請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75233完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Shin-Yi Chen | en |
| dc.contributor.author | 陳欣怡 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:12:19Z | - |
| dc.date.available | 2021-07-01T08:12:19Z | - |
| dc.date.issued | 2001 | |
| dc.identifier.citation | 朱玲慧(1999)大麥離層酸反應複合體ABRC1位於35S?動子在菸草細胞表現之影響。國立台灣大學植物科學研究所碩士論文
匡麟芸(1999)玉米穀粒β-澱粉?分泌性及賀爾蒙作用之探討。國立台灣大學植物科學研究所碩士論文 林以楠(1998)玉米β-amylase基因之選殖與特性分析。國立台灣大學植物科學研究所碩士論文 張世白(1999)β-澱粉水解?在玉米葉片老化過程之表現。國立台灣大學植物科學研究所碩士論文 楊富米(2001)水稻β-澱粉水解?表現及其缺失品種之研究。國立台灣大學植物科學研究所碩士論文 Bajaj YPS (1977) Protoplast isolation, culture and somatic hybridization. In Reinert J, ed, Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture. Berlin-Heidelberg-New York: Springer pp467-496 Beck E (1985) The degradation of transitory starch granules in chloroplast. In R Heath and J Preiss, ed, Regulation of Carbon Partition in Photosynthetic Tissue. American Society of Plant Physiologists. Rokville, MD., p27-44 Beck E and Ziegler P (1989) Biosynthesis and degradation of starch in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 95-117 Callis J, Fromm M and Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes & Dev. 1:1183-1200 Chang DC and Rees TS (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophy. J. 58:1-12 Daussant J, Sadowski J and Ziegler P (1994) Cereal β-amylase: diversity of the β-amylase isozyme status within cereals. J. Plant Physiol. 143: 585-590 Donath M, Mendel R, Cerff R and Martin W (1995) Intron dependent transient expression of the maize GapA1 gene. Plant Mol. Biol. 28: 667-676 Dunn G (1974) A model for starch breakdown in higher plants. Phytochemistry 13: 1341-1346 Dreier W, Schnarrenberger C and Borner T (1995) Light- and stress-dependent enhancement of amylolytic activities in white and green barley leaves: β-amylases are stress-induced proteins. J. Plant Physiol. 145: 342-348 Fulton TM, Chunwongse J and Tanksley ST (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209 Galston AW, Altman A and Sawhney RK (1978) Polyamines, ribonuclease and the improvement of oat leaf protoplast. Plant Sci. Lett. 11:241-250 Hooykaas PJJ (1988) Agrobacterium molecular genetics. Plant Mol. Biol. Manual A4: 1-13 Hunold R, Bronner R and Hahne G (1994) Early events in microprojectile bombardment: cell viability and particle location. Plant J. 5(4): 593-604 Hwang YS, Karrer EE, Thomas BR, Chen L and Rodriguez RL (1998) Three cis-element required for rice alpha-amylase Amy3D expression during sugar starvation. Plant Mol. Biol. 36:331-341 Jang JC and Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6(11): 1665-1679 Jang JC, Leon P, Zhou L and Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9(1): 5-19 Jefferson RA, Kavanagh T and Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901-3907 Kainuma K (1988) Structure and chemistry of the starch granule. In J Preiss, ed, The Biochemistry of Plants Vol.14., Academic Press, New York, p141-180 Kakefuda G and Duke SH (1984) Electrophoretic transfer as a technique for the detection and identification of plant amylolytic enzymes in polyacrylamide gel. Plant Physiol. 75: 278-280 Kakefuda G and Preiss J (1997) Partial purification and characterization of a diurnally fluctuating novel endoamylase from Arabidopsis thaliana leaves. Plant Physiol. Biochem. 35(12): 907-913 Kim KN, Fisher DK, Gao M, Guiltinan MJ (1998) Genomic organization and promoter activity of the maize starch branching enzyme I gene. Gene 216: 233-243 Kim KN and Guiltinan MJ (1999) Identification of cis-acting elements important for expression of the starch-branching enzyme I gene in maize endosperm. Plant Physiol. 121(1): 225-236. Klein TM, Gradziel T, Fromm ME and Sanford JC (1988) Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles. Proc. Natl. Acad. Sci. 85: 8502-8505 Koch KE (1996) Carbonhydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 509-540 Kreis M, Williamson M, Buxton B, Pywell J, Hejgaard J and Svendsen I (1987) Primary structure and differential expression of β-amylase in normal and mutant barleys. Eur. J. Biochem. 169: 517-525 Liming S, William H and Epstein LM. (1995) Expression of an mRNA with sequence similarity to pea dehydrin (Psdhn 1) in guard cells of Vicia faba in response to exogenous abscisic acid. Physiol. Plant.. 9: 99-105 Lin TP, Spilatro SR and Preiss J (1988) Subcellular localization and characterization of amylases in Arabidopsis leaf. Plant Physiol. 86: 251-259 Lizotte PA, Henson CA and Duke SH (1990) Purification and characterization of pea epicotyl β-amylase. Plant Physiol. 92: 615-621 Luehrsen KR and Walbot V (1991) Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol. Gen. Genet. 225: 81-93 Manga VA and Sharma R (1990) Lack of functional interrela-tionship between β-amylase photoregulation and chloroplast development in mustard (Sinapis alba L.) cotyledons. Plant Cell Physiol. 31(2): 167-172 Mita S, Suzuki-Fujii K, and Nakamura K (1995) Sugar-inducible expression of a gene for β-amylase in Arabidopsis thaliana. Plant physiol. 107: 895-904 Nakamura K, Ohto M, Yoshida N and Nakamura K (1991) Sucrose-induced accumulation of β-amylase occurs concomitant with the accumulation of starch and sporamin in leaf-petiole cuttings of sweet potato. Plant Physiol. 96: 902-909 Okita TW, Hwang YS, Hnilo J, Kim WT, Aryan AP, Larson R and Krishnan HB (1989) Structure and expression of the glutelin multigene family. J. Biol. Chem. 264: 12572-12581 Preiss J (1982) Regulation of the biosynthesis and degradation of starch. Annu. Rev. Plant Physiol. 33:431-454 Premecz GP, Ruzicska T, Olah T and Farkas GL (1978) Effect of osmotic stress on protein and nucleic acid synthesis in isolated tobacco protoplast. Planta 141:33-36 Rorat T, Sadowski J, Grellet F and Delseny M (1991) Characterization of cDNA clone for rye endosperm β-amylase and analysis of β-amylase deficiency in rye mutant line. Theor Appl Genet 83:257-263 Ruesink AW (1971) The plasma membrane of Avena coleoptile protoplast. Plant Physiol. 47:192-195 Russel A, Mannonen L, Aspegren K, Marttilla MS, Kurten U, Hannus R, Lozano JM, Teeri TH and Kauppinen V (1993) Stable transformation of barley tissue culture by particle bombardment. Plant Cell Rep. 12:435-440 Sadowski J, Rorat T, Cooke R and Delseny M (1993) Nucleotide sequence of a cDNA clone encoding ubiquitous β-amylase in rye (Secale cereale L.) Plant Physiol. 102: 315-316 Sambrook J, Fritsch EF and Maniatis T, editor (1989) Molecular cloning, 2nd ed. Cold Spring Harbor Laboratory Press, New York, N.Y. Sharma R and Schopfer P (1982) Sequential control of phytochrome mediated synthesis de novo synthesis of β-amylase on the cotyledons of mustard (Sinapis alba L.) seedling. Planta 155:183-189 Sheen J. (1990) Metabolic repression of transcription in higher plants. Plant Cell 2:1027-1038 Sheen J (1995) Methods for mesophyll and bundle sheath cell separation. Methods Cell Biol. 49:305-314 Steup M (1988) Starch degradation. In The Biochemistry of Plants Vol, 14, Academic Press INC. pp 255-296 Subbaramaih K and Sharma R (1989) β-amylase from mustard (Sinapis alba L.) cotyledons. Plant Physiol. 89:860-866 Thomas C and Katterman FRH (1984) The control of spontaneous lysis of protoplasts from Gossypium hirsutum anther callus. Plant Sci. Lett. 36:149-154 Todaca D, Matsushima H and Morohashi Y (2000) Water stress enhances β-amylase activity in cucumber cotyledons. J. Exp. Bot. 51:739-745 Toyofuku K, Umemura T and Yamaguchi J (1998) Promoter elements required for sugar-repression of the RAmy3D gene for alpha-amylase in rice. FEBS Lett. 428:275-280 Vasil v, Clancy M, Ferl RJ, Vasil IK and Hannah LC (1989) Increased gene expression by the first intron of maize Shrunken-1 locus in grass species. Plant Physiol. 91:1575-1579. Wagner G, Zemanova L, Hager KP and Ziegler P (1999) The major β-amylase isoforms of wheat leaves correspond to one of two ubiquitously expressed β-amylase genes. Plant Physiol. Biochem. 37(7/8): 515-530 Wang SM and Huang AHC (1987) Biosynthesis of the lipase in the scutellum of maize kernel. J. Biol. Chem. 262: 2270-2274 Wang SM, Lue WL, Eimert K and Chen J. (1996) Phytohormone-regulated β-amylase gene expression in rice. Plant Mol. Biol. 31:975-982 Wang SM, Lue WL, WU SY, Huang HW, and Chen JC (1997) Characterization of a maize β-amylase cDNA clone and its expression during seed germination. Plant Physiol. 113: 403-409 Walk GJ and Hope PM (1963) The action of some α-amylase on starch granules. Biochem. J. 86: 452-462 Weber K and Osborne M (1975) Proteins and sodium dodecyl sulfate: molecular weight determination on polyacrylamide gel and related procedure. In H Neurath and RL Hills, eds, The Proteins., Academic Press, New York, p180-225 Wilson LA, Birmingham VA, Moon DP and Snyder HE (1978) Isolation and characterization of starch from mature soybeans. Cereal Chem. 55: 661-670 Yoshida N and Nakamura K (1991) Molecular cloning and expression in Escherichia coli of cDNA encoding the subunit of sweet potato β-amylase. J. Biochem. 110:196-201. Yu SM, Kuo YH, Sheu G, Sheu YJ and Liu LF (1991) Metabolic derepression of α-amylase gene expression in suspension-cultured cells of rice. J. Biol. Chem. 266: 21131-21137 Yu SM, Lu CA and Lim EK (1998) Sugar Response Sequence in the promoter of a rice α-amylase gene serves as a transcriptional enhancer. J. Biol. Chem. 273:10120-10131 Zhao Y and Olita TW (1995) Interaction of the glutelin Gt3 flanking regulatory regions with rice nuclear proteins. Plant Cell Physiol. 36:1657-1667 Ziegler P and Beck E (1986) Exoamylase activity in vacuoles isolated from pea and wheat leaf protoplasts. Plant Physiol. 82:1119-1121 Zimmermann V and Scheurich P (1981) High frequency fusion of plant protoplast by electric fields. Planta 161:26-32 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75233 | - |
| dc.description.abstract | β-澱粉水解?是植物體中重要的澱粉水解酵素之一。本論文旨在探討玉米β-澱粉水解??動子序列對於基因表現的影響。授粉前的玉米子房壁、萌芽後3天之初生葉及糊粉層等組織均能活潑表現β-澱粉水解?基因,是適合建立電穿孔及粒子槍短暫表現系統的好材料。將全長之β-澱粉水解??動子接上GUS報告基因,pZmBAP::GUS,以粒子槍轉殖入玉米及菸草葉片中,結果在葉肉細胞中可偵測到GUS基因的活性表現,惟在菸草的表皮上只有保衛細胞才會表現GUS活性。本論文進一步進行?動子刪除之實驗,構築pZmBA783P::GUS、pZmBA539P::GUS、pZmBA492P::GUS、pZmBA366P::GUS及pZmBA50P::GUS等具不同長度之?動子序列的載體,並以粒子槍打入玉米初生葉;結果顯示β-澱粉水解??動子在-1571?-783及-539?-366兩段序列中可能有負調節因數的存在,而在-783?-539之間則可能存在正調節因數。在GUS基因前放入β-澱粉水解?基因的表現子I(exon I)與插入子I(intron I)並不會加強基因的表現能力;?動子序列中若只包含TATA box的短片段序列,反而有最強的GUS活性表現。除了短暫基因表現之測試外,亦將β-澱粉水解?全長之?動子序列,接上GUS報告基因,用農桿菌轉殖到菸草中,得到穩定之轉殖株,在轉殖株之葉片及癒傷組織中可偵測到GUS基因表現,顯示玉米β-澱粉水解??動子和水稻?動子之表現特性有所差異。本文就玉米與水稻?動子序列做比對,並討論兩者之cis -acting element的差別。 | zh_TW |
| dc.description.abstract | Beta-amylase is one of the most important starch hydrolases in plants. In maize, β-amylase gene is actively expressed in young ovary wall, germinating aleurone layers and 2.5 to 3-days-old primary leaves. This indicated that these three types of tissues are suitable for building up the transient expression systems. A pZmBAP::GUS having GUS gene directed by β-amylase promoter(1.5kb) was constructed and transferred into maize and tobacco leaves by bombardment. GUS activity was detected in mesophyll of both maize and tobacco. Besides, GUS activity was also present in tobacco guard cells but not in the regular epidermal cells. Various chimeric constructs, pZmBA783P::GUS, pZmBA539P::GUS, pZmBA492P::GUS, pZmBA366P::GUS and pZmBA50P::GUS, contained different length of β-amylase promoter were constructed. After bombardment and incubation, GUS activity in maize leaves was measured and normalized by internal Luciferase control. It was suggested that negative regulators might exist in the sequences between -1571?-783 and -539?-366, and sequences between -738 ? -539 might possess positive cis-elements. The shortest promoter consisting of TATA box examined gave the strongest activity in leaves. In addition to transient expression, GUS gene followed the full-length β-amylase promoter was transformed into tobacco mediated by Agrobacterium. GUS activity was detected in leaves and calli of the transgenic tobacco plants. It is known that GUS gene was not expressed in transgenic tobacco under the direction of rice promoter. The comparison of promoter sequences of maize and rice β-amylase genes were discussed. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:19Z (GMT). No. of bitstreams: 0 Previous issue date: 2001 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………i 英文摘要……………………………………………………iii 前言……………………………………………………1 材料與方法……………………………………………………7 結果……………………………………………………32 一、玉米β-澱粉水解?的基因表現……………………………………………………32 二、重組DNA建構……………………………………………………34 三、電穿孔之短暫表現系統的?動子活性……………………………………………………34 四、粒子槍短暫表現系統偵測?動子活性……………………………………………………35 五、β-澱粉水解??動子在雙子葉植物中的活性表現……………………………………………………36 討論……………………………………………………38 參考文獻……………………………………………………44 圖表……………………………………………………53 附錄……………………………………………………74 | |
| dc.language.iso | zh-TW | |
| dc.title | 玉米β-澱粉水解?基因?動子活性之研究 | zh_TW |
| dc.title | Studies on Promoter Activities of Maize β-Amylase Gene | en |
| dc.date.schoolyear | 89-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 77 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
