請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75096完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Miao-ChihTsai | en |
| dc.contributor.author | 蔡妙智 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:11:48Z | - |
| dc.date.available | 2021-07-01T08:11:48Z | - |
| dc.date.issued | 2000 | |
| dc.identifier.citation | Allen, L.A.H., Aderm, A. 1996. Molecular definition of distinct cytoskeletal structures involved in complement and Fc receptor mediated phagocytosis in macrophages. J. Exp. Med. 184, 627-637. Acton, S.L., Scherer, P.E., Lodish, H.F., Krieger, M., 1994. Expression of cloning of SR-B1, a CD-36-related class B scavenger receptor. J. Biol. Chem. 269, 21003-21009. Adams, J.M., Cory, S. 1998. The Bcl-2 family: arbiters of cell survival. Science 281, 1322-1326. Asch, A., Barnwel, J., Silverstein, R., Nachman, R. 1987. Isolation of the thromobospondin membrane receptor. J. Clin. Invest. 79, 1054-1061. Avery, L., and Horvitz, H.R. 1987. A cell that dies during wild-type C. elegans development can funion as a neuron in a ced-3 mutant. Cell 51, 1071-1078. Barde, Y.A.1989. Trophic factors and nertonal survuval. Neuron 2, 1525-1534. Barres, B.A., Hart, I.K. Coles, H.C., Burne, J.F., Voyvodic, J.T., Richardson, W.D., and Raff, M.C. 1992. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70, 31-46. Balasubramanian, K., Chandra, J., Schroit, A. 1997. Immune clearance of posphatidylserine-expressing cells by phagocytes. The role of beta2- glycoprotein lin macrophage recognition. J. Biol. Chem. 272, 31113-31117. Blystone, S.D., Graham, I.L., Lindberg, F.P., Brown, E.J. 1994. Integrin αv β3 differentially regulates adhesube and phagocytic functions of the fibronectin receptor α5β1. J. Cell. Biol. 127, 1129-1137. Boldin, M.P., Varfolomeev, E.E., Pamcer, Z., Mett, I.L., Camonis, J.H., and Wallach, D. 1995. A novel protein that interacts with the death doain of fas/ap1 contains a sequence motif related to the death domain. J. Biol. Chem. 270, 7795-7798. Brenner, S. 1974. The gentics of Caenorhabditis elegans. Gentics 77, 71-94. Brown, E.J. 1991. Complement receptor and phagocytosis. Cuff. Biol. 3, 76-82. Bump, N.J., Hackett, M., Hugunin, M. 1995. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269, 1885-1888. Cam, E., hall, A. 1998.Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717-1721. Caron, E., and Hall, A. 1998.Identification of two distinct mechanism of phagocytosis controlled by different Rho GTPases. Science 282, 1717-1721. Cecconi, F., Alvarex-Bolado, G., Meyer, B., Roth, K., and Gruss, P. 1998. Apaf- 1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727-737. C. elegans Sequencing Consortium.1998. Genome sequencing of the nematode C. elegans: a platform for investigating biology. Sceince 282, 2012-2018. Chao, D.T., Korsmeyer, S.J. 1998. BCL-2 family: regulators of cell death. Annu. Reve. Immunil. 16, 395-419. Chen, F., Hersh, B.M., Conradt, B., Zhou, Z., Riemer, D., Gruenbam, Y., Horvitz, H.R. 2000, Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Nature 287, 1485-1489. Chinnaiyan, A.M., O’Rourke, K., Lane, B.R., Dixit, V.M. 1997. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275, 1122-1126. Chou, J.J., Matsuo, H., Duan, and Wagner, G. 1998. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 94, 171-180. Conradt, B., and Horvitz, H.R. 1998. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2 like protein CED-9.Cell 93, 519-529. Cory, S., Vaux, D.L., Strasser, A., Harris, A. W., and Adams, J. M. 1999. Insights from Bcl-2 and Myc: malignancy involves abrogation of apoptosis as well as sustained proliferation. Cancer Res. (Suppl.) 59, 1676s-1684s. Coucouvanis, E., and Martin, G.R. 1995. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83, 279-287. Coulson, A., Sulston, J., Brenner, S., and Karn, J. 1986. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci.83, 7821-7825. Cox, D., Tseng, C-C., Bjekic, B., Greeberg. S. 1999. A requirement for phosphatidyliostiol 3 kinase in pseudopod extension. J. Biol. Chem. 274, 1240-1158. Czop, J.K., Kay, J. 1991 Isolation and characterization of β-glucan receptors on human mononuclear phagocytes. J. Exp. Med. 1991. 173, 1511-1520. Davitt, A., Moffatt, O., Raykundalia, C., Capra, J., Simmons, D., Gregory, C.1998. Human CD14 mediates recognition and phagicytosis of apoptotic cells. Nature 392, 505-509. Dini, L., Lenrini, A., Diez, G.D., Rocha, M., Falasca, L., Serafino, L., and Vidal-Vanaclocha, F. 1995. Phagocytosis of apoptotic bodies by liver endothelial cells. J. Cell Sci. 108, 967-973. Duvall, E., Wyllie, A., Morris, R. 1985. Macrophage recognition of cells undergoing programmed cell death (apoptosis). J. Immunology 56, 351-358. Eijnde, S.M., Boshart, L., Baehrecke, E., De Zeeuw, C., Reutelingsperger, C., Vermeij-Keers, C. 1998. Phosphatidylserine exposure by apoptotic cells is phylogenerically conserved. Apoptosis 3, 9-16. Ellis, H.M., and Horvitz., H.R. 1986. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817-829. Ellis, R.E., D.M. Jacobson, and Horvitz., H.R. 1991a. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Gentics 129, 79-94. Ellis, R.E., and Horvitz., H.R. 1991b.Two C. elegans. Genes control the programmed deaths of specific cells in the pharynx. Development 112, 591-603. Ellis, R.E., Yuan, J., and Horvitz., H.R. 1991c. Mechanism and functions of cell death. Annu. Rev. Cell Biol. 7, 663-698. Ellis R.E. and Kimble, J. The fog-3 gene and regulation of cell fate in the germline of Caenorhabditis elegans. Genetics 139, 561-577. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. 1998. A caspase-activated DNAse that degrades DNA during apoptosis, and its inhibitor ICAD. Naure 391, 43-50. Fadok V.A., Voelker, D.R., Campbell. P.A., Cohen, J.J., Bratton, D.L., Henson, P.M. 1992. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207-2216. Fadok V.A., Bratton, D.L., Rose, D.M., Pearson, A., Ezekewitz, R.A.B., and Henson, P.M. 2000.A receptor for phosphatidylserine specific clearance of apoptotic cells. Nature 405, 85-90. Ferguson, E.L., and Horvitz, H.R., 1985. Identification and characterization of 22 genes that affect the vulval cell lineages of the menatode Caenorhabditis elegans. Genetics 110, 17-72. Ferguson, E.L., Stemberg, P.W., and Horvitz, H.R., 1987. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature 326, 259-267. Finnemann, S., Boniha, V., Marmorstein, A., Rodriguez-Boulan, E., 1997. Phagocytosis of rod outer segment epithelial cells requires alpha(v)beta 5 integrin for bining but not for internalization. Proc. Narl. Acad. Sci. USA. 94, 12932-12937. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C.1998. Popent and specific genetic interference in double-stranded RNA in Caenorhabditis elegans. Nature 391, 306-311. Flora, P., Gregory, C. 1994. Recognition of apoptotic cells by human macrophages: inhibition by a monocyte/macrophage-specific monoclonal antibody. Eur. J. Immunol. 24, 2625-2632. Franc, N.C., White, K., and Ezekowitz, R.A.B. 1999. Phagocytosis and development: back to the future. Current Opinion in Immunology 11, 47-52. Franc, N.C., Dimarcq, J.L., Lagueux, M., Hoffmann J., and Ezekowitz, R.A.B. 1996. Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4, 431-443. Franc, N.C. Heitzler, P., Ezekowitz, R.A.B., White, K., 1999. Requirement for Croquemort in phagocytosis of apoptotic cell in Drosophila. Science 284,1911-1994. Fukasawa, M., Adachi, H., Hirota, K., Tsujimoro, M., Arai, H., Imoue, K.,1996. SR-B1, a class B scavenger receptor, recognizes negatively charged liposones and apoptotic cells. Exp. Cell. Res. 222,246-250. Ezekowitz, R.A.B., Sastry, K., Bailly, P., Wammer, A. 1990. A molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeast in cos-1 cells. J. Exp. Med. 172, 1785-1794. Glucksmann, A. 1951. Cell death in normal vertebrate ontogeny. Biol Rev. 36, 5986. Gougeon, M-L, Montagnier, L. 1993. Apoptosis in AIDS. Science 260, 1269-1270. Greenberg, S. 1999. Modular components of phaocytosis. J. Leukocyte Biol. 66, 712-717. Gumienny, T.L., Lambie, B., Hartwieg, E., Horvitz, H.R., and Hengartner, M.O. 1999. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Dev. 126, 1011-1022. Hall, S.E., Savill, J.S., Henson, P.M., and Haslett, C. 1994. Apoptotic neutrophils are phagocytosed by fibroblasts with participation of the fibroblast vitronectin receptor and involvement of a mannose/ fucose-specific lectin. J. Immunol. 153, 3218-3227. Hall, D.H., Gu, G..Q., Garciaanoveros, J., Gong, L., Chalfie, M., and Driscoll, M. 1997. Neuropathology of degenerative cell death in Caenorhabditis elegans. J. Neurosci. 17, 1033-1045. Hall, D.H., Winfrey, V.P., Blaeuer, G., Hoffman, L.H., Furuta, T., Rose, K.L., Hobert. O., Greenstein. D. 1999. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germline and soma. Deve. Biol. 212, 101-123. Hartman, P.S., and Hevione, J. 1988. An endonuclease from Caenorhabditis elegans: partial purification and charicaterization. Biochem. Genetics 26, 474-461. Hedgecock, E.M., and Herman, R.K., 1995. The nuc-1 gene and genetic mosaics of Caenorhabditis elegans. Genetics 141, 989-1006. Hedgecock, E., Sulston, J., and Thomson, N. 1983. Mutations affect programmed cell deaths in the nematode Caenorhabditis elegans. Science 220, 1277-1280. Hengartner, M.O. 1997. Cell death. C. elegans II, Riddle, R.L., Blumenthal, T., Meyer, B.J., and Priess, L.R., eds. (New York: Cold Spring Harbor Laboratory Press) pp. 383-416. Hengartner, M.O., Ellis, R., and Horvitz, H.R. 1992. C. elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494-499. Hengartner, M., and Horvitz, H.R. 1994. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665-676. Hihhins, C,F, 1992. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67-113. Hodgkin, J. 1999. Sex, cell death and the genome of C. elegans. Cell 98, 277-280. Hofman, K., Bucher, P., Tschopp, J. 1997. The CARD domain-a new apoptotic sigmaling motif. Trends Biochem. Sci. 22, 155-156. Horvitz, H.R. 1999. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 59,1701s-1706s. Horvitz, H.R., Ellis, H.M., and Stermberg, P.W. 1982. Programmed cell death in the nematode development. Neurosci. Commentaries 1, 56-65. Inaba, T., Inukai, T., Yoshihara, T., Seyschab, H., Ashmin, R.A., Canman, C.E., Laken, S.J., Kastan, M.B. and Look, A.T. 1996. Reversal of apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor. Nature 382, 541-544. Imaizumi, T., Araki, K., Miura, K., Araki, M., Suzuki, M., Terasaki, H., Yamanmura. K-I. 1999. Mutant mice lacking CrkII is not essential for embryonic development. Biochemical and Biophysical Reasearch Communciations 268, 569-574. Jacobson, M. D. 1997. Bcl-2-relaged proteins get connected. Curr. Biol. 7, R277-R281. Jacobson, M. D., Weil. M., Raff. M.C. 1997. Programmed cell death in anima development. Cell 88, 347-354. Jacobson, M. D., Weil. M., Raff. M.C. 1996. Role of CED-3/ICE family proteasse in stuarosporine-induced programmed cell death. J. Cell Sci. 14, 571-585. Kelekar, A., and Thompson, C. 1998. Bcl-2 family protein: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8, 324-330. Kerr, J.F., Wyllie, A.H., and Currie, A.R. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit. J. Cancer 26, 239-257. Kim, S.K. 2000. Reading the worm genome. Science 287, 52-53. Kim, S. 1994. Two C. elegans geness that can mutate to cause degenerative cell death. Ph.D. Thesis, M.I.T., Cambridge. Kimble, J., and Hirsh, D. 1979. The post-embryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev. Biol. 70, 286-300. Kiyokawa, E., Hashimoto, Y., Kobayashi, S., Sugimura, H., Kurata, T., Matsuda, M. 1 998a. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes and Development 12, 3331-336. Kiyokawa, E., Hashimoto, Y., H., Kurata, Sugimura, H., Matsuda, M.1998b. Evidence that DOCK 180 up-regulates signals from the CrkII-p130cas complex. J. B. C. 18, 24479-24484. Klemke, R.L., Leng, J., Molander, R., Brooks, P.C., Vuori, K., Cheresh, D.A. 1998. CAS/Crk coupling serves as a ‘molecular switch’ for induction of cell migration. J.B.C. 140, 961-972. Korsmeyer, S.J. 1999. BCL-2 gene family and the regulation of programmed cell death. Cancer Res. (Suppl.), 59, 1693s-1700s. Krause, M., and Hirsh, D. 1987. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell 49, 753-761. Krieger, M. 1997. The other side of scavenger receptors: pattern recognition for hsot defense. Curr. Opin Lipidol. 8, 275-280. Krieser, R.J., and A. Eastman, A. 1998. The cloning and expression of human deoxyribonuclease II. A possible role in apoptosis. J. Biol. Chem. 273, 30909-30914. Kuida, K., Lippke, J.A., Ku, G. 1995. Altered cytokine export abd apoptosis in mice deficient in interleukin-1beta converting enzyme. Science 267, 2000-2003. Kwiatkowska, K., and Sobota, A. 1999. Signaling pathways in phagocytosis. BioEassays 21, 422-431. Lewin, B. 1996. Genes VI. (Oxford: Oxford University Press). Li, P., Allen, H., Banerjee, S. 1995. Mice deficient in 1L-lbeta-converting enzyme are defective in production of mature 1L-lbeta and resistant to endotoxic shock. Cell 80, 401-411. Liu, Q., and Hengartner, M.O. 1998. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Cell 93, 961-972. Lockshin, R., and Williams, C. 1965. Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkworms. J. Insect Physiol. 11, 803-809. Luciani, M.F., and Chimini, G. 1996. The ATP binding cassette transporter ABC1 is required for the engulfment of corpses gererated by apoptotic death. EMBO J. 15, 226-253. Margolis, R.L., Chuang, D-M., Post, R.M. 1994. Programmed cell death: implications for neuropsychiatric disorders. Biol. Psychiatry 35, 946-956. Massol, P., Montocurrier, P., Guillemote, J.C., and Chavrier, P. 1998. Fc receptor-mediated phagocytosis requires cdc42 and Rac1. EMBO J. 17, 6219-6229. McCarter, J., Bartlett, B., Dang, T., and Schedl, T. 1997. Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphtodite germline development require the somatic sheath and spermathecal lineages. Deve. Biol. 181, 121-143. Mello, C.C., Kramer, J.M, Stichcomb, D., and Ambros, V. 1992. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959-3970 Mello, C.C., and Fire, A. 1995. DNA transformation. Methods Cell Biol. 48, 451-482. Metzstein, M.M., and Horvitz, H.R., 1999. The C. elegans. cell death specification gene ces-1 encodes a snail family zinc finger protein. Molecular Cell 4,309-319. Metzstein, M.M., Stanfield, G.M. and Horvitz, H.R., 1998. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet. 14,408-414. Metzstein, M.M., Hengartner, M.O., Tsung, N., Ellis, H.M., and Horvitz., H.R.1996. Transcriptional regulation of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature 382, 545-547. Milligan, C.E., Prevette, D., Yagimuma, H., Homma, S., Cardwell, C., Fritz, L.C., Tomaselli, K.J., Oppenheim, R.W., and Schwartz, L.M. 1995. Peptide inhibitors of the ICE protease family arrest programmed cell death of motoneurons in vivo and in vitro. Nerton 15, 385-393. Mountz, J.D., Wu, J., Cheng, J., Zhou, T. 1994. Autoimmune disease: a problem of defective apoptosis. Arthritis Rheum. 37, 1415-1420. Muzio, M., Chinnaiyan, A.M., Kischkel, F.C., O’Rouke, K., Shevehenko, A., Ni, J., Scaffidi, C., Bretz, J.D., Zhang, M., Gentz, R., et al. 1996. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD 95 (Fas/Apo-1) death-inducing sigmaling complex. Cell 85, 817-827. Nagata, S. 1997. Apoptosis by death factor. Cell 88, 355-365. Nolan, K.M., Barrett, K., Lu, Y., Hu, K.Q., Vincent, S., Settleman, J. 1998. Myoblast city, the Drosophila homolog ofDOCK180/CED-5, is required in a Rae signaling pathway utilized for multiple developmental processes. Genes and Development 12, 3337-3342. Oppenheim, R.W. 1991. Cell death during development of the nervors system. Annu. Rev. Neurosci 14, 453-501. Oquendo, P., Hundt, E., Lawler, J., Seed, B.1989. CD36 directly mediates cytoadherence of Plasmodium falciparium parisitized erythrocytes. Cell 58, 95-101. Platt, N., Suzuki, H., Kurihara, Y., Kodama, T., Gordon, S. 1996. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc. Natl. Acad. Sci. USA. 93, 12456-12460. Pradhan, D., Krahling, S., Williamson, P., Schlegel, R.A. 1997. Multiple systems for recognition of apoptotic lymphocytes by macrophages. Mol. Biol. Cell. 8, 767-778. Price, B., Rauch, J., Shia, M., Walsh, M., Leiberthal, W., Gilligan, H., O’Laughlin, T., Koh, J., Levine, J. 1996. Antiphospholipid antibodies bind to apoptotic, but not viable, thymocytes in a beta 2-glycoprotein independent manner. J. Immunlo. 257, 2201-2208. Pugin, J., Heuman, I., Tomasz, P., Kravchencho, V., Akamati, Y., Nishijima, M., Ulevitch, R. 1994. CD14 is a pattern recognition receptor. Immunity 1, 509-516. Rabinovitch, M. 1995. Professional and non-professional pgagocytes: an introduction. Trends Cell Biol. 5, 85-87. Raff. M. 1998. Cell suicide for beginners. Natur 396, 119-122. Ramprasad, M., Fescher, W., Witzum, J., Sanbtano, G., Quehenberger, O., Steinberg, D. 1995. The 94-97 kDa mouse macrophage membrane protein that recognizes low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialine, the mouse homolog of human CD68. Proc. Natl. Acad Sci. USA. 92, 9580-9584. Ravetch, J.V. 1994, Fc receptors: rubor redux. Cell 78, 553-560. Ray, C.A., Black, R.A., Kronheim, S.R. 1992. Viral inhibition of inhibitor of the interleukin-1 beta converting enzyme. Cell 69, 597-604. Reddien, P.W., and Horvitz, H.R. 2000. CED-2/CrkII and CED-l0/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biology 2, 131-136. Ren, Y., Silverstein, R.L., Allen, J., and Savill, J. 1995. CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J. Exp. Med.181, 1857-1862. Rigotti, A., Acton, S., Krieger, M., 1995. The class B scavenger receptors SRB 1 and CD-36 are receptors for anionic phosphalioids. J. Biol. Chem. 270,16211-6224. Rudin, C.M., and Thompson, C.B. 1997. Apoptosis and disease. Regulation and clinical relevance of programmed cell death. Annu. Rev. Med., 48, 267-281. Robertson, A., and Thomson, J.N. 1982. Morphology of programmed cell death in the ventral nerve cord of Caenorhabditis elegans larvae. J. Embryol. Exp. Morphol. 67, 89-100. Ruetz, S., and Gros, P., 1994. A mechanism for P-glycoprotein action in multidrug resistance: are we there yet Trends Pharmacol. Sci. 15, 260-263. Ryeom, S.W., Sparrow, J.R., Silverstein, R.L. 1990. CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. J. Cell. Sci.109, 387-395. Sakahira, H., Enari, M., and Nagata, S. 1998. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99. Savill, J., Dransfield, I., Hogg, N., Haslett, C. 1990. Vitronectin receprot mediated phagocytosis of cells undergoing apoptosis. Nature 343, 170-173. Savil, J., Hogg, N., Ren, Y., Haslett, C. 1992. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Inest 90, 1513-1522. Savill, J. Fadok, V., Henson, P., and Haslett, C. 1993. Phagocyte recognition of cells undergkoing apoptosis. Immunol. Today 14, 131-136. Savill, J. 1997. Apoptosis in resolution of inflammation. J. Leukoc. Biol. 61-375-380. Savill, J. 1998. Phagocytic docking without shocking. Nature 392, 442-443. Sattler, M., Liang, H., Nettesheim, D., Meadows, R.P., Harlan, J.E., Eberstadbt, M., Yoon, H.S., Shuker, S.B., Chang, B.S., Minn, A.J., Thompson, C.B., and Fesik, S.W. 1997. Structure of Bcl-x(1)-Bak peptide complex-recogintion between regulators of apoptosis. Science 275, 983-986. Schedl, T. 1997. Developmental gentics of the germline. In C. elegans II (ed. D.L. Riddle, T. Blumenthal, B.J. Meyer and J.F. Priess) pp241-270. Shaham, S., Horvitz, H.R. 1996. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer actibities. Genes and Deve. 10,578-591. Songyang, Z., Margolis, B., Cgaudhuri, M., Shoelson, S.E., and Cantley, L.C. 1995. The phosphotyrosine interaction domain of SHC recognizes tyrosine-phosphorylated NPXY motif. J. Biol. Chem. 270, 14863-14866. Spector, M.S., Desmoyers, S., Hoeppner, D.J., Hengartmer, M.O. 1997. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385, 653-656. Spieth, J., Brooke, G., Kuersten, S., Lea, K., Blunebthal, T. 1993. Operons in C. elegans: polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions. Cell 73, 521-532. Stachi, P., Ezekowitz, P.A.B., 1998. The mannose receptor is a pattern recognition receptor involved in host defense. Cur Opin Immunol. 1998 19, 50-55. Sugihara, K. et al., 1998. Racl is required for the formation of three germ laters during gastrulation. Oncogene 17, 3427-3433. Sulston, J.E., and Horvitz., H.R. 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Deve. Biol. 56, 110-156. Sulston, J.E., Schierenberg, E., White, J.G., and Thomson, J.N. 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100,64-119. Suzuki, H., Kurihara, Y., Takeya, M., Kamada, N., Kataoka, M., Jishage, K., Ueda, O., Sakaguchi, H., Higashi, T., Suzuki, T. et L. 1997. A role for macrophage scavenger receptors in atheroscierosis and susceptibility to infection. Nature 386, 292-296. Tata, J.R. 1966. Requirement for RNA and protein synthesis for induced regression of the tadpole tail in organ culture. Dev. Biol. 13, 77-94. Thompson, C.B. 1995. Apoptosis in the pathogenesis and treatment of diseasse. Science 267, 1456-1462. Thomberry, N.A., and Lazebnik, Y., 1998. Caspases: enemies within. Science 281, 1312-1316. Trent, C., Tsung, N., and Horvitz, R.H. 1983. Egg-laying defect mutants of the nematode Caenorhabditis elegans. Genetics 104, 619-647. Vaux, D.L., and Hacker, G. 1995. Hypothesis-apoptosis caused by cytotoxins represents a defensive response that evolved to combat intracellular pathogens. Clin. Exp. Pharmacol. Pharmacol. Physiol. 22, 861-863. Vaux, D.L. 1997. CED-4: the third horsman of apoptosis. Cell 90, 389-390. Vaux, D.L., and Korsmeyer, S.J. 1999. Cell death in development. Cell 96, 245-254. Vaux, D.L., Weissman, I.L., and Kim, S.K. 1992. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258, 1955-1957. Verhover, B., Schlegel, R.A., and Willamson, P. 1995. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med. 182, 1597-1601. Vogt, C. 1842. Untersuchungen uber die Entwicklungsgeschichte der Geburtshelferkroete (Alytes obstertricians). (Sollthurn, Switzerland: Jent und Gassman) Waltout, A.J.M., Sordella, R., Lu, X., Hartley, J.L., Temple, G.F., Brascg, M.A., Thierry-Mieg, N., Vidal, M., 2000. Protein interaction mapping in C. elegans using proteins involved in vulval development. Wang, W., Gross, A., Waksman, G., and Korsmeyer, S. 1998. Mutagenesis of the BH3 domain of BAX identifies residues critical for dimerization and killing. Mol. Cell. Biol. 18, 6083-6089. Wu, D., Wallen, H.D., Nunez, G. 1997. Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 275, 1126-1129. Wu, Y-C., and Horvitz. H.R. 1998a. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93, 951-960. Wu, Y-C., and Horvitz. H.R. 1998b. C. elegans phagocytosis and cell- migration protein CED-5 is similar to human DOCK180. Nature 392, 501-504. Wu, Y-C., Stanfeild, G.M., and Horvitz. H.R. 2000. NUC-1, a Caenorhabditis elegans Dnasell homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes and Development 14, 536-548. Wyllie, A.H. 1980. Glucocorticoid-induced thymocyte apoptosis is associated with endogenors endonuclease activation. Nature 284, 555-556. Yang, X., Chang, H.Y., Baltimore, D. 1998. Essential role of CED-4 oligomerization on CED-3 activation and apoptosis. Science 281, 1355-1357. Yoshida, H., Kong, Y-Y., Yoshida, R., Elia, A., Hakem, A., Hakem, R., Penninger, J., and Mak, T. 1998. Apalf-1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739-750. Yuan, J., and Horvitz. H.R. 1990. The Caenorhabditis elegans genes ced-3 and ced-4 act cell-autonomously to cause programmed cell death. Dev. Biol. 138,33-41. Yuan, J., Shaham, S., Ledoux, S., Ellis, H., and Horvitz. H.R. 1993. The Caenorhabditis elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1-beta-converting enzyme. Cell 75, 641-652. Zha, J.P., Harada, H., Yang, E., Jockel, J., and Korsmeyer, S.J. 1996. Serine phosphorylation of death agonist Bad in response to survival factor results in binding to 14-3-3 not Bcl-x(1). Cell 87, 6 19-628. Zhou, H., Henzel., W.J., Liu, X., Lutschg, A., and Wang, X. 1997. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413. Zhou, M.M., Ravichandran, K.S., Olejniczak, E.T., Petros, A.M., Meadows, R.P., Sattler, M., Harlan, J.E., Wade, W.S., Burakoff, S.J., and Fesik, S.W. 1995.Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature 378, 584-592. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75096 | - |
| dc.description.abstract | 計劃性細胞死亡在生物體是重要的發育過程和生理現象。而計劃性細胞死亡過程中迅速吞噬死細胞屍體的現象具有避免引起免疫反應的重要功能,但吞噬過程的作用機制尚未十分明瞭。在線蟲(Caenorhabditis elegans) ,已知有六個吞噬基因作用在吞噬死細胞屍體的過程,由遺傳分析,可將這六個吞噬基因分為兩群:ced-2 、 ced - 5 和 ced - 10 一群,及ced - 1 、ced - 6 和ced - 7 一群,研究指出若ced - 2 、ced -5和 ced - 10 這一群的基因發生突變,除了會有吞噬功能的缺失外,還會使線蟲的生殖器官頂端的兩個細胞 DTCs 產生移走方向錯誤的情形。 我們發現了一個新基因ced -12,作用在線蟲細胞死亡路徑上,負責吞噬細胞死亡產生的死細胞屍體。 ced-12 突變株有過多的死細胞屍體未被吞噬,另一方面, ced -12 突變株的生殖器官頂端的兩個細胞 DTCs 也會產生移走方向錯誤的情形。我們進行 ced -12基因的 cloning 。進一步由遺傳分析,我們發現 ced -12基因作用在吞噬細胞,而且 ced - 12可能作用在 ced -10的上游,參與在 ced - 2 、 ced -5 和 ced - 10吞噬死細胞屍體的路徑上。因此推測 ced -12基因在吞噬細胞中負責延伸細胞表面以吞噬死細胞屍體。已知 CED-2 蛋白和人類 CrkII類似, CED-5蛋白和人類DOCK180 類似, CED-10 蛋白和人類 GTPase Rac類似。因此我們推測可能的模式是CED-2 / CrkII、CED-5 / DOCK180 和 CED-12 一起作用以活化 CED-10/Rac 的 GTPase 的訊息傳遞路徑。 | zh_TW |
| dc.description.abstract | The rapid engulfment (phagocytosis) of cells undergoing programmed cell death (apoptosis) is a fundamental biological process that is not well understood. In C. elegans, six genes known to control cell corpse removal have been identified and grouped into two classes, ced-2, ced-5, and ced-l0, and ced-1, ced-6 and ced-7, on the basis of their genetic interactions. More recently, of a defect in the migrations of the two gonadal distal tip cells (DTCs) in mutants of the ced-2 ced-5 and ced-10 class but not the other. Here we report the cloning of and functional characterization of ced-12, a new gene required for the engulfment of apoptotic cells and DTC migration in the nematode C. elegans. We found that ced-12 encodes a novel protein. Ectopic expression study suggests that ced-12 acts within engulfing cells during cell-corpse engulfment. We also show that ced-12 may function upstream of ced-10 in a genetic pathway controlling cell corpse engulfment. Together with the published results that ced-2, ced-5, and ced-l0 encode proteins similar to human CrkII, human DOCK 180, and human GTPase Rac, respectivityly. We propose that CED-2/CrkII, CED-5/DOCK 180, and CED- 12 function to activate CED- 10/Rae in a GTPase signaling pathway that controls the polarized extension of cell surfaces. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:11:48Z (GMT). No. of bitstreams: 0 Previous issue date: 2000 | en |
| dc.description.tableofcontents | 中文摘要 1 英文摘要 2 致謝 3 前言 4 1 .線蟲的細胞死亡 7 2 .以 mammalian cell culture 研究吞噬死細胞屍體的過程 21 實驗方法 30 實驗結果 34 1. ced-12 is a new cell-corpse engulfment gene of programmed cell death in C. elegans 34 2. ced-12 mutant phenotype analysis 36 3. genetic mapping of the ced-12 gene 38 4. positional cloning of ced-12 39 5. identification of ced-12 transcripts 40 6. ced-12 sequence and mutant allele 41 7. ced-12 probably function within engulfing cells 42 8. ced-12 may function upstream of ced-10 in cell corpse engulfment 42 討論 44 參考文獻 49 圖 65 表 73 附圖 79 | |
| dc.language.iso | zh-TW | |
| dc.title | 分子與遺傳分析線蟲的ced-12 基因在細胞死亡過程中的功能 | zh_TW |
| dc.title | Molecular and genetic analysis of the ced-12 gene of programmed cell death in the nematode Caenorhabditis elegans | en |
| dc.date.schoolyear | 88-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 79 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
