Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7513
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳光超(Guang-Chao Chen)
dc.contributor.authorYa-Min Changen
dc.contributor.author張雅閔zh_TW
dc.date.accessioned2021-05-19T17:45:19Z-
dc.date.available2023-08-20
dc.date.available2021-05-19T17:45:19Z-
dc.date.copyright2018-08-20
dc.date.issued2018
dc.date.submitted2018-08-08
dc.identifier.citationAkhmanova, A., and Hammer, J.A., 3rd (2010). Linking molecular motors to membrane cargo. Curr Opin Cell Biol 22, 479-487.
Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I., Osterman, A., Godzik, A., Hunter, T., Dixon, J., and Mustelin, T. (2004). Protein tyrosine phosphatases in the human genome. Cell 117, 699-711.
Andersen, J.N., Jansen, P.G., Echwald, S.M., Mortensen, O.H., Fukada, T., Del Vecchio, R., Tonks, N.K., and Moller, N.P. (2004). A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J 18, 8-30.
Angers-Loustau, A., Cote, J.F., and Tremblay, M.L. (1999). Roles of protein tyrosine phosphatases in cell migration and adhesion. Biochem Cell Biol 77, 493-505.
Beckendorf, S.K., and Kafatos, F.C. (1976). Differentiation in the salivary glands of Drosophila melanogaster: characterization of the glue proteins and their developmental appearance. Cell 9, 365-373.
Beltran, P.J., and Bixby, J.L. (2003). Receptor protein tyrosine phosphatases as mediators of cellular adhesion. Front Biosci 8, d87-99.
Biyasheva, A., Do, T.V., Lu, Y., Vaskova, M., and Andres, A.J. (2001). Glue secretion in the Drosophila salivary gland: a model for steroid-regulated exocytosis. Dev Biol 231, 234-251.
Bretscher, A., Edwards, K., and Fehon, R.G. (2002). ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3, 586-599.
Bruccoleri, R.E., Novotny, J., Keck, P., and Cohen, C. (1986). Two-stranded alpha-helical coiled-coils of fibrous proteins: theoretical analysis of supercoil formation. Biophys J 49, 79-81.
Bullock, S.L., and Ish-Horowicz, D. (2001). Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. Nature 414, 611-616.
Burgess, J., Jauregui, M., Tan, J., Rollins, J., Lallet, S., Leventis, P.A., Boulianne, G.L., Chang, H.C., Le Borgne, R., Kramer, H., et al. (2011). AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila. Mol Biol Cell 22, 2094-2105.
Chase, K., Carrier, D.R., Adler, F.R., Ostrander, E.A., and Lark, K.G. (2005). Interaction between the X chromosome and an autosome regulates size sexual dimorphism in Portuguese Water Dogs. Genome Res 15, 1820-1824.
Cheng, A., Dube, N., Gu, F., and Tremblay, M.L. (2002). Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur J Biochem 269, 1050-1059.
Chishti, A.H., Kim, A.C., Marfatia, S.M., Lutchman, M., Hanspal, M., Jindal, H., Liu, S.C., Low, P.S., Rouleau, G.A., Mohandas, N., et al. (1998). The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23, 281-282.
Csizmadia, T., Lorincz, P., Hegedus, K., Szeplaki, S., Low, P., and Juhasz, G. (2018). Molecular mechanisms of developmentally programmed crinophagy in Drosophila. J Cell Biol 217, 361-374.
Dharan, A., Opp, S., Abdel-Rahim, O., Keceli, S.K., Imam, S., Diaz-Griffero, F., and Campbell, E.M. (2017). Bicaudal D2 facilitates the cytoplasmic trafficking and nuclear import of HIV-1 genomes during infection. Proc Natl Acad Sci U S A 114, E10707-E10716.
Edwards, K., Davis, T., Marcey, D., Kurihara, J., and Yamamoto, D. (2001). Comparative analysis of the Band 4.1/ezrin-related protein tyrosine phosphatase Pez from two Drosophila species: implications for structure and function. Gene 275, 195-205.
Fu, M.M., and Holzbaur, E.L. (2013). JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J Cell Biol 202, 495-508.
Gao, Q., Zhao, Y.J., Wang, X.Y., Guo, W.J., Gao, S., Wei, L., Shi, J.Y., Shi, G.M., Wang, Z.C., Zhang, Y.N., et al. (2014). Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients. Gastroenterology 146, 1397-1407.
Garton, A.J., Burnham, M.R., Bouton, A.H., and Tonks, N.K. (1997). Association of PTP-PEST with the SH3 domain of p130cas; a novel mechanism of protein tyrosine phosphatase substrate recognition. Oncogene 15, 877-885.
Grigoriev, I., Splinter, D., Keijzer, N., Wulf, P.S., Demmers, J., Ohtsuka, T., Modesti, M., Maly, I.V., Grosveld, F., Hoogenraad, C.C., et al. (2007). Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell 13, 305-314.
Han, S., Williams, S., and Mustelin, T. (2000). Cytoskeletal protein tyrosine phosphatase PTPH1 reduces T cell antigen receptor signaling. Eur J Immunol 30, 1318-1325.
Hancock, W.O. (2014). Bidirectional cargo transport: moving beyond tug of war. Nat Rev Mol Cell Biol 15, 615-628.
Harrod, M.J., and Kastritsis, C.D. (1972). Developmental studies in Drosophila. II. Ultrastructural analysis of the salivary glands of Drosophila pseudoobscura during some stages of development. J Ultrastruct Res 38, 482-499.
Hendriks, W.J., Elson, A., Harroch, S., Pulido, R., Stoker, A., and den Hertog, J. (2013). Protein tyrosine phosphatases in health and disease. FEBS J 280, 708-730.
Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526.
Hoogenraad, C.C., Akhmanova, A., Howell, S.A., Dortland, B.R., De Zeeuw, C.I., Willemsen, R., Visser, P., Grosveld, F., and Galjart, N. (2001). Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. EMBO J 20, 4041-4054.
Hoogenraad, C.C., Wulf, P., Schiefermeier, N., Stepanova, T., Galjart, N., Small, J.V., Grosveld, F., de Zeeuw, C.I., and Akhmanova, A. (2003). Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO J 22, 6004-6015.
Hou, S.W., Zhi, H.Y., Pohl, N., Loesch, M., Qi, X.M., Li, R.S., Basir, Z., and Chen, G. (2010). PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZ-mediated interaction. Cancer Res 70, 2901-2910.
Houalla, T., Hien Vuong, D., Ruan, W., Suter, B., and Rao, Y. (2005). The Ste20-like kinase misshapen functions together with Bicaudal-D and dynein in driving nuclear migration in the developing drosophila eye. Mech Dev 122, 97-108.
Hung, A.Y., and Sheng, M. (2002). PDZ domains: structural modules for protein complex assembly. J Biol Chem 277, 5699-5702.
Huynh, W., and Vale, R.D. (2017). Disease-associated mutations in human BICD2 hyperactivate motility of dynein-dynactin. J Cell Biol 216, 3051-3060.
Jaarsma, D., van den Berg, R., Wulf, P.S., van Erp, S., Keijzer, N., Schlager, M.A., de Graaff, E., De Zeeuw, C.I., Pasterkamp, R.J., Akhmanova, A., et al. (2014). A role for Bicaudal-D2 in radial cerebellar granule cell migration. Nat Commun 5, 3411.
Januschke, J., Nicolas, E., Compagnon, J., Formstecher, E., Goud, B., and Guichet, A. (2007). Rab6 and the secretory pathway affect oocyte polarity in Drosophila. Development 134, 3419-3425.
Jung, Y., Kim, P., Jung, Y., Keum, J., Kim, S.N., Choi, Y.S., Do, I.G., Lee, J., Choi, S.J., Kim, S., et al. (2012). Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing. Genes Chromosomes Cancer 51, 590-597.
Karki, S., and Holzbaur, E.L. (1999). Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 11, 45-53.
Katagiri, T., Ogimoto, M., Hasegawa, K., Arimura, Y., Mitomo, K., Okada, M., Clark, M.R., Mizuno, K., and Yakura, H. (1999). CD45 negatively regulates lyn activity by dephosphorylating both positive and negative regulatory tyrosine residues in immature B cells. J Immunol 163, 1321-1326.
Kim, E., and Sheng, M. (2004). PDZ domain proteins of synapses. Nat Rev Neurosci 5, 771-781.
Korge, G. (1977). Larval saliva in Drosophila melanogaster: production, composition, and relationship to chromosome puffs. Dev Biol 58, 339-355.
Larsen, K.S., Xu, J., Cermelli, S., Shu, Z., and Gross, S.P. (2008). BicaudalD actively regulates microtubule motor activity in lipid droplet transport. PLoS One 3, e3763.
Lee, J.M., Fournel, M., Veillette, A., and Branton, P.E. (1996). Association of CD45 with Lck and components of the Ras signalling pathway in pervanadate-treated mouse T-cell lines. Oncogene 12, 253-263.
Leto, T.L., and Marchesi, V.T. (1984). A structural model of human erythrocyte protein 4.1. J Biol Chem 259, 4603-4608.
Li, M.Y., Lai, P.L., Chou, Y.T., Chi, A.P., Mi, Y.Z., Khoo, K.H., Chang, G.D., Wu, C.W., Meng, T.C., and Chen, G.C. (2015). Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation. Oncogene 34, 3791-3803.
Liu, F., Sells, M.A., and Chernoff, J. (1998). Protein tyrosine phosphatase 1B negatively regulates integrin signaling. Curr Biol 8, 173-176.
Liu, Y., Salter, H.K., Holding, A.N., Johnson, C.M., Stephens, E., Lukavsky, P.J., Walshaw, J., and Bullock, S.L. (2013). Bicaudal-D uses a parallel, homodimeric coiled coil with heterotypic registry to coordinate recruitment of cargos to dynein. Genes Dev 27, 1233-1246.
Mach, J.M., and Lehmann, R. (1997). An Egalitarian-BicaudalD complex is essential for oocyte specification and axis determination in Drosophila. Genes Dev 11, 423-435.
Maehama, T., and Dixon, J.E. (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273, 13375-13378.
Martinez-Carrera, L.A., and Wirth, B. (2015). Dominant spinal muscular atrophy is caused by mutations in BICD2, an important golgin protein. Front Neurosci 9, 401.
Martinez Carrera, L.A., Gabriel, E., Donohoe, C.D., Holker, I., Mariappan, A., Storbeck, M., Uhlirova, M., Gopalakrishnan, J., and Wirth, B. (2018). Novel insights into SMALED2: BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ development. Hum Mol Genet 27, 1772-1784.
Matanis, T., Akhmanova, A., Wulf, P., Del Nery, E., Weide, T., Stepanova, T., Galjart, N., Grosveld, F., Goud, B., De Zeeuw, C.I., et al. (2002). Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nat Cell Biol 4, 986-992.
McKenney, R.J., Huynh, W., Tanenbaum, M.E., Bhabha, G., and Vale, R.D. (2014). Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345, 337-341.
McKenney, R.J., Huynh, W., Vale, R.D., and Sirajuddin, M. (2016). Tyrosination of alpha-tubulin controls the initiation of processive dynein-dynactin motility. EMBO J 35, 1175-1185.
Mohler, J., and Wieschaus, E.F. (1986). Dominant maternal-effect mutations of Drosophila melanogaster causing the production of double-abdomen embryos. Genetics 112, 803-822.
Motiwala, T., and Jacob, S.T. (2006). Role of Protein Tyrosine Phosphatases in Cancer. 81, 297-329.
Navarro, C., Puthalakath, H., Adams, J.M., Strasser, A., and Lehmann, R. (2004). Egalitarian binds dynein light chain to establish oocyte polarity and maintain oocyte fate. Nat Cell Biol 6, 427-435.
Neveling, K., Martinez-Carrera, L.A., Holker, I., Heister, A., Verrips, A., Hosseini-Barkooie, S.M., Gilissen, C., Vermeer, S., Pennings, M., Meijer, R., et al. (2013). Mutations in BICD2, which encodes a golgin and important motor adaptor, cause congenital autosomal-dominant spinal muscular atrophy. Am J Hum Genet 92, 946-954.
Oates, E.C., Rossor, A.M., Hafezparast, M., Gonzalez, M., Speziani, F., MacArthur, D.G., Lek, M., Cottenie, E., Scoto, M., Foley, A.R., et al. (2013). Mutations in BICD2 cause dominant congenital spinal muscular atrophy and hereditary spastic paraplegia. Am J Hum Genet 92, 965-973.
Ostman, A., and Bohmer, F.D. (2001). Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol 11, 258-266.
Peeters, K., Litvinenko, I., Asselbergh, B., Almeida-Souza, L., Chamova, T., Geuens, T., Ydens, E., Zimon, M., Irobi, J., De Vriendt, E., et al. (2013). Molecular defects in the motor adaptor BICD2 cause proximal spinal muscular atrophy with autosomal-dominant inheritance. Am J Hum Genet 92, 955-964.
Pilecka, I., Patrignani, C., Pescini, R., Curchod, M.L., Perrin, D., Xue, Y., Yasenchak, J., Clark, A., Magnone, M.C., Zaratin, P., et al. (2007). Protein-tyrosine phosphatase H1 controls growth hormone receptor signaling and systemic growth. J Biol Chem 282, 35405-35415.
Ran, B., Bopp, R., and Suter, B. (1994). Null alleles reveal novel requirements for Bic-D during Drosophila oogenesis and zygotic development. Development 120, 1233-1242.
Rheinlander, A., Schraven, B., and Bommhardt, U. (2018). CD45 in human physiology and clinical medicine. Immunol Lett 196, 22-32.
Schlager, M.A., Hoang, H.T., Urnavicius, L., Bullock, S.L., and Carter, A.P. (2014). In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J 33, 1855-1868.
Schlager, M.A., and Hoogenraad, C.C. (2009). Basic mechanisms for recognition and transport of synaptic cargos. Mol Brain 2, 25.
Schlager, M.A., Kapitein, L.C., Grigoriev, I., Burzynski, G.M., Wulf, P.S., Keijzer, N., de Graaff, E., Fukuda, M., Shepherd, I.T., Akhmanova, A., et al. (2010). Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-D-related protein 1 (BICDR-1) regulates neuritogenesis. EMBO J 29, 1637-1651.
Schupbach, T., and Wieschaus, E. (1991). Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129, 1119-1136.
Splinter, D., Tanenbaum, M.E., Lindqvist, A., Jaarsma, D., Flotho, A., Yu, K.L., Grigoriev, I., Engelsma, D., Haasdijk, E.D., Keijzer, N., et al. (2010). Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol 8, e1000350.
Steward, R. (1987). Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238, 692-694.
Swan, A., Nguyen, T., and Suter, B. (1999). Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nat Cell Biol 1, 444-449.
Swan, A., and Suter, B. (1996). Role of Bicaudal-D in patterning the Drosophila egg chamber in mid-oogenesis. Development 122, 3577-3586.
Terenzio, M., and Schiavo, G. (2010). The more, the better: the BICD family gets bigger. EMBO J 29, 1625-1626.
Thomopoulos, G.N., and Kastritsis, C.D. (1979). A comparative ultrastructural study of 'glue' production and secretion of the salivary glands in different species of theDrosophila melanogaster group. Wilehm Roux Arch Dev Biol 187, 329-354.
Titus, M.A. (2018). Myosin-Driven Intracellular Transport. Cold Spring Harb Perspect Biol 10.
Tonks, N.K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7, 833-846.
Vale, R.D. (2003). The molecular motor toolbox for intracellular transport. Cell 112, 467-480.
van Spronsen, M., Mikhaylova, M., Lipka, J., Schlager, M.A., van den Heuvel, D.J., Kuijpers, M., Wulf, P.S., Keijzer, N., Demmers, J., Kapitein, L.C., et al. (2013). TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77, 485-502.
Vazquez-Pianzola, P., Adam, J., Haldemann, D., Hain, D., Urlaub, H., and Suter, B. (2014). Clathrin heavy chain plays multiple roles in polarizing the Drosophila oocyte downstream of Bic-D. Development 141, 1915-1926.
Wadham, C., Gamble, J.R., Vadas, M.A., and Khew-Goodall, Y. (2000). Translocation of protein tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell proliferation. J Cell Sci 113 ( Pt 17), 3117-3123.
Weller, S.G., Capitani, M., Cao, H., Micaroni, M., Luini, A., Sallese, M., and McNiven, M.A. (2010). Src kinase regulates the integrity and function of the Golgi apparatus via activation of dynamin 2. Proc Natl Acad Sci U S A 107, 5863-5868.
Welte, M.A. (2004). Bidirectional transport along microtubules. Curr Biol 14, R525-537.
Wharton, R.P., and Struhl, G. (1989). Structure of the Drosophila BicaudalD protein and its role in localizing the the posterior determinant nanos. Cell 59, 881-892.
Whited, J.L., Robichaux, M.B., Yang, J.C., and Garrity, P.A. (2007). Ptpmeg is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila. Development 134, 43-53.
Yamada, K.M., and Araki, M. (2001). Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 114, 2375-2382.
Yuan, W.C., Lee, Y.R., Lin, S.Y., Chang, L.Y., Tan, Y.P., Hung, C.C., Kuo, J.C., Liu, C.H., Lin, M.Y., Xu, M., et al. (2014). K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking. Mol Cell 54, 586-600.
Zhang, S.H., Kobayashi, R., Graves, P.R., Piwnica-Worms, H., and Tonks, N.K. (1997). Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3beta protein. J Biol Chem 272, 27281-27287.
Zhang, S.H., Liu, J., Kobayashi, R., and Tonks, N.K. (1999). Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. J Biol Chem 274, 17806-17812
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7513-
dc.description.abstract酪氨酸磷酸化在細胞分化、細胞增生與遷移中扮演重要的角色,其受到蛋白質酪氨酸磷酸酶 (Protein tyrosine kinases;PTKs)與蛋白質酪氨酸去磷酸酶 (protein tyrosine phosphatases;PTPs)相互調節。我們過去發表文獻提出PTPN3參與在調控EGFR內吞的運送過程與肺癌細胞的增生。PTPN3為一非受體型蛋白質酪氨酸去磷酸酶,其中N端有一FERM區域,中間有PDZ區域,而C端有一PTP活性區域。然而,PTPN3仍有許多生物性功能尚未釐清。
為了更近一步探討PTPN3功能,我們利用質譜尋找PTPN3的可能受質,結果發現Bicaudal D蛋白(BICD)是其中一個可能性受質。BICD是動力蛋白(dynein)的接頭蛋白,與小GTP酶Rab6具有交互作用,且藉由徵招動力蛋白-動力激活蛋白(Dynactin)複合物調節內質網和高基氏體間的運送。在此篇論文中,我們發現BICD是會被酪氨酸磷酸化的蛋白,並且PTPN3可以降低BICD酪氨酸磷酸化的程度。此外,實驗結果也顯示Src酪氨酸激酶可以酪氨酸磷酸化BICD的卷曲螺旋功能區域中的酪氨酸。而且也發現BICD酪氨酸突變對於水泡性口炎病毒膜蛋白(VSVG)的順行性運輸無顯著影響。在果蠅方面,發現果蠅Ptpmeg與果蠅BicD具有基因遺傳交互作用。
此外,我們目前也著手探討果蠅BicD一些與Ptpmeg相關的生理功能。
zh_TW
dc.description.abstractProtein tyrosine phosphorylation plays a critical role in cell signaling and regulates a variety of biological processes, including cell differentiation, migration and proliferation. The molecular switch of tyrosine phosphorylation is coordinated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Our previous study has shown that PTPN3 is involved in the regulation of EGFR endocytic trafficking and lung cancer cell proliferation. PTPN3 is a non-transmembrane PTP that contains a N-terminal FERM domain, a PDZ domain and the C-terminal PTP domain. However, the biological function of PTPN3 remains largely unknown.
Previously, we used substrate trapping approach to find the potential substrates of PTPN3. The results showed that Bicaudal D (BICD) is a potential substrate of PTPN3. BICD, a dynein adaptor protein, interacts with the small GTPase Rab6 and recruits the dynein-dynactin complex to regulate Golgi-ER transport. In this study, we found that the BICD is a tyrosine phosphorylated protein and PTPN3 can down-regulate the phospho-tyrosine level of BICD. Moreover, Src tyrosine kinase can phosphorylate the tyrosine residues in the coiled-coil domain of BICD. Further, our preliminary data showed that BICD-YF mutant does not affect the anterograde transport of VSVG and the Golgi morphology. In Drosophila, we found that dPtpmeg genetically interacts with dBicD. We are currently investigating the function of dPtpmeg-dBicD interaction in Drosophila development.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:45:19Z (GMT). No. of bitstreams: 1
ntu-107-R05b46014-1.pdf: 2241942 bytes, checksum: c74805189081d57f9a0e88712d47e073 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 I
中文摘要 II
Abstract III
Content IV
Introduction 1
Protein tyrosine phosphatase 1
PTP overview 1
PTPN3 3
dPtpmeg 5
Intracellular transport 7
Intracellular transport overview 7
BICD 8
dBicD in fly 12
Material and Methods 15
Cell culture, transfection and treatments 15
Plasmids and reagents 16
Generation of stable cell line 16
Immunoprecipitation and Western blotting 17
Immunofluorescence 18
In vitro dephosphorylation assay 19
VSVG transport assay 19
Antibody list 20
Drosophila strains and genetics crosses 20
Immunofluorescence (salivary gland of Drosophila) 21
Primers 21
Results 23
BICD interacts with PTPN3 and is a substrate of PTPN3 23
Src is the kinase of BICD 25
Src kinase phosphorylates the coiled-coil domain of BICD 26
BICD-YF mutant affects the interacting level with Src but does not affect with PTPN3 27
BICD-YF mutant does not affect the Golgi morphology and the subcellular location 27
BICD-YF mutant does not have defects in the anterograde transport of VSVG 28
dPtpmeg and dBicD have genetic interaction, dBicD deletion rescues the wing vein loss defects caused by dPtpmeg 29
The role of dBicD in fly salivary gland 29
Discussion 31
References 34
Figures 41
dc.language.isozh-TW
dc.title探討酪胺酸去磷酸酶N3調控Bicaudal D之分子機制zh_TW
dc.titleMolecular regulation of Bicaudal D protein by tyrosine phosphatase PTPN3en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee姚季光(Chi-Kuang Yao),劉雅雯(Ya-Wen Liu)
dc.subject.keyword酪氨酸磷酸化,PTPN3,BICD,Src,zh_TW
dc.subject.keywordPTPN3,BICD2,tyrosine phosphorylation,Src,en
dc.relation.page52
dc.identifier.doi10.6342/NTU201802716
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-08
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
dc.date.embargo-lift2023-08-20-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf2.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved