請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75169
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Yen-His Kuo | en |
dc.contributor.author | 郭妍希 | zh_TW |
dc.date.accessioned | 2021-07-01T08:12:04Z | - |
dc.date.available | 2021-07-01T08:12:04Z | - |
dc.date.issued | 2001 | |
dc.identifier.citation | Bate M., and Arias A. 1993 The Development of Drosophila melanogaster, pp.1-70 Cold Spring Harbor Laboratory press. Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nusslein-Volhard C. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 19887, 1749-1756 Bhat, K. M The posterior determinant gene nanos is required for the maintenance of the adult germline stem cells during Drosophila oogenesis. Genetics 151: 1479 (1999) Brendza, R. P., Serbus, L.R., Duffy, J. B. and Saxton, W.M. A function for Kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122 (2000) Chang JS, Tan L, Schedl P. The Drosophila CPEB homolog, orb, is required for oskar protein expression in oocytes. Dev Biol. 1999 Nov 1; 215(1):91-106. Chao, Y. C., Donahue, K. M., Pokrywka, N. J. & Stephenson, E. C. Sequence of swallow a generequired for the localization of bicoid message in Drosophila eggs. Dev. Gen. 12, 333-341 (1991). Chen J, Godt D, Gunsalus K, Kiss I, Goldberg M, Laski FA. Cofilin/ADF is required for cell motility during Drosophila ovary development and oogenesis. Nat Cell Biol. 2001 Feb; 3(2):204-9. Chou TB, Perrimon N. The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144(4):1673-9. (1996) Clark, I., Giniger, E., Ruohola-Baker, H., Jan, L., and Jan, Y. Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocytes. Curr. Biol. 4 289-300 (1994) Clark, I., Jan, L., and Jan, Y. Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte epithelium, neuron and muscle, Development 124, 461-470 (1997) Cooley, L. & Theurkauf, W. E. Cytoskeletal functions during Drosophila oogenesis. Science 266, 590-595 (1994). Cox, D. N., Chao, A., Baker, J., Chang, L., Qiao, D., and Lin, H. A novel class of evolutionarily conserved genes defined by piwi aare essential for stem cell self-renewal. Genes Dec. 12, 3715-27 (1998) Cox, D. N., Chao, A., and Lin, H. piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Devlopment 127, 503-514 (2000) Deng W, Lin H. Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev Biol. 1997 Sep 1; 189(1):79-94 Deng WM, Ruohola-Baker H Laminin A is required for follicle cell-oocyte signaling that leads to establishment of the anterior-posterior axis in Drosophila. Cuff Biol. 2000 Jun 1; 10(11):683-6. Dick, T., Ray, K., Salz, H. K. & Chia, W. Cytoplasmic dynein (ddlcl) mutations cause morphogenetic defects and apoptotic cell death in Drosophila melanogaster. Mol. Cell. Biol. 16, 1966-1977 (1996). Driever, W. & Nusslein-Volhard, C. A gradient of Bicoid protein in Drosophila embryos. Cell 54, 83-93 (1988). Driever, W. & Nusslein-Volhard, C. The Bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 95-104 (1988). Duffy JB, Harrison DA, Perrimon N. Identifying loci required for follicular patterning using directed mosaics. Development. 1998 Jun; 125(12):2263-71. Ferrandon, D., Elphick, L., Nusslein-Volhard, C. & St Johnston, D. Staufen protein associates with the 3’UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79, 1221-1232 (1994). Ephrussi, A. Drewes, G. and Mandelkow, E. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37-50 (1991) Ephrussi, A. and Lehmann, R. Induction of germ cell formation by oskar. Nature 358, 387-392 (1992) Erderlyi, M. and Szabad J. Isolation and characterization of dominant female sterile mutations of Drosophila melanogaster. I. Mutations on the third chromosome. Genetics 122:111-127 (1989) Ferrandon, D., Koch, I., Westhof, E. & N?sslein-Volhard, C. RNA-RNA interaction is required for the formation of specific bicoid mRNA 3’ UTR-Staufen ribonucleoprotein particles. EMBO J. 16,1751-1758 (1997). Forbes, A., and Lehmann, R. Nanos and Pumilio have critical roles in he development and function of Drosophila germline stem cells. Development 125, 679-690 (1998) Frigerio, G., Burn, M., Bopp, D., Baumgartner, S. & Noll, M. Structure of the segmentation gene paired and the Drosophila PRD gene set as part of a gene network. Cell 47, 735-746 (1986). Frohnhofer, H. G. & N?sslein-Volhard, C. Maternal genes required for the anterior localization of bicoid activity in the embryo of Drosophila. Genes Dev. 1, 880-890 (1987). Frohnhofer, H. G. & Nusslein-Volhard, C. Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324, 120-125 (1986). Gans, M., C. Audit, and M Masson. Isolation and characterization of sex-linked female-sterile mutants in Drosophila melanogaster. Genetics 81: 683-704 (1975) Ghiglione C, Carraway KL 3rd, Amundadottir LT, Boswell RE, Perrimon N, Duffy JB. The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell. 1999 Mar 19; 96(6):847-56. Gonzalez-Reyes, A., Elliott, H. & St Johnston, D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654-658 (1995). Grosshans, J., Schnorrer, F. & N?sslein-Volhard, C. Oligomerisation of Tube and Pelle leads to nuclear localisation of Dorsal. Mech. Dev. 81, 127-138 (1999). Hashimoto C, Hudson KL, Anderson KV. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988 Jan 29; 52(2):269-79. Hay B, Jan LY, Jan YN. A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell. 1988 Nov 18; 55(4):577-87. Hegde, J. & Stephenson, E. C. Distribution of Swallow protein in egg chambers and embryos of Drosophila melanogaster. Development 119, 457-470 (1993). Hod Y., Pentyala, S. N., Whyard, T. C., and El-Maghrabi, M, R. Identification and characterization of a Novel protein that regulates RNA-Protein interaction. J. Cell. Biochem. 72,435-444(1999) Holleran, E. A., Karki, S. & Holzbaur, E. L. The role of the dynactin complex in intracellular motility. Int. Rev. Cytol. 182, 69-109 (1998). Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Cuff. Opin. Cell. Biol. 11, 45-53 (1999). Kim-Ha J, Kerr K, Macdonald PM. Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell. 1995 May 5; 81(3):403-12. Kim-Ha, j., Smith, G. L. and Macdonald, P. m. oskar mRNA is localized to the posterior pole of the Drosophila oocytes. Cell 66, 23-35 (1991) King, S. M. et al. Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J. Biol. Chem. 271, 19358-19366 (1996). King, R.C. Ovarian development in Drosophila melanogaster. Academic Press, New York. (1970) Komitopoulou, L., Gans M., Margaritis L., and Kafaos F.C. Structural and biochemical studies on four sex-linked chorion mutants of Drosophila melanogaster. Dev. Genet. 9:37-40 (1988) Lantz V, Ambrosio L, Schedl P. The Drosophila orb gene is predicted to encode sex-specific germline RNA-binding proteins and has localized transcripts in ovaries and early embryos. Development. 1992 May; 115(1):75-88. Lantz V, Chang JS, Horabin JI, Bopp D, Schedl P. The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev. 1994 Mar 1; 8(5):598-613. Lasko, P., RNA sorting in Drosophila oocytes and embryos. FASEB J. 13 421 (1999) Lasko PF, Ashburner M. The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature. 1988 Oct 13; 335(6191):611-7. Li, K. and Kaufman, T. C. The homeotic target gene centrosomin encodes an essential centrosomal component. 1996 Cell 85, 585 Li MG, Serr M, Edwards K, Ludmann S, Yamamoto D, Tilney LG, Field CM, Hays TS. Filamin is required for ring canal assembly and actin organization during Drosophila oogenesis. J Cell Biol. 1999 Sep 6; 146(5):1061-74. Lin, H. and Spradling, A.C. Fusome asymmetry and oocyte determination in Drosophila. Dev Genet. 1995; 16(1):6-12. Lin, H. and Spradling, A.C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124: 2463-76 (1997) Lupas, A. Coiled coils: New structures and new functions. Trends Biochem. Sci. 21, 375-382 (1996) Macdonald, P. M., Ka-Shing, S. & Kilpatrick, M. Protein encoded by the exuperantia gene is concentrated at sites of bicoid mRNA accumulation in Drosophila nurse cells but not in oocytes or embryos, Genes Dev. 5, 2455-2466 (1991). Mahowald, A. P., and Kambysellis, M. P. Oogenesis. In the genetics and biology of Drosophila. vol. 2, pp. 141-224 (1980) McGrail, M. Regulation of cytoplasmic dynein function in vivo by the Drosophila Glued complex. J. Cell. Biol. 131, 411-425 (1995). McKearin, D., and Ohlstein, B. A role for the Drosophila bag-of marbles protein in the differentiation of cytoblast. Development 121, 2937-47 (1995) Micklem DR, Adams J, Grunert S, St Johnston D. Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J. 2000 Mar 15; 19(6):1366-77. Mohler J, Wieschaus EF. Dominant maternal-effect mutations of Drosophila melanogaster causing the production of double-abdomen embryos. Genetics. 1986 Apr;112(4):803-22. Murphy AM, Lee T, Andrews CM, Shilo BZ, Montell DJ. The breathless FGF receptor homolog, a downstream target of Drosophila C/EBP in the developmental control of cell migration. Development. 1995 Aug;121(8):2255-63. Navarro C, Lehmann R, Morris J. Oogenesis: Setting one sister above the rest. Curr Biol. 2001 Mar 6; 11(5):R162-5. Review. Neuman-Silberberg FS, Schupbach T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localize4 RNA and encodes a TGF alpha-like protein. Cell 75(1):165-74. (1993) Niewiadomska P, Godt D, Tepass U. DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol. 1999 Feb 8; 144(3):533-47. Ohlstein, B. and McKearin, D. Ecopic expression of the Drosophila Bamprotein eliminates oogenic germline stem cell. Development 124, 3651-3662 (1997) Parisi Michael J., Deng Wei, Wang Zhong, Lin Haifan The arrest gene is required for germline cyst formation during Drosophila oogenesis. Genesis. 29(4):196-209. (2001) Parisi, M., and Lin, H. The Drosophila pumilio gene encodes two functional protein isoforms that play multiple roles in germline development, gonadogenesis, oogenesis and embryogenesis. Genetics 153, 235-250 (1999) Paschal, B. M. & Vallee, R. B. Retrograde transport by the microtubule -associated protein MAP 1C. Nature 330, 181-183 (1987). Payre, F., Crozatier, M. & Vincent, A. Direct control of transcription of the Drosophila morphogen bicoid by the serendipity delta zinc finger protein, as revealed by in vivo analysis of a finger swap. Genes Dev. 8, 2718-2728 (1994). Pen F, Bokel C, Roth S. Local Gurken signaling and dynamic MAPK activation during Drosophila oogenesis. Mech Dev. 1999 Mar; 81(1-2):75-88. Perrimon N., Engstrom L. and Mahowald A.P. The effects of zygotic lethal mutations on female germ line functions in Drosophila. Dec. Biol. 150: 404-414 (1984) Perrimon N, Engstrom L, Mahowald AP. Zygotic lethals with specific maternal effect phenotypes in Drosophila melanogaster. I. Loci on the X chromosome. Genetic. 121(2):333-52 (1989) Perrimon N, Lanjuin A, Arnold C, Noll E. Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. Loci on the second and third chromosomes identified by P-element-induced mutations. Genetics 144: 1681-92 (1996) Phillis, R., Statton, D., Caruccio, P. & Murphey, R. K. Mutations in the 8 kDa dynein light chain gene disrupt sensory axon projections in the Drosophila imaginal CNS. Development 122, 2955-2963 (1996). Pokrywka, N. J. & Stephenson, E. C. Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis. Development 113, 55-66 (1991). Pokrywka, N. J. & Stephenson, E. C. Microtubules are a general component of mRNA localization systems in Drosophila oocytes. Dev. Biol. 167, 363-370 (1995). Rivera-Pomar R, Jackie H. From gradients to stripes in Drosophila embryogenesis: filling in the gaps. Trends Genet 1996 Nov; 12(11):478-83 Ruohola, H., Bremer, K., Baker, D., Swedlow, J., Jan, L. and Jan, Y. Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell 66,433-449 (1991) Sapir A, Schweitzer R, Shilo BZ. Sequential activation of the EGF receptor pathway during Drosophila oogenesis establishes the dorsoventral axis. Development. 1998 Jan; 125(2):191-200. Schnorrer, F., Bohmann, K., and Nussein-Volhard C. The molecular motor dynein is involved in targeting Swallow and bicoid RNA to the anterior pole of Drosophila oocytes. Nat. Cell Biol. 2,185-190 (2000) Schupbach, T. and Wieschaus, E. Female sterile mutations on the second Chromosome of Drosophila melanogaster. I. Maternal Effect Mutations Genetics 121:101-117 (1989) Schupbach, T. & Wieschaus, E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics. 129(4): 1119 (1989) Schupbach, T. & Wieschaus, E. Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux’s Arch. Dev. Biol. 195, 302-317 (1986). Shulman JM, Benton R, St Johnston D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell. 2000 May 12; 101 (4):377-88. Spradling, A. The Development of Drosophila melanogaster (eds Bate, M & Martinez-Arias, A.) 1-70(Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1993). Stephenson, E. C., Chao, Y. C. & Fackenthal, J. D. Molecular analysis of the swallow gene of Drosophila-melanogaster. Genes Dev. 2, 1655-1665 (1988). St Johnston, D., Driever, W., Berleth, T., Richstein, S. & N?sslein-Volhard, C. Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte. Development 107 (Suppl.), 13-19 (1989). Storto PD, King RC. The role of polyfusomes in generating branched chains of cystocytes during Drosophila oogenesis. Dev Genet. 1989; 10(2):70-86. Struhl, G., Struhl, K. & MacDonald, P. The gradient morphogen Bicoid is a concentration-dependent transcriptional activator. Cell 57, 1259-1273 (1989). Styhler S, Nakamura A, Swan A, Suter B, Lasko P. vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development. 1998 May; 125(9):1569-78. Szabad J., Jursnich V.A and Bryant P.J. Requirement for cell-proliferation control genes in Drsophila oogenesis. Genetics 127: 525-533 (1991) Taira T, Takahashi K, Kitagawa R, Iguchi-Ariga SM, Ariga H. Molecular cloning of human and mouse DJ-1 genes and identification of Sp1-dependent activation of the human DJ-1 promoter. Gene. 2001 Jan 24; 263(1-2):285-92. Theurkauf, W., Smiley, S., Wong, M. and Algerts, B. Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 115, 923-936 (1992) Theurkauf, W., Alberts, B., Jan, Y. & Jongens, T. A central role of microtubules in the differentiation of Drosophila oocytes. Development 118, 1169-1180 (1993). Theurkauf, W. E. & Hazelrigg, T. I. In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: characterization of a multi-step anterior localization pathway. Development 125, 3655-3666 (1998). van Eeden, F. & Johnston, D. S. The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis. Cuff. Opin. Genet. Dev. 9, 396-404 (1999). Vallee, R. B. & Sheetz, M. P. Targeting of motor proteins. Science 271, 1539-1544 (1996). Wagenfeld A, Yeung CH, Shivaji S, Sundareswaran VR, Ariga H, Cooper TG. Expression and cellular localization of contraception-associated protein. J Androl. 2000 Nov-Dec; 21(6):954-63. Wang, S. & Hazelrigg, T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369, 400-403 (1994) Wasserman JD, Freeman M. An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell. 1998 Oct 30; 95(3):355-64. Webster PJ, Liang L, Berg CA, Lasko P, Macdonald PM. Translational repressor bruno plays multiple roles in development and is widely conserved. Genes Dev. 1997 Oct 1; 11(19):2510-21. Webster PJ, Liang L, Berg CA, Lasko P, Macdonald PM. Drosophila virilis oskar transgenes direct body patterning but not pole cell formation or maintenance of mRNA localization in D. melanogaster. Development. 1994 Jul; 120(7):2027-37. Whittaker, K. L., Ding, D., Fisher, W. W. & Lipshitz, H. D. Different 3’ untranslated regions target alternatively processed hu-li tai shao (hts) transcripts to distinct cytoplasmic locations during Drosophila oogenesis. J. Cell Sci. 112, 3385-3398 (1999). Welch JE, Barbee RR, Roberts NL, Su?rez JD, Klinefelter GR. SP22: a novel fertility protein from a highly conserved gene family. J Androl. 1998 Jul-Aug; 19(4):385-93. Wieschaus, E. and Noell E. Specificity of embryonic lethal mutants in Drosophila analyzed in germ line clones. Roux’s Arch. Dev. Biol 195: 63-73 (1981) Wilsch-Brauninger, M., Schwarz, H. & Nusslein Volhard, C. A sponge-like structure involved in the association and transport of maternal products during Drosophila oogenesis. J. Cell Biol. 139, 817-829 (1997). Xie, T. and Spradling, A. C. decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94:251 (1998) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75169 | - |
dc.description.abstract | 在果蠅卵發育過程中,生殖細胞(如卵及護衛細胞)與體細胞(如濾泡細胞)的分化與軸向決定是由果蠅的TGF-α, Gurken (grk)的定位與表現量所調控。濾泡細胞的前後及背腹軸向建立,是靠Grk啟動的EGFR訊息而建立。卵細胞的前後軸向極性建立,則早在卵母細胞不對稱分裂時就決定,至stage 7時,卵細胞接收由後端濾泡細胞所傳遞的Grk信號後,開始重組卵細胞內的微管系統(microtubule system),而卵細胞核則藉由微管系統重組,由卵細胞後端移送至前端背側;stage 10之後,受Grk啟動EGFR訊息的背側濾泡細胞表現rhomboid,spitz,及argos回饋背腹極性的訊號給卵細胞,進一步決定未來胚胎的背腹極性。母源效應基因如spindle family,okra,aubergine, squid,f(s) k10及vasa等嚴密地調控grk的轉譯及蛋白質的運送與定位(localization),使卵與胚胎的軸向決定能正確地完成。 在本次針對具母源效應之必須基因的突變搜尋中,找到一個參與果蠅卵發育的基因,cobra。在cobra突變卵巢中,呈現各種形態上及分子分佈上的異常。包括主導卵室及胚胎背腹極性的Grk蛋白質,生殖前驅細胞決定因數Vasa蛋白質以及負責胚胎後端和生殖細胞生成的Oskar的分佈都受到cobra突變的影響,故卵室與胚胎的背腹極性與前後極性都因cobra突變而錯亂。由於cobra突變影響的廣泛性,以及其在卵發育早期表現的特性,推測cobra作用在卵早期細胞分化及生長,並且影響多種體軸極性決定蛋白的定位。 | zh_TW |
dc.description.abstract | In the early process of Drosophila oogenesis, the anterior-posterior and dorsal-ventral axes formation of oocyte and follicle cells are determined by Gurken (grk), a TGF-α homolog, mediated signaling between oocyte and nurse cells. Therefore, mutation in genes affecting grk distribution would cause defects in eggshell polarity and embryo pattern formation. Here, I report a novel marternal effect gene, cobra, recovered from my maternal effect gene screen, which involves in the proper localization of numerous ooplasm components and strongly influences eggshell polarity. Mutant egg chamber displays defects in nuclear position of oocyte and migration of follicle cells. Furthermore, the deposition pattern of grk, orb and stau in the oocyte revealed similar punctate accumulation. As a consequence, embryos lacking maternally provided cobra develop into various phenotypes, i.e. abdomen deletion, dorsalization, preblastoderm death, etc. The putative transcrip cobra interrupted encodes a member of Thij family. Among which, cobra resembles most to a RNA binding protein regulatory subunit, with the similarity of 51%. Since cobra mutant exhibits various abnormalties thoughout oogenesis, it is likely that cobra functions quite early in the developmental process. We speculate that cobra plays a role in proper protein localization and egg chamber patterning during previtellogenic stage. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:04Z (GMT). No. of bitstreams: 0 Previous issue date: 2001 | en |
dc.description.tableofcontents | Abstract………………………………………………………………………………………………………………1 摘要……………………………………………………………………………………………………………………2 Table of content……………………………………………………………………………………………………3 Table List…………………………………………………………………………………………………………7 List of Figures……………………………………………………………………………………………………8 Introduction …………………………………………………………………………………………………………10 Maternal effectors for embryogenesis ………………………………………………………………………10 Morphological description of Drosophila ovary……………………………………………………………11 Components involving in oocyte development ………………………………………………………………12 Oocyte determination …………………………………………………………………………………………12 RNA binding proteins in germline cyst formation………………………………………………………13 The role of the fusome in germline cyst formation……………………………………………………14 Egg chamber Anterio-Posterior (A-P) axis establishment ……………………………………………15 The dorsoventral axis determination in egg chamber …………………………………………………17 The dorsoventral axis determination in embryo……………………………………………………………18 cobra,a novel gene involved in early oogenesis …………………………………………………………19 Material and Method…………………………………………………………………………………………………21 Mutagenesis Strategy ……………………………………………………………………………………………21 Germline Clone analysis…………………………………………………………………………………………21 Fly strain and maintainence……………………………………………………………………………………22 Cuticular preparation……………………………………………………………………………………………22 Reagents ……………………………………………………………………………………………………………23 Whole-Mount in situ Hybridization of Drosophila Embryo with Non-Radioactive Probes …………25 Whole-Mount in situ Hybridization of Drosophila ovary with Non-Radioactive Probes……………26 X-gal staining of ovaries………………………………………………………………………………………27 Antibody Staining…………………………………………………………………………………………………27 Inverse PCR…………………………………………………………………………………………………………27 Plasmid Rescue ……………………………………………………………………………………………………28 Bioinformatics analysis…………………………………………………………………………………………28 Result …………………………………………………………………………………………………………………30 P element-induced lethal screen and maternal function analysis ……………………………………30 Identifying the 4133 mutation…………………………………………………………………………………30 Isolation of the 4133 mutation ………………………………………………………………………………31 The molecular nature of CG6646 ………………………………………………………………………………32 cobra4133 is a leaky female sterile mutation ……………………………………………………………34 Embryonic phenotypes of cobra4133……………………………………………………………………………34 Eggshell phenotypes of cobra4133 ……………………………………………………………………………35 LacZ expression pattern of cobra4133 ………………………………………………………………………36 Structural defects in cobra mutant ovary …………………………………………………………………37 The expression pattern of CG6646 ……………………………………………………………………………38 osk mRNA is mislocalized in cobra mutant oocyte…………………………………………………………38 Osk translation is interrupted in cobra mutant ovaries ………………………………………………40 vasa acts epistatic to cobra in germ plasm assembly……………………………………………………41 Gurken protein distributes abnormally cobra mutation …………………………………………………42 Orb presents a punctate distribution in cobra mutant oocyte…………………………………………43 Discussion ……………………………………………………………………………………………………………45 Cobra can be a RNA binding protein regulatory subunit…………………………………………………45 Germline and soma requirement of cobra4133 ………………………………………………………………46 The possible underlying causes of the structural defects in cobra4133 mutant …………………47 Slow migrated border cell……………………………………………………………………………………47 Dumping of nurse cell nucleus in cobra4133 mutant……………………………………………………48 Pleiotropic effect or early event ……………………………………………………………………………48 Acknowledgement………………………………………………………………………………………………………51 Reference………………………………………………………………………………………………………………52 | |
dc.language.iso | zh-TW | |
dc.title | Cobra,一個屬於Thij蛋白質家族的RNA附著蛋白調節因數,參與果蠅體軸極性決定蛋白的定位 | zh_TW |
dc.title | Cobra, a putative RNA-binding protein regulator in Thij family, is required for major body axis determinant localization in Drosophila | en |
dc.date.schoolyear | 89-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 96 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 動物學研究所 | zh_TW |
顯示於系所單位: | 動物學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。