請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75237完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Ya-Yun Wang | en |
| dc.contributor.author | 王雅筠 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:12:20Z | - |
| dc.date.available | 2021-07-01T08:12:20Z | - |
| dc.date.issued | 2001 | |
| dc.identifier.citation | Agarwal, S. and Roeder, G. S. (2000) Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102, 245-255.
Arbel, A., Zenvirth, D., and Simchen, G. (1999) Sister chromatid-based DNA repair is mediated by RAD54, not by DMC1 or TID1. EMBO J. 18, 2648-2658. Bailis, J. M. and Roeder, G. S. (1998) Synaptonemal complex morphogenesis and sisiter-chromatid cohesion require Mek1-dependent phosphorylation of a meiotic chromosomal protein. Genes Dev. 12, 3551-3563. Bailis, J. M., Smith, A. V., and Roeder, G. S. (2000) Bypass of a meiotic checkpoint by overproduction of meiotic chromosomal proteins. Mol. Cell. Biol. 20, 4838-4848. Birkenbihl, R. P. and Subramani, S. (1992) Cloning and characterization of RAD21, an essential gene of Schizosaccharomyces pombe involved in DNA double-stand-break repair. Nucleic Acid Res. 20, 6605-6611. Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513-1523. Bishop, D. K. (1994) RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosomes synapsis. Cell 79, 1081-1092. Bishop, D. K., Nikolski, Y., Oshiro, J., Chon, J., Shinohara, M., and Chen, X. (1999) High copy munber suppression of the meiotic arrest caused by a dmc1 mutation: REC114 imposes an early recombination block and RAD54 promotes a DMC1-independent DSB repair pathway. Genes Cell 4, 425-443. Bishop, D. K., Park, D., Xu, L., and Kleckner, N. (1992) DMC1: a meiosis-specific yeast homolog of E. coli RecA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439-456. Chu, S. and Herskowitz, I. (1998) Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1, 685-696. Chua, P. R. and Roeder, G. S. (1998) Zip2, a meiosis-specific protein required for the initiation of chromosomes synapsis. Cell 93, 349-359. de los Santos, T. and Hollingsworth, N. M. (1999) Red1p, a MEK1-dependent phosphoprotein that physically interacts with Hop1p during meiosis in yeast. J. Biol. Chem. 274, 1783-1790. Dobson, M. J., Pearlman, R. E., Karaiskakis, A., Spyropoulos, B., and Moens, P. B. (1994) Synaptonemal complex proteins: occurrence, epitope mapping, and chromosome disjunction. J. Cell Sci. 107, 2749-2760. Dresser, M. E., Ewing, D. J., Conrad, M. N., Dominguez, A. M., Barstead, R., Jiang, H., and Kodadek, T. (1997) DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway. Genetics 147, 533-544. Gasior, S. L., Wong, A. K., Kora, Y., Shinohara, A., and Bishop, D. K. (1998) Rad52 associates with RPA and functions with Rad55 and Rad57 to assemble meiotic recombination complexes. Genes Dev. 12, 2208-2221. Haber, J. E. (1997) A super new twist on the initiation of meiotic recombination. Cell 89, 163-166. Heyting, C. (1996) Synaptonemal complex: Structure and function. Curr. Opin. Cell Biol. 8, 389-396. Hollingsworth, N. M., Goetsch, L., and Byers, B. (1990) The HOP1 gene encodes a meiosis-specific component of yeast chromosomes. Cell 61, 73-84. Hollingsworth, N. M., Ponte, L., and Halsey, C. (1995) MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9, 1728-1739. Ito, H., Fukada, Y., Murata, K., and Kimura, A. (1983) Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168. Kadyk, L. C. and Hartwell, L. H. (1992) Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces serevisiae. Genetics 132, 387-402. Klein, H. L. (1997) RDH54, a RAD54 homologre in Saccharomyces serevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147, 1533-1543. Liang, F., Han, H., Romanienko, P. J., and Jasin, M. (1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 95, 5172-5177. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Habor Laboratory. Cold Spring Harbor, New York. Mazin, A. V., Bornarth, C. J., Solinger, J. A., Heyer, W. -D., and Kowalczykowski, S. C. (2000) Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament. Mol. Cell 6, 583-592. Meuwissen, R. L. J., Offerberg, H. H., Dietrich, A. J. J., Riesewijk, A., van Iersel, M., and Heyting, C. (1992) A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J. 11, 5091-5100. Meuwissen, R. L. J., Meerts, I., Hoovers, J. M. N., Leschot, N. J., and Heyting, C. (1997) Human synaptonemal complex protein 1 (SCP1): Isolation and characterization of the cDNA and chromosomal localization of the gene. Genomics 39, 377-384. Murakami, H. and Nurse, P. (1999) Meiotic DNA replication checkpoint control in fission yeast. Genes Dev. 13, 2581-2593. Murakami, H. and Nurse, P. (2000) DNA replication and damage checkpoints and meiotic cell cycle controls in the fission and budding yeasts. Biochem. J. 349, 1-12. Nishiwaki, T., Daigo, Y., Kawasoe, T., Nagasawa, Y., Ishiguro, H., Fujita, M., Furukawa, Y., and Nakamura, Y. (1999) Isolation and characterization of a human cDNA homologous to the Xenopus laevis XCAP-C gene belonging to the structural maintenance of chromosome (SMC) family. J. Hum. Genet. 44, 197-202. P?ques, F. and Haber, J. E. (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Bio. Rev. 63, 349-404. Pazin, M. J. and Kadonaga, J. T. (1997) SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interations Cell 88, 737-740. Peters, T. D., Malone, R. E., and Symington, L. S. (1991) Recombination in yeast. Cold Spring Harbor Laboratory Press, Plainview, NY, Vol. 2. Petrini, J. H., Bressan, D. A., and Yao, M. S. (1997) The RAD52 epistasis group in mammalian double stand bread repair. Semin. Immunol. 9, 181-188. Petukhova, G., Stratton, S., and Sung, P. (1998) Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393, 91-94. Petukhova, G., Van Komen, S., Vergano, S., Klein, H., and Sung, P. (1999) Yeast Rad54 promotes Rad51-dependent homologous DNA pairing via ATP hydrolysis-driven change in DNA double helix conformation. J. Biol. Chem. 274, 29453-29462. Pochart, P., Woltering, D., and Hollingsworth, N. M. (1997) Conserved properties between functionally distinct MutS homologs in yeast. J. Bio. Chem. 272, 30345-30349. Roeder, G. S. (1997) Meiotic chromosomes: it takes two to tango. Genes Dev. 11, 2600-2621. Roeder, G. S. and Bailis, J. M. (2000) The pachytene checkpoint. Trends Genet. 16, 395-403. Ross-Macdonald, P. and Roeder, G. S. (1994) Mutation of a meiosis-specific MutS homolog decreases crossing-over but not mismatch correction. Cell 79, 1069-1080. San-Segundo, P. A. and Roeder, G. S. (2000) Role for the silencing protein Dot1 in meiotic checkpoint control. Mol. Biol. Cell 11, 3601-3615. Schwacha, A. and Kleckner, N. (1997) Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123-1135. Shonn, M. A., McCarroll, R., and Murray, A. W. (2000) Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science 289, 300-303. Smith, A. V. and Roeder, G. S. (1997) The yeast Red1 protein localizes to the cores of meiotic chromosomes. J. Cell Biol. 136, 957-967. Solinger, J. A., Lutz, G., Sugiyama, T., Kowalczykowski, S. C., and Heyer, W.-D. (2001) Rad54 protein stimulates heteroduplex DNA formation in the synaptic phase of DNA strand exchange via specific interactions with the presynaptic Rad51 nucleoprotein filament. J. Mol. Biol. 307, 1207-1221. Storlazzi, A., Xu, L., Schwacha, A., and Kleckner, N. (1996) Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the shromosomes. Proc. Natl. Acad. Sci. U. S. A. 93, 9043-9048. Stuart, D. and Wittenberg, C. (1998) CLB5 and CLB6 are required for promeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev. 12, 2698-2710. Sym, M., Engebreche, J., and Roeder, G. S. (1993) Zip1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365-378. Sym, M., and Roeder, G. S. (1994) Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell 79, 283-292. Sym, M., and Roeder, G. S. (1995) Zip1-induced changes in synaptonemal complex structure and polycomplex assembly. J. Cell Biol. 128, 455-466. Tung, K. -S., Hong, E. -J. E., and Roeder, G. S. (2000) The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80. Proc. Natl. Acad. Sci. U. S. A. 97, 12187-12192. Tung, K. -S., and Roeder, G. S. (1998) Meiotic chromosome morphology and behavior in zip1 mutants of Saccharomyces cerevisiae. Genetics 149, 817-832. von Wettstein, D., Rasmussen, S. W., and Holm, P. B. (1984) The synaptonemal complex in genetic segregation. Annu. Rev. Genet. 18, 331-413. Xu, L., Ajimura, M., Padmore, R., Klein, C., and Kleckner, N. (1995) NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 6572-6581. Xu, L., Weiner, B. M., and Kleckner, N. (1997) Meiotic cells monitor the status of the inerhomolog recombination complex. Genes Dev. 11, 106-118. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75237 | - |
| dc.description.abstract | Zip1是酵母菌中一個在減數分裂特定表現的蛋白質,它是聯會複合體(synaptonemal complex)中央區域(central region)的重要結構蛋白。當酵母菌缺少此一蛋白質時,即在zip1突變株中,同源染色體(homologous chromosomes)不能進行聯會(synapsis),染色體之間的互換無法完成,而減數分裂的進行則被粗絲期檢控點(pachytene checkpoint)所阻止,使得細胞停留(arrest)在減數分裂前期(prophase)中的粗絲期,無法繼續進行減數分裂來產生四個孢子。可是當MSZ1基因在zip1突變株中大量表現時,卻可以使此突變株繼續進行減數分裂而產生孢子。為了更進一步瞭解Msz1蛋白質的性質和可能的功能,以及使zip1進行減數分裂的分子機制,於是在Msz1蛋白的C端(C terminus)加上抗原決定基的標籤(epitope tagging),藉以方便進行蛋白質性質的分析。 由蛋白質免疫轉印(Western blot analysis)實驗結果可得知,Msz1蛋白質並不只在減數分裂中特定表現,但它的表現量會隨著細胞進入減數分裂後而增加。而Msz1蛋白質在野生種(wild type)與zip1突變株的表現情形及模式並沒有明顯差別。將Msz1蛋白質序列與其他物種的蛋白質序列進行比對發現,其與一些染色體蛋白(chromosome-associated proteins)具有同源性(homology),此比對結果顯示,Msz1蛋白質有可能也是個染色體蛋白。經由細胞遺傳學的實驗方法證實,Msz1蛋白質的確位於染色體上,並呈現點狀分佈。 另外,經由遺傳學實驗證實,一個與姊妹染色分體之間互換(sister-chromatid recombination)有關的基因,RAD54,可能參與了藉大量表現MSZ1使zip1進行減數分裂的分子機制。 | zh_TW |
| dc.description.abstract | The yeast meiosis-specific protein Zip1 is a major structural component of the central region of the synaptonemal complex (SC). In the absence of Zip1, chromosomes fail to synapse and recombination intermediates (Holliday junctions) accumulate, resulting in checkpoint-mediated arrest at the pachytene stage of prophase. YGR042w, an unidentified yeast ORF, was previous isolated as a multicopy suppressor of zip1 in sporulation, and was named as MSZ1. When MSZ1 is overexpressed in zip1 mutants, sporulation is partially restored. Using epitope-tagging method, the Msz1 protein was detected by Western blot analysis. The result of time course analysis indicated that Msz1 is not a meiosis-specific protein, but its expression is induced in meiosis and peaks around pachytene. Based on the amino-acid sequence analysis, Msz1 has homology with some chromosome-associated proteins. To verify if Msz1 is also associated with chromosomes, immunolocalization experiments were performed. The results of cytological analyses indicated that the Msz1 protein is a nuclear protein. It is localized to pachytene chromosomes as distinct foci. The chromosomal localization of Msz1 provides an important clue for the study of Msz1 function(s) and pachytene checkpoint machinery. Additionally, when RAD54, a gene involved in sister-chromatid recombination, is deleted in zip1 cells overproducing Msz1, the sporulation frequency was greatly reduced. This result suggests that sister-chromatid repair appears to be involved in the Msz1-mediated suppression pathway. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:20Z (GMT). No. of bitstreams: 0 Previous issue date: 2001 | en |
| dc.description.tableofcontents | LIST OF FIGURES……………………………………………………viii LIST OF TABLE……………………………………………………ix 誌謝……………………………………………………x CHAPTER 1. INTRODUTCION……………………………………………………1 Meiosis Overview……………………………………………………1 Synaptonemal Complex (SC) and Zipl……………………………………………………1 Meiotic Checkpoint Control……………………………………………………3 Pachytene Checkpoint-mediated Arrest in Budding Yeast……………………………………………………4 YGR042w (MSZ1)……………………………………………………4 CHAPTER 2. MATERIALS AND METHODS……………………………………………………8 Strains, Media, and Genetic Methods……………………………………………………8 DNA Preparation, Transformation, and Molecular Biology Methods……………………………………………8 General methods……………………………………………………8 Epitope tagging of Mszl……………………………………………………9 Construction of rad54 null mutant……………………………………………………10 Protein Extraction and Blot Analysis……………………………………………………11 Cytology……………………………………………………11 Chromosome spreading and immunostaining……………………………………………………11 Immunofluorescence with yeast cells……………………………………………………13 CHAPTER 3. RESULTS……………………………………………………18 Detection of the Msz1 Protein Product……………………………………………………18 Epitope tagging of Mszl……………………………………………………18 MSZ1 is expressed during vegetative growth, and its expression is induced after entering meiosis……………………………………………………18 Msz1 is a Chromosomal Protein……………………………………………………19 Amino-acid sequence analysis of Mszl……………………………………………………19 Msz1 is associated with chromosomes……………………………………………………20 Sister Chromatid-dependent DNA Repair is Required for Msz1-mediated suppression…………………21 The Rad54 protein……………………………………………………21 Rad54 might be involved in the suppression of zip1 by overproduction of Msz1………………22 CHAPTER 4. DISCUSSION……………………………………………………31 General Discussion of Msz1……………………………………………………31 Msz1-mediated Suppression Mechanism……………………………………………………32 Excess of Msz1 may interfere the operation of the pachytene checkpoint……………………………32 Msz1 may interact with some recombinational repair proteins …………………………………………33 The Roles of Rad54 During Meiosis……………………………………………………34 Rad54 in zip1 suppression……………………………………………………34 Rad54 and Dmc1……………………………………………………36 REFERENCES……………………………………………………38 | |
| dc.language.iso | zh-TW | |
| dc.title | 酵母菌Msz1蛋白功能之研究 | zh_TW |
| dc.title | Characterization of the yeast Msz1 protein | en |
| dc.date.schoolyear | 89-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 43 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
