issued2002
dc.identifier.citation1. Ashcroft, F.M. Ion channels and disease. 2000.
2. Thompson, J.D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997. 25(24): p.4876-82.
3. Gouet, P., Courcelle, E., Stuart, D. I. and Metoz, F. ESPrzpt: analysis of multiple sequence alignments in PostScrzpt. Bioinformatics, 1999. 15(4): p.305-8.
4. MacKinnon, R. and Yellen, G. Mutations affecting TEA blockade and ion permeation in voltage-activated K(superscript +) channels. Science, 1990. 250(4978): p.276-9.
5. Aiyar, J., Rizzi, J. P., Gutman, G. A. and Chandy, K. G. The signature sequence of voltage-gated potassium channels projects into the external vestibule. J Biol Chem, 1996. 271(49): p. 31013-6.
6. Papazian, D.M., Schwarz, T. L., Tempel, B. L., Jan, Y. N. and Jan, L. Y. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science, 1987. 237(4816): p.749-53.
7. Wei, A., Jegla, T. and Salkoff, L. Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology, 1996. 35(7): p. 805-29.
8. Doyle, D.A., Morais Cabral, J., Pfiietzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T. and MacKinnon, R. The structure of the potassium channel: molecular basis of K(superscript +) conduction and selectivity. Science, 1998.280(5360): p. 69-77.
9. Stampe, P., Kolmakova-Partensky, L. and Miller, C. Intimations of K(superscript +) channel structure from a complete functional map of the molecular surface of charybdotoxin. Biochemistry, 1994. 33(2): p. 443-50.
10. Garcia, M.L., Hanner, M., Knaus, H. G., Koch, R., Schmalhofer, W., Slaughter, R. S. and Kaczorowski, G. J. Pharmacology of potassium channels. Adv Pharmacol, 1997. 39: p. 425-71.
11. Valdivia, H.M., Martin, B.M., Escobar, L. and Possani, L D. Noxiustoxin and leiurutoxin III, two homologous peptide toxins with binding properties to synaptosomal membrane K(superscript +) channels. Biochem Int., 1992. 27(6): p. 953-62.
12. Catterall, W.A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol, 1980. 20: p. 15-43.
13. Possani, L.D., Becerril, B., Delepierre, M. and Tytgat, J. Scorpion toxins specific for Na(superscript +) channels. Eur J Biochem, 1999. 264(2): p. 287-300.
14. Romi-Lebrun, R., Lebrun, B., Martin-Eauclaire, M. F., Ishiguro, M., Escoubas, P., Wu, F. Q., Hisada, M., Pongs, O. and Nakajima, T. Purification, characterization, and synthesis of three novel toxins from the Chinese scorpion Buthus martensi, which act on K(superscript +) channels. Biochemistry, 1997. 36(44): p. 13473-82.
15. Miller, C. The charybdotoxin family of K(superscript +) channel-blocking peptides. Neuron.,1995. 15(1): p. 5-10.
16. DeBin, J.A., Maggio, J.E. and Strichartz, G.R. Purification and characterization of chiorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol, 1993. 264(2 Pt 1): p. C361-9.
17. Valdivia, H.H. and Possani, L.D. Peptide Toxins as Probes of Ryanodine Receptor Structure and Function. Trends in Cardiovascular Medicine, 1998. 8(3): p. 111-18.
18. Tytgat, J., Chandy, K. G., Garcia, M. L., Gutman, G. A., Martin-Eauclaire, M. F., van der Walt, J. J. and Possani, L. D. A unified nomenclature for short-chain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. Trends Pharmacol Sci, 1999. 20(11): p. 444-7.
19. Bontems, F., Roumestand, C., Boyot, P., Gilquin, B., Doljansky, Y., Menez, A. and Toma, F. Three-dimensional structure of natural charybdotoxin in aqueous solution by 1H-NMR. Charybdotoxin possesses a structural motif found in other scorpion toxins. Eur J Biochem, 1991. 196(1): p. 19-28.
20. Johnson, B.A. and Sugg, E.E. Determination of the three-dimensional structure of iberiotoxin in solution by 1H nuclear magnetic resonance spectroscopy. Biochemistry, 1992. 31(35): p. 8151-9.
21. Dauplais, M., Gilquin, B., Possani, L. D., Gurrola-Briones, G., Roumestand, C. and Menez, A. Determination of the three-dimensional solution structure of noxiustoxin: analysis of structural differences with related short-chain scorpion toxins. Biochemistry, 1995. 34(51): p. 16563-73.
22. Meunier, S., Bernassau, J. M., Sabatier, J. M., Martin-Eauclaire, M. F., Van Rietschoten, J., Cambillau, C. and Darbon, H. Solution structure of P05-NH2, a scorpion toxin analog with high affinity for the apamin-sensitive potassium channel. Biochemistry, 1993. 32(45): p. 11969-76.
23. Fernandez, I., Romi, R., Szendeffy, S., Martin-Eauclaire, M. F., Rochat, H.,Van Rietschoten, J., Pons, M. and Giralt, E. Kaliotoxin (1-37) shows structural differences with related potassium channel blockers. Biochemistry, 1994. 33(47): p. 14256-63.
24. Johnson, B.A., Stevens, S.P. and Williamson, J.M. Determination of the three-dimensional structure of margatoxin by 1H, 13C, 15N triple-resonance nuclear magnetic resonance spectroscopy. Biochemistry, 1994. 33(50): p. 15061-70.
25. Ellis, K.C., Teneriholz, T. C., Jerng, H., Hayhurst, M., Dudlak, C. S., Gilly, W.F., Blaustein, M. P. and Weber, D. J. Interaction of a Toxin from the Scorpion Tityus serrulatus with a Cloned K((superscript +) Channel from Squid (sqKvlA).Biochemistry, 2001. 40(20): p. 5942-53.
26. Batista, C., Gomez-Lagunas, F., Lucas, S. and Possani, L.D. Tcl, from Tityus cambridgei, is the first member of a new subfamily of scorpion. FEBS Lett.,2000. 486(2): p. 117-20.
27. Brahms, S. and Brahms, J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol, 1980. 138(2): p.149-78.
28. Provencher, S.W. and Glockner, J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry, 1981. 20(1): p. 33-7.
29. Sreerama, N. and Woody, R.W. Poly(pro)II helices in globular proteins:identification and circular dichroic analysis. Biochemistry, 1994. 33(33): p.10022-5.
30. Sreerama, N. and Woody, R.W. Estimation of Protein Secondary Structure from Circular Dichroism Spectra: Comparison of CONTIN, SEL CON, and CDSSTR Methods with an Expanded Reference Set. Anal Biochem, 2000. 287:p. 252-260.
31. Wuthrich, K. NMR of protein and nucleic acids. 1986, New York: Wiley Interscience.
32. Rance, M., Sorensen, O. W., Bodenhausen, G., Wagner, G., Ernst, R. R. and Wuthrich, K., Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun, 1983.117(2): p. 479-85.
33. Bax, A. and Davis, D.G. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson., 1985. 65: p. 355-360.
34. Kumar, A., Ernst, R.R. and Wuthrich, K. A two-dimensional nuclear Overha user enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun, 1980. 95(1): p. 1-6.
35. Marion, D. and Wuthrich, K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun, 1983. 113(3):p. 967-74.
36. Piotto, M., Saudek, V. and Skienar, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR,1992. 2(6): p. 661-5.
37. Hyberts, S.G., Marki, W. and Wagner, G. Stereospecific assignments of side-chain protons and characterization of torsion angles in Eglin c. Eur J Biochem, 1987. 164(3): p. 625-35.
38. Brunger, A.T. X-PLOR version 98. 1998, New Haven and London: Yale University Press.
39. Koradi, R., Billeter, M. and Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph, 1996. 14(1): p. 51-5,29-32.
40. Laskowski, R.A., Rullmaimn, J. A., MacArthur, M. W., Kaptein, R. and Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR, 1996. 8(4): p.477-86.
41. Wishart D. S., SykesB, D. and Richards, F.M. The chemical shfl index:a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy,. Biochemistry, 1992. 31: p. 1647-1651.
42. Goldstein, S.A., Pheasant, D.J. and Miller, C. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Neuron, 1994. 12(6): p. 1377-88.
43. Gomez-Lagunas, F., Olamendi-Portugal, T., Zamudio, F.Z. and Possani, L.D. Two novel toxins from the venom of the scorpion Pandinus imperator show that the N-terminal amino acid sequence is important for their affinities towards Shaker. J Membr Biol., 1996. 152(1): p. 49-56.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75289-
dc.description.abstractTcl是從學名為Tityus cambridgei的蠍子毒液中所分離出的鉀離子通道抑制勝?,全長由23個胺基酸(ACGSC-RKKCK-GSGKC-INGRC-KCY)所組成並含有3對雙硫鍵,是目前在蠍毒中所發現最小的鉀離子通道抑制勝?,可辨識Shaker B及膜電位敏感型(voltage-gated)鉀離子通道並抑制其活性;我們藉由固相勝?合成技術製得並摺疊成具活性組態的Tcl,以逆相高效液相層析管柱純化後,進一步利用旋光光譜儀及核磁共振光譜儀解出Tcl的三級結構,同時定出其雙硫鍵的相對聯結關係為Cys^ 2-Cys^ 15、Cys ^5-Cys^ 20及Cys^ 9-Cys^ 22,而藉由X-PLOR分析軟體模擬計算可知Tcl的N端Ser^ 4-Lys^ 10形成螺旋及3^ 10螺旋結構,在Gly^ 13-Ile^ 16及Arg^ 19-Tyr^ 23則具有一段反平行的β摺疊,利用計算所得最佳的15個最小能量結構的重疊,可得其骨幹(backbone)的均方根偏差值(root mean squaro deviation)為0.26±0.05?;根據與其他結構及功能性相關的蠍毒三級結構上的比較,我們認為具有較長胺基酸組成的蠍毒中,其某些胺基酸的存在對鉀離子通道的抑制作用是非必要的,而蠍毒中抑制膜電位敏感型鉀離子通道活性的重要區段及胺基酸則主要位於C端;因此藉由Tcl三級結構的研究跟探討,除了提供一些有價值的資訊幫助對離子通道的認識外,同時也希望對新藥物的設計與開發可提供實質上的參考價值。zh_TW
dc.description.abstractTel is a new K(superscript +) channel-blocking peptide identified from the scorpion venom of Tityus cambridgei and composed of 23 amino acid residues with three disulfide bridges. It is the shortest known toxin from scorpion venom that recognizes the Shaker B K(superscript +) channels and the voltage-gated K(superscript +) channels in brain. Synthetic Tel was produced by solid-phase synthesis and purified by reversed-phase HPLC. The pairings of three disulfide bridges in the synthetic Tel were identified as Cys^ 2-Cys^ 15、Cys^ 5-Cys^ 20、Cys^ 9-Cys^ 22 by NMR experiments. The NMR solution structures of Tel were determined by simulated annealing and energy-minimization calculations using the X-PLOR program. The results showed that Tel contains an α-helix and a 310 helix at N-terminal Ser4-Lys10 and a double-stranded β-sheet at Gly13-Ile16 and Arg19-Tyr23, with a type I?β turn at Asn17-Gly18. Superposition of each structure with the best structure yielded an average root mean square deviation (RMSD) of 0.26±0.05? for the backbone atoms in residues 2 to 23. The 3D structure of Tcl was compared to two structurally and functionally related scorpion toxins, charybdotoxin (ChTx) and noxiustoxin (NTx). We concluded that the C-terminal structure is the most important region for the activity of the scorpion K+ channel blockers and found that some of the residues in the larger scorpion K(superscript +) channel blockers (31?40 amino acids) are not directly involved in K(superscript +) channel blocking activity. The structure study of Tcl might shed light on understanding the mechanism of the inhibitory activity by the channel blocker. Furthermore, it may also provide more information for designing new lead compounds to control the dysfunctions of K(superscript +) channels.en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:12:32Z (GMT). No. of bitstreams: 0
Previous issue date: 2002
en
dc.description.tableofcontentsList of Abbreviations………………………………………………ii
List of Tables………………………………………………iii
List of Figures………………………………………………iv
Chapter 1: Introduction………………………………………………1
1.1 Overview………………………………………………1
1.2 Motivation of researches………………………………………………4
Chapter 2: Materials and Methods………………………………………………9
2.1 Materials
2.1.1 Chemicals………………………………………………9
2.1.2 Instruments………………………………………………10
2.2 Methods
2.2.1 Chemical synthesis of Tcl………………………………………………11
2.2.2 Circular Dichroism (CD) experiments……………………………………12
2.2.3 Nuclear Magnetic Resonance (NMR) experiments…………………………14
2.2.4 Tertiary structure calculations………………………………18
Chapter 3: Results………………………………………………22
3.1 Analytical reverse-phase HPLC chromatogram of Tcl…………………………22
3.2 CD spectra of Tcl………………………………………………23
3.3 NMR study of Tcl………………………………………………23
3.4 Three-dimensional solution structure of Tcl…………………………………26
Chapter 4:Discussions………………………………………………51
References………………………………………………57
Appendix I. The full set of distance constraints for Tcl………………………61
Appendix II. The dihedral angle restraints for Tcl…………………………………69
dc.language.isozh-TW
dc.title蠍毒中鉀離子通道抑制蛋白結構之探討zh_TW
dc.titleStudies of the Solution Structure of a K(superscript +)Channel Blocker from the Scorpion Tityus cambridgeien
dc.date.schoolyear90-2
dc.description.degree碩士
dc.relation.page72
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved