Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75021
完整後設資料紀錄
DC 欄位值語言
dc.contributor.author林家瑜zh_TW
dc.date.accessioned2021-07-01T08:11:25Z-
dc.date.available2021-07-01T08:11:25Z-
dc.date.issued1999
dc.identifier.citationAhn Y.S., Zerban H., Grobholz R.,and Bannasch P. (1992).Sequential changes in glycogen content, expression of glucose transporters and enzymic patterns during development of clear/acidophilic cell tumors in rat kidney. Carcinogenesis 13: 2329-2334.
Bannasch P. (1986). Preneoplastic lesions as end points in carcinogenicity testing I. Hepatic preneoplasia. Carcinogenesis 7: 689-695.
Bannasch P., D’Introno A., Leonetti P., Metzger C., Klimek F., and Mayer D. (1998).Early aberrations of energy metabolism in carcinogenesis. In Bannasch P, Kanduc D, Papa S and Tager JM (eds) Cell growth and Oncogenesis, pp.191-212. Birkhaauser Verlag Basel, Switzerland.
Barry M.A., Behnke C.A., and Eastman A. (1990 ).Activation of programmed cell death ( apoptosis ) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem. Pharmacol. 40: 2353-2362.
Beacousfeild P., Rainsbury R., and Kalton G. (1965).Glucose-6-phosphate dehydrogense defiency and the incidence of cancer. Oncology 19: 11
Berger N.A., Catino D.M., and Vietti T.J. (1982).Synergistic antileukemic effect of 6-aminonicotinamide and 1,3 -bis(2-chloroethyl)- 1 -nitrosourea on L1 210 cells in vitro and in vivo. Cancer Res. 42: 4382-4386.
Biaglow J.E., Jacobson B., Greenstock C.L., and Raleigh J. (1977).Effect of nitrobenzene derivatives on electron transfer in cellular and chemical models. Mol. Pharmacol. 13: 269-282.
Biaglow J.E., Varnes M.E., Clark E.P., and Epp E.R. (1983).The role of thiols in cellular response to radiation and drugs. Radit. Res.95: 437-455.
Bokun R., Bakotin J., and Milasinoric D. (1978).Semiquantitative cytochemical estimation of flucose-6-phosphate dehydrogenase activity in benign dissseases and carcinoma of the breast. Acta. Cytol. 31: 249-252.
Bolander F.F. Jntroduction In: Molecular Endocrinology. Academic Press, san Diego, landon, pp1-23.
Boyland E., and Chasseaud C.F. (1979).The role of glutathione and glutathione S-transferase in mercapturic acid biosynthesis. Adv. Cancer Res. 29: 175-274.
Casalone R., Minelie E., Portensoso P., and Giudici A. (1990). Clonal duplication of the Y chromosome and fra[X] [q28] in a case of epidermoid carcinoma of the esophagus. Cancer Genet. Cytogenet. 45: 269-271.
Cassimos C., Sklavvunu-Tsumktosglu S., Catriu D., and Panajiotidu C.(1973).The incidence of G6PD disturbances in cancer patients. IRCS (73-3) 27-2-2.
Chen J. (1992).The effects of Chinese tea on the occurrence of esophageal tumors induced by N-nitrosomethylbenzylamine in rats. Prey. Med. 21: 385-391.
(CICAMS)Department of Cancer Epidemiology of Cancer Insititute of Chinese Academy of Medical Sciences. (1977). Preliminary investigation of the epidemiological factors of esophageal cancer in China. Res. Cancer Prey. Treatm. 2:1-8.
Cocco P., Dessi S., Avataneo G., Picchiri G., and Heinemann E. (1989) Glucose-6-phosphate dehydrogenase deficiency and cancer in a sardinian male population: A case-control study. Carcinogenesis 10: 813-816.
Cooper G.M. (1993). Common solid tumors of adults. In: The cancer book: a guide to understanding the causes, prevention and treatment of cancer. pp. 174-193.
Couillard S., labrie C., belanger A., Candas B., Pouliot F., and Labrie F. (1998)Effect of dehydroepiandrosterone and the antiestrogen EM-800 on growth of human ZR-75-1 breast cancer xenografts. J. Natl. Cancer Inst. 90: 772-778.
De Flora A., Morelli A., and Giuliano F. (1974). Human erythrocyte glucose- 6-phosphate dehydrogenase. Content of bound coenzyme. Biochem. Biophys. Res. Commnun. 59: 406-413.
Dessi S., Batetta B., Cherchi R., Onnis R., Pisano M., and Pani P. (1988) Hexomonophosphate shunt enzymes in lung tumors from normal and glucose-6-phosphaate dehydrogenase-deficient subjects. Oncol. 45: 287-291.
Dutu R., Nedelea M., Veluda G., and Burcuket V. (1980). Cytoenzymologic investigations on carcinomas of the cervix uteri. Acta. Cytol. 24:160-166.
Dworkin C.R., Gorman S.D., Pashko L.L., Cristofalo V.J., and Schwartz A.G. ( 1986 ). Inhibition of growth of HeLa and WI-38 cells by dehydroepiandrosterone and its reversal by ribo-and deoxyribo-uncleosides. Life Sci. 38:1451-1457.
Eckdahl S., Shah G.M., Poirier G.G., Reid J.M., Ames M.M., and kaufmann S.H. (1998). 6-Aminonicotinamde sensitizes human tumor cell lines to cisplatin. Clin. Cancer Res. 4:117-130.
Epel D. (1963). Effect of carbon monoxide on ATP level and rate of mitosis in the urchin egg. J. Cell Biol. 17: 3 15-319.
Labrie F., Belanger A., Van L.T., Labrie C., Simard J., Cusan L.N., Gomez J.L., and Candas B. (1998). DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: Its role during aging. Steroids 63:322-328.
Forteleoni G., Argiolas L., Farris A., Ferraris A.M., Gaetani G.F., and Meloni T. (1988). G6PD deficiency and breast cancer. Tumori. 74: 665-667.
Franze A., Ferrante M.I., Fusco F., Santoro A., Sanzari E., Martini G., and Ursini M.V. (1998). Molecular anatomy of the human glucose-6-phosphate dehydrogenase core promoter. FEBS Letters 437: 313-318.
Gaetani G.F., Galiano S., Canepa L., Ferraris A.M., and Kirkman H.N. (1989) Catalase and glutathione peroxidase. Blood 73: 334-339.
Garcea R., Daino L., Pascale R., Frassetto S., Cozzolino P., Ruggin M.E., and Feo F. (1987). Inhibition by dehydroepiandrosterone of liver preneoplastic foci formation in rats after initiation-selection in experimental carcinogenesis. Toxicol. Pathol. 15:164-169.
Garcea R., Daino L., Frassetto S., Cozzolino P., Ruggiu M.E., Vannini M.G., Pascale R., Lenzerini L., Simile M.M., Pudda M., and Feo F. (1988). Reversal by ribo- and deoxyribonucleosides of dehydroepiandrosterone-induced inhibition of enzyme altered foci in the liver of rats subjected to the initiation-selection process of experimental carcinogenesis. Carcinogenesis 9: 931-938.
GarcIa-Jim?nez C., Benito B., John T., and Santisteban P. (1994). Insulin regulation of malic enzyme gene expression in rat liver: evidence for nuclear proteins that bind to two putative insulin response elements. Mol. Endocrinol 8:1361-1369.
Gimenez A., Minguela A., Parrilla P., Bermejo J., Perez D., Molina J., Garcia A.M., Alvarez R., and Haro L.M. (1998). Flow cytometric DNA analysis and p53 protein expression show a good correlation with histologic findings with Barrett’s esophagus. Cancer 83(4): 641-651.
Gordon G.B., Newitt J.A., Shantz L.M., Weng D.E.,and Talalay P. (1986) Inhibition of the conversion of 3T3 fibroblast clones to adipocytes by dehydroepiandroserone and related anticarcinogenic steroids. Cancer Res. 46: 3389-3395.
Gordon G.B., Shantz L.M., and Talalay P. (1987). Modulation of growth, differentiation and carcinogenesis by dehydroepiandrosterone. Adv. Enzyme Res. 26:355-382.
Griffiths O.W., Anderson M.E., and Meister A. (1979). Inhibition of glutathione biosynthesis by prothionine sulfoximine (s-n-propyl homo cysteine sufloxime) , a selective inhibitor of glutamylcysteine synthetase. J. Biol. Chem. 254:1206-1210.
Hamilton S.R., Gordon G.B., Floyd J., and Golightly S. (1991). Evaluation of dietary dehydroepiandrosterone for chemoprotection against tumorigenesis in premalignant colonic epithelium of male F344 rat. Cancer Res. 51: 476-480.
Herter F.P., Weissman S.G., Thompson H.G., Hyman G., and Martin D.S. (1961). Clinical experience with 6-aminonicotinamide. Cancer Res. 21:31-37.
Ru C.P., Hsieh H.G., Chien K.Y., Wang P.Y., Wang C.I., Chen C.Y., Lo S.J., Wuu K.D., and Chang C. (1984) Biologic properties of three newly established human esophageal carcinoma cell lines. J. Natl. Cancer Inst. 72: 577-583.
Hughes E.C. (1976). The effect of enzymes upon metabolism, storage, and release of carbohydrates in normal and abnormal endometria. Cancer 38: 487-502.
Johnson W.J.,and McColl J.D. (1955 ). 6-Aminonicotinamide-1 potent nicotinamid antagonist. Science 122: 834
Keniry M.A., Hollander C., and Benz C.C. (1989). The effect of gossypoland 6-aminonicotinamide on tumor cell metabolism:a 31P-magenatic resonance spectroscopic study. Biochem. Biophys. Res. Commun. 164: 947-953.
Kensler T.W., and Trush M..A. (1984). Role of oxygen radicals in tumor promotion. Environ. Mutagenesis 6: 593-616.
Kirkman H.N., and Gaetani G.F. (1986). Regulation of glucose-6-phosphate dehydrogenase in human erythrocytes. J. Biol. Chem. 261: 4033-4038.
Kletzien R.F., Prostko C.R., Stumpo D.J., McClung J.K., and Dreher.KL. (1985). Molecular cloning of DNA sequences complementary to rat liver glucoes-6- phosphate dehydrogenase mRNA: nutritional regulation of mRNA level. J. Biol, Chem. 260: 5621-5624.
Kletzien R.F., Clarke S.D., and Ulrich R.G. (1992). Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol. Parmacol. 41: 393-398.
Kletzien R.F., and Berdanier C.D. (1993). Glucose-6-phosphate dehydrogenase: diet and hormone influences on de novo enzyme synthesis. In: Nutrition and gene expression (Berdanier C.D., and Hargrove J.L. eds) CRC Press, Boca Raton. pp. 187-206.
Kletizen R.F., Harris P.K., and Foelimi L.A. (1994). Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissue-specific regulation by hormones, nutrients and oxidant stress. FASEB. 8:174-181.
Koutcher J.A., Alfieri A.A., Stolfi R.L., Devitt M.L., Colofiore J.R., and Martin D.S. (1993). Potentiation of a three drug chemotherapy regimen by radition. Cancer Res.53:3518-3523.
Koutcher J.A., Alfieri A.A., Matei C., Meyer K.L., Street J.C., and Martin D.S. (1996). Effect of 6-aminonicotinamide on the pentose phosphate pathway: 31P NMR and tumor growth delay studies. Magn. Reson. Med. 36: 887-892.
Koutcher J.A., Alfieri A.A., Thaler H., Matei C.,and Martin D.S. (1997). Radioation enhancement by biochemical modulation and s-fluorouracil. Int. J. Radiation Oncology Biol. Phys. 39(5):1145-1152.
Kuo W.Y., and Tang T.K. (1998a). Effect of G6PD overexpression in NIH3T3 cells treated with ter-butyl hydroperoxide or paraquat. Free Radic. Biol.Med.24(7-8):1130-1138.
Kuo WY, and Tang T.K. (1998b). Tumorigenic transformation of NIH3T3 cells by glucose-6-phosphate dehydrogenase (G6PD). Mol. Biol. Cell vol.19 supplement p490a (abstract).
Kuo W.Y. (1999 博士論文).The role of glucose-6-phosphate dehydrogenase (G6PD) in antioxidation and tumorigenesis.
Labrie F., Belanger A., Luu-The V., Labrie C., Simard J., Cusan L., Gomez J.L., and Candas B. (1998). DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: it role during aging. Steroids 63: 322-328.
Li J,Y (1981). Epidemiology of esophageal cancer in China. In Third Symposium on epidemiology and cancer regestries in the pacific Basin, Maui, Hawaii. pp113 -120.
Li S., Yan X., Belanger A., and Labrie F. (1994). Prevention by dehydroepiandrosterone of the development of mammary carcinoma induced by 7, 12-dimethylbenz (α) -anthracene (DMBA) in the rat. Breast Cancer Res. Treat 29: 203-217.
Li J.Y. (1987). Epidemiology of esophageal cancer in China. In: Cancer of the Liver, Esophgus, and Nasopharynx (Wagner G and Zhang YH eds) pp. 85- 96 Springer-Verlag Berlin Heidelberg.
Liu B. (1984). Investigation of the risk factors of esophageal cancer. China J. Oncol. 6: 295-
Lopes S.A., and Rene A. (1973). Effect of 17-ketosteroids on glucose-6-phosphate dehydrogenase (G6PD)activityand on G6PD isoenzymes. Proc. Soc. Expl. Biol. Med. 142: 258-261.
Louie P., Nakayama R., and Holten D. (1990). Solution hybridization quantitation of G6PD mRNA in rat epididymal fat pads. Biochem. Biophys. Acta. 1087: 25-30.
Lubet R.A., Gordon G.B., Prough R.A., Lei X.D., You M., Wang Y., Grubbs C.J., Steele V.E., Kolloff G.J., Thomas C.F., and Moon R.D. (1998). Modulation of methylnitrosourea-induced breast cancer in Sprague Dawley rats by dehydroepiandrosterone: dose-dependent inhibition, effects of limited exposure, effects on peroxisomal enzymes, and lack of effects on levels of Ha-Ras mutations. Cancer Res. 58: 92 1-926.
Mahmood.U, Street J.C., Martei C., Ballon D., Martin D.S.,and Koutcher J.A. (1996). In vivo detection by 31P NMR of pentose phospate pathway block secondary to biochemical modulation. NMR in Biomed. 9:114-120.
Marks P.A.,and Banks J. (1960). Inhibition of mammalian glucose-6-phosphate dehydrogenase by steroid. Proc. Natl. Acad. Sci. USA 45: 447-452.
Meister A., and Anderson M. (1983). Glutathione. Annu. Rev. Biochem. 52: 711-760.
Mohsenin V., and Latifpour J. (1990). Respiratory burst in alveolar macrophages of diabetic rats. J. Appl. Physiol. 68: 2384-2390.
Moore M.A., Thamavit W., Ichihara A., Sato K., and Ito N. (1986). Influence of dehydroepiandrosterone, diaminopropane and butylated hydroxy-anisole treatment during the induction phase of rat liver nodular lesions in a short- term system. Carcinogercesis 7:1059-1063.
Moore M.A., Thamavit W., Tsuda H., and Ito N. (1986). The influence of dehydroepiandrosterone, diaminopropane, phenobarbital, butylated hydroxyanisole and butylated hydroxy-toluene treatment on the development of preneoplastic and neoplastic lesions in the rat initiated with dihydroxy-di-n-propylnitrosamine. Cancer Lett. 30:153-160.
Morelli A., Benatti U., Guiliano F., and De Flora A. (1976). Human erythrocyte glucose-6-phosphate dehydrogenase. Evidence for competitive bind of NADP and NADPH. Biochem. Biophys Res. Commun. 70: 600-606.
Naik S.N., and Anderson D.E. (1971). The association between glucose-6- phosphate dehydrogenase deficiency and cancer in American negroes. Oncology 25: 356-364.
Nasr L.B., Monet J.A., Lucas P., and Bader C.A. (1989). Vitamin D3 and glucose- 6-phosphate dehydrogenase in rat duodenal epithelial cells. Am. J. Physiol.193: G760-G765.
Nyce J.W., Magee P.N., Hard G.C., and Schwartz A.G. (1986). Inhibition of 1,2- dimethyl hydrazine-indnced colon tumorigenesis in Balb/c mice by dehydroepiandrosterone. Carcinogeresis 7: 311-316.
Pashko L.L., Rovito R.J., Williams J.R., Sobel E.L., and Schwartz A.G. (1984). Dehydroepiandrosterone (DHEA) and 3β-methylandrost-5-en-17-one inhibitors of 7, 12-dimethylbenz (α) anthracene ( DMBA) -intitiated and 1 2-o-tetradecanoyl-phorbol- 13-acetate (TPA) -promoted skin papilloma formation in mice. Carcinogenesis 5: 463-466.
Pashko L.L., Hard G.C., Rovito R.J., Williams J.R., Sobel E.L., and schwartz A.G.(1985). Inhibition of 7, 12-dimethylbenz (α) anthracene-induced skin papillomas and carcinomas by dehydroepiandrosterone and 3β-methylandrost-5-en-17-one in mice. Cancer Res. 45:164-166.
Persico M.G., Viglietto G., Martino G., Toniolo D., Paonessa G., mescatelli C., Dono R., Vulliamy T., luzzatto L., Durso M. (1986). Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones: Primary structure of the protein and unusual 5’ non-coding region. Nucleic acids Res.14: 2511-2522.
Philippe M., Larondelle Y, Lemaigre F., Mariame B., Delhez H., Mason P., Luzzatte L., and Rousseau G.G. (1994). Promoter function of the human glucose-6-phosphate dehydrogenase gene depends on two GC boxes that are cell specifically controlled. Eur. J. Biochem. 226: 377-384.
Prosto C.R., Fritz R.S., and Kletzien R.F. (1989). Nutritional regulation of hepatic glucose-6-phosphate dehydrogenase: transient activation of transcription. Biochem. J. 258: 295-299.
Raineri R., and Levy H.R. (1970). On the specificity of steroid interaction with mammary gland glucose-6-phosphate dehydrogenase. Biochemistry 9: 2233-2243.
Rao K.N., Shinozuka H., Kunz H.W., and Gill III, Th., J. (1984). Enhanced Susceptibility to chemical carcinogen in rats carrying MHC-linked genes influencing development (grc). Int. J. Cancer 34:113-120.
Rattazzi M.C. (1968). Glucose-6-phosphate dehydrogenase from human erythrocytes: molecular weight determination by gel filtration. Biochem. Biophys. Res. Commun. 31:16-24.
Realini C.A., and Althaus F.R. (1992). Histone shutting by poly (ADP-ribosylation) J. Biol. Chem. 267:18858-18865.
Ritter E.J., Scott W.J., and Wilson J.G.: Inhibition of ATP synthesis associated with 6-aminonicotinamide (6AN). Teratology 12: 233-238.
Roberts W., Kartha M., and Sagore A.L. (1979). Effect of urradiation on the hexose monophosphate shunt pathway of human lymphocytes. Radiat. Res.
79: 601-610.
Sanz N., DIez-Fern?ndez C., Valverde A.M., Lorenzo M., Benito M., and Cascales M. (1997). Malic enzyme and glucose-6-phosphate dehydrogenase gene expression increases in rat liver cirrhogenesis. Brit. J. Cancer 75(4) 487-492.
Satoh M.S., Poirier G.G., and Lindahl T. (1993). NAD dependent repair of damaged DNA by human cell extracts. J. Biol. Chem. 268: 5480-5487.
Schulz S., and Nyce J.W. (1991). Inhibition of protein isoprenylation and p2lras membrane association by dehydroepiandrosterone in human colonic adenocarcinoma cells in vitro. Cancer Res. 51: 6563-6567.
Schulz S., klann R.C., Schonfeld S., and Nyce J.W. (1992). Mechanisms of cell growth inhibition and cell cycle arrest in human colonic adenocarcinoma cells by dehydroepiandrosterone: Role of isoprenoid biosynthesis. Cancer Res. 52:1372-1376.
Schwartz A.G. (1979). Inhibition of spontaneous breast cancer formation in female C3H (Avy/a) mice by long-term treatment with dehydroepiandrosterone. Cancer Res. 39:1129-1132.
Schwartz A.G., and Tannen R.H. (1981), Inhibition of 7, 12-dimethylbenz [a] anthracene and urethan-induced lung tumor formation in A/J mice by long- tern treatment with dehydroepiandrosterone. Carcinogenesis 2:1335-1337.
Schwartz A.G., Gordon H.C., Pashko L.L., Abou-Gharbia M., and Swern D. (1981). Dehydroepiandrosterone: an anti-obesity and anti-carcinogenic agent. Nutr. Cancer 3: 46-53.
Schwartz A.G., and Pashlo L.L. (1986). Food restriction inhibits [3H]7, 12- dimethyl benz[α] anthracene binding to mouse skin DNA and tetradecanoylphorbol-13-acetate stimulation of epidermal [3H] thymidine incorporation. Anticancer Res 6:1279-1282.
Schwartz A.G., Whitcomb J.M., Nyce J.W., Lewbert M.L., and Pashko L.L. (1988). Dehydroepiandrosterone and structural analogs: a new class of cancer chemopreventic agents. Adv. Cancer Res. 51: 391-424.
Schwartz A.G., Fairman D.K., Polansky M., Lewbert M.L., and Pasko L.L. (1989). Inhibition of 7, 12-dimethylbenz (α) anthracene-initiated and 12-o- tetradecanoyl-phorbol- 13-autate-promoted skin papilloma formation in mice by dehydroepiandrosterone and two synthetic analogs. Carcinogenesis
10:1809-1813.
Sheffield V.C., and Seegmiller R.E. (1980). Impaired energy metabolism as an initial step in the mechenism for 6-aminonicotinamide-induced limb malformation. J. Embryol. Exp. Morphol. 59: 217-222.
Shibata M.A., Hasegawa R., Imaida K., Hagiwara A., Ogawa K., Hirose M., Ito N., and Shirai T. (1995). Chemoprevention by dehydroepiandrosterone and indomethacin in a rat multiorgan carcinogenesis model. Cancer Res. 55: 4870-4874.
Shibata M.A., Shirai T., Asakawa E., Hirose M., and Fukushima S. (1993). Inhibition by dehydroepiandrosteroine of butylated hydroxyanisole (BHA) promotion of rat-bladder carcinogenesis and enhancement of BHA-induced forestomach hyperplasia. Int. J. Cancer 53: 819-823.
Smith E.R., and Barker K.L. (1974). Effects of estradiol and NADP on the rate of synthesis of uterine glucose-6-phosphate dehydrogenase. J. Biol. Chem.249: 6541-6547.
Smith T.J., Liao A., Wang L.D., Yang G.Y., Starcic S., Philbert M.A., and Yang C.S. (1998). Characterization of xenobiotic- metabolizing enzymes and nitrosamine metabolism in the human esophagus. Carcinogenesis 19(4): 667-672.
Srivastava S.K.and Beutler E. (1970). Glutathione metabolism of the erythrocyte. The enzymic cleavage of glutathione-hemoglobin preparation by glutathione reductase. Biochem. J. 119: 353-357.
Stahl F., Schnorr D., Pilz C., and Domer G. (1992). Dehydroepiandrosterone (DHEA) levels in patients with prostatic cancer, heart diseases and under surgery stress. Exp. Clin. Endocrinol. 99: 68-70.
Stanton R.C., Seifter J.L., Boxer D.C., Zimmerman B., and Cantley L.C. (1991). Rapid release of bound glusose-6-phosphate dehydrogenase by growth factor. J. Biol. Chem. 266 (19): 12442-12448.
Stolfi R.L., Coliflore J.R., Nord L.D., Koutcher J.A., and Martin D.S. (1992). Biochemical modulation of tumor cell energy: regression of advanced spontaneous murine breast turmors with a 5-FU containg drug regimen. Cancer Res. 52: 4074-4081.
Street J.C., Mahmood U., Ballon D., Alfieri A.A., and Koutcher J.A. (1996). 13C and 31P NMR investigation of effect of 6-aminonicotinamide on metabolism of RTF-1 tumor cells in vitro. J. Biol. Chem. 71: 4113-4119.
Street J.C., Alfieri A.A., and Koutcher J.A. (1997). Quantitation of metabolic and radiobiological effect of 6-aminonictinamide in RIF- 1 tumor cells in vitro Cancer Res. 57: 3956-3962.
Stumpo D.J., and Kletzien R.F. (1984). Regulation of glucose-6-phosphate dehydrogenase mRNA by insulin and the glucocorticoids in primary clutures of rat heptocytes. Eur. J. Biochem. 144: 497-502.
Stumpo D.J., and Kletzien R.F. (1985). The effect of ethanol,alone and in combination with the glucocorticoids and insulin, on glucose-6-phosphate dehydrogenase synthesis and mRNA in primary cultures of hepatocytes. Biochem. J. 226:123-130.
Sulis B. (1972).G-6-PD deficiency and cancer. Lancet 1: 1185.
Sweet S., and Singh G. (1995). Accumulation of human promyelocytic leukemic (HL-60) cells at two energetic cell cycle checkpoints. Cancer Res. 55:5164-5167.
Thorton M., Moore M.A., and Ito N. (1989). Modifying influence of dehydroepiandrosterone or butylated hydroxytoluene treatment on initiation and development stages of azaserine-induced acinaar pancreatic preneoplastic lesions in the rat. Carcinogenesis 10: 407-410.
Tomlinson J.E., Nakayama R., and Holten D. (1988). Repression of pentose phosphate pathway dehydrogenase synthesis and mRNA by dietary fat in rats. J. Nutr. 118: 408-415.
Tonilol D., Martini G., Migeon B.R., and Dono R. (1988). Expression of the G6PD locus on the human X chromosome is associated with demethylation of three CpG islands within 100kb of DNA. EMBO J. 7: 401-406.
Toniolo D., Filippi M., Dono R., Lettieri T., and Martini G. (1991). The CpG island in the 5’ region of the G6PD gene of man and mouse. Gene 102: 197-203.
Ursini M.V., Parrella A., Rosa G., and Martini G. (1970).Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress. Biochem. J. 323: 801-806.
Ursini M.V., Scalera L., and Martini G. (1990).High levels of transcription driven by a 400bp segment of the human G6PD promoter. Biochem. Biophys. Res. Commun. 170:1203-1209.
Varmus H., and Weinberg R.A., (1993). The genetic elementsgoverning cancer: proto-oncogenes. In genes and the biology of cancer. pp.67-99 Scientific American Library.
Varnes M. (1988). Inhibition of prntose cycle of A549 cells by 6AN:
Consequences for aerobic and hypoxic radiation response and for radiosensitizer action. NCI Monograph 6:199-203.
Wang, Z.Y., Wang L.D., Lee M.J., Ho C.T., Huang M.T., Conney A.H., and Yang C. S. (1995). Inhibition of N-nitrosomethylbenylamine-induced esophageal tumorigenesis in rats by green and black tea. Carcinogenesis 16: 2143-2148.
Weber E., Moore M.A., and Bannasch P. (1988). Phenotypic modulation of hepatocarcinogenesis and reduction in N-nitrosomorpholine-induce hemangiosarcoma and adrenal lesion development in Sprague Dawley rats by dehyddroepiandrosterone. Carcinogenesis 9:1191-1195.
Westermwn M.P., Wald N., Diloy-Puray M. (1980). Irradiation shortens the survival time of red cells deficient in glucose-6-phosphate dehydrogenase. Radiat. Res. 81(3): 473-477.
White E.L., Ross L.J., Schmid S.M., Kelloff G.J., Steele V.E., and Hall D.L. (1998). Screening of potential cancer preventing chemicals for induction of glutathione in rat liver cells. Oncology reports 5: 507-5 12.
Wrigley N.G., Heather J.V., Bonsignore A.,and De Flora A. (1972). Human erythrocyte glucose-6-phosphate dehydrogenase: Electron microscope studies on structure and interconversion of tetramers, dimers and monomers.J. Mol. Biol. 68: 483-499.
Yoshimoto K., Makamura T., and Ichiara A.(1983).Reciprocal effects of epidermal growth factor on key lipogenic enzymes in primary cultures of adult rat hepatocytes. Induction of glucose-6-phosphate dehydrogenase and suppression of malic enzyme and lipogenesis. J. Biol. Chem. 258:12355- 12360.
Zampella E.J., Bradley E.L., and Pretlow T.G. (1982). Glucose-6-phosphate dehydrogenase a possible clinical indicator for prostatic carcinoma. Cancer 49: 384-387.
Zimmer H.G., Lankat-Buttgereit B., Kolbeck-Ruhmkorff C., Nagano T., and Zierhut W. (1992). Effects of norephrine on the oxidative pentose phosphate pathway in the rat heart. Circ. Res. 71: 451-459.
Zumoff B., Levin J., Rosenfeld R.S., Markham M., Strain G.W., and Fukushima D.K. (1981). Abnormal 24-hr mean plasma conceutration of dehydroepiandrosterone and dehydroepiandrosterone sulfate in women with primary operable breast cancer. Cancer Res. 41: 3360-3363.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75021-
dc.description.abstractG6PD (glucose-6-phosphate dehydrogenase) ,主要作用於 pentose phosphate pathway (ppp)的第一步驟,伴隨產生 NADPH ,其功能為提供細胞內 NADPH 及五碳醣(ppp 之最終產物)的來源。當細胞處於快速生長分裂時期, G6PD 活性會上升,當細胞停止生長時,活性又會下降,故 G6PD 的活性與細胞的生長能力密切相關。在某些癌症中都有細胞 G6PD 活性提高的現象。我們實驗室之前的研究發現,經人類 G6PD 基因轉染的 NIH-3T3 細胞,使其高量表現 G6PD 的活性,結果可使細胞生長加速並產生轉型癌化之現象,若將其注入裸鼠,則可導致腫瘤的發生。所以 G6PD 在細胞內除了正常的生理功能外,對於細胞癌化過程,似乎也扮演了一個重要的角色。
為研究 G6PD 對癌細胞的影響,我們試圖由癌細胞株找出 G6PD 高量表現者,對十數株人類癌細胞株測其 G6PD 活性,結果發現包括肝癌(Hep3B , Huh-7 , HA22T)、肺癌(CL1-0 , CL1-5)、子宮頸癌(HeLa , SiHa , CaSki)、胃癌 ( AGS , SC-M1)、大腸癌(LS174T)等細胞株並無大量表現 G6PD 的現象;不過在食道癌(CE48T , CE8lT , CE146T )則發現其 G6PD 活性是一般細胞的 3?10 倍之高。
進一步取得食道癌患者樣本,其腫瘤組織 G6PD 活性都有上升的情形,而且,似乎 G6PD 活性也會隨腫瘤由良性至惡性等進展過程而增高。如果這是一明顯而普遍性如此的話, G6PD 或許可做為偵測食道癌的一個 marker ,但這方面還需搜集更多病患樣本來評估其可行性。接著我們嘗試去研究 G6PD 在癌細胞表現的調控機制,經由 western 、 northern 、 Southern blot 的結果,發現食道癌細胞的 G6PD 可能是在 transcriptional level 大量表現,而且 DNA 並無明顯的複製(amplification)或重組(rearrangement ) 現象。
既然 G6PD 活性與細胞生長有密切的關聯,我們利用 DHEA (dehydroepiandrosterone; a G6PD inhibitor)及 6-AN[6-aminonicotinamide; a 6PGD ( 6-phosphogluconate dehydrogense ) inhibitor?去抑制癌細胞內 G6PD 及 6PGD 的活性,並觀察其對不同癌細胞的生長抑制影響,我們發現單獨處理 DHEA 或 6AN 都有抑制細胞增生的效果,且兩者以適當比例混合,能得到更明顯的抑制效果;由 in vitro 直接測定藥物對 G6PD 、 6PGD 酵素活性的抑制,也可看到兩者結合使用,能更有效降低酵素的活性。由加入 ribonucleosides、 deoxyribonucleosides NADPH 及 GSH 的實驗中,我們可看到ppp 代謝途徑的下游產物都能有不同程度的回復 DHEA 、 6AN 造成的生長抑制作用,由此我們推斷細胞內的氧化還原環境及 ribose-5-phospate ( DNA 及RNA 合成材料)的含量與癌細胞的生長息息相關,而 G6PD 在當中扮演相當重要的角色。
利用 DHEA 及 6AN 去處理經轉染人類 G6PD 基因的 NIH-3T3 細胞株 N2 、 H6 、 H7 (其 G6PD 活性分別為正常 NIH3T3 細胞的 1 、 6 、 16 倍),結果發現, G6PD 表現量愈高的細胞株對該藥的敏感性也愈高。所以,我們認為利用 DHEA 及 6AN 這兩個酵素抑制劑,應能對 G6PD 高表現的 fibroblasts 有不錯的治療效果。
另外我們以 nude mice 為 animal model ,植入 H7 細胞以誘發腫瘤生長。在接種後一星期起,給予不同劑量組合之 DHEA 及 6AN ,並觀察腫瘤的生長情形。結果在單獨處理 DHEA ( 50mg/kgBW )或 6AN ( 10mg 、 20mg/kgBW) ,其腫瘤生長延遲天數分別為 4 .5 、 9 、 11 天;若以 DHEA (50mg/kgBW)配合 6AN ( 10 、 20mg/kgBW) ,其腫瘤生長的抑制效果最好,其腫瘤生長延遲天數分別為 11 、> 19 天(控制組則為 2 . 5 天)。所以此種混合 DHEA 及 6AN 的方式,在對 G6PD 高表現的腫瘤,有相當好的治療效果,因此我們認為結合 DHEA 與 6AN 不失為一具潛力之抗癌藥物。
zh_TW
dc.description.abstractG6PD (glucose-6-phosphate dehydrogenase) catalyzes the convert of G6P (glucose-6-phosphate) to 6PG(6-phsphgluconate) which is accompanied with the formation of NADPH in the first step of pentose phoshate pathway (PPP). In this manner, the PPP provides the major source of pentoses in the cells for DNA and RNA synthesis. The cellular level of NADPH is closely relative to the activation of catalase and the synthesis of GSH (glutathione). Previous reports indicated that the activity of G6PD was proportional to the growth rate of normal cells and high G6PD activities were detected in many cancers, including breast cancer, cervical carcinoma, prostatic carcinoma, endometrial carcinoma and lung cancer. Our previous experiments have shown that two G6PD- overexpressing cell lines (H6 and H7), which were NIH-3T3 transformed by a human G6PD gene, form colonies on soft agar and induce tumors in nude mice. These data indicate that G6PD may act as an important role in the process of tumor formation.
In order to examine whether G6PD is highly expressed in established cancer cell lines, the G6PD activity in those cell lines was examined. It was found that the G6PD activities in hepatoma cell lines (Hep3B, Huh-7, HA22T), lung cancer cell lines (CL1-0,CL1-5), cervical cancer cell lines (HeLa, SiHa, CaSki), gastrocarcinoma cell lines (AGS, SC-Mi), and colon cancer line (LS174T) were about average and those in esophagus cancer cell lines (CE48T, CE81T, CE146T) were about 3 to 10 folds higher than that of normal level. The G6PD activities in two esophageal cancer samples were also higher than normal tissues as well. In addition, the increase of G6PD appears to be correlated with tmhe malignancy of tumors. Using Southern, northern and western blotting analyses, we found that high level expression of G6PD in the three esophagus cancer cell lines was possibly regulated at the transcriptional level and no obvious DNA recombination was identified in the g6pd gene.
Because the G6PD activity is highly correlated with the cell growth rate, we used G6PD inhibitor (DHEA) and 6PGD inhibitor (6-AN) separately or in combination to test their cytotoxic effects on cancer cells. Our results showed that DHEA or 6-AN could inhibit the cell growth to a certain level, while the most significant inhibition effect was observed by the treatment using both DHEA and 6-AN. The supply of PPP downstream products, such as ribonucleosides, deoxyribonucleosides, NAPDH and GSH, could compensate the DHEA and/or 6-AN effect on cellular growth inhibition. Although, we don’t known the exact functions of these chemicals, the intracellular redox environment and the contents of the raw materials for DNA and RNA synthesis may play roles on cancer cell growth.
Two G6PD transfected clones which had a 16-fold (H7) and 6-fold (H6) increase in their intracellular G6PD activity were compared with control cells transfected with a vector alone (N2). The sensitivities of these cell lines to DHEA and 6-AN were corresponding to the intracellular level of G6PD activities. After inoculation of 2×10^6 H7 cells in nude mice for one week, these mice were treated with DHEA (subcutaneously) and/or 6-AN (intraperitoneally), separately or in combination, then measured the tumor sizes in the following days. Our results show that the delayed intervals for tumor growth were 4.5 days for DHEA (50 mg/kg. BW), 9 days for 6-AN (10mg/kg.BW), 11 days for 6-AN (20 mg/kg.BW), 11 days for DHEA/6-AN (50mg/kg.BW+10mg/kg.BW) and >19 days for DHEA/6-AN (50 mg/kg.BW+20mg/kg.BW) as compared 2.5 days for the untreated control. So it appears that the combination of DHEA and 6-AN is an effective treatment for some tumor cells that overexpress G6PD. Taken together, the combined useage of DHEA and 6-AN may act as a potent anticancer recipe for cancer therapy.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:11:25Z (GMT). No. of bitstreams: 0
Previous issue date: 1999
en
dc.description.tableofcontents壹、緒言. . . . . . . . . . . . . 1
一、 G6PD 的介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
( 1 ) G6PD 在細胞的正常生理功能. . . . . . . . . . . . . . . . . . . 1
(2) G6PD 的酵素與基因結構. . . . . . . . . . . . . . . . . . . . . . . . . . 2
( 3 ) G6PD 之調控機制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
( 4 ) G6PD 與 cancer 之關係. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
二、食道癌的發生與治療. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
三、 DHEA 及 6AN 的作用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
( 1 ) DHEA . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
( 2 ) 6AN . . . . . . . . . . . . . . . . . . . . . . . . . 9
四、研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
貳、材料與方法. . . . . . . . . . . . . . . . . . . . . . . . 13
一、細胞株. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
二、細胞培養. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
三、G6PD 酵素活性的測定. . . . . . . . . . . . . . . . . . . . . . . . . 14
四、細胞與組織蛋白質的萃取. . . . . . . . . . . . . . . . . . . . . . . 14
五、由 human 及 mouse 全血分離 lymphocytes . . . . . . . . . . . . . . . 15
六、西方點墨法(Western Blot ) . . . . . . . . . . . . . . . . . . . . . 15
七、北方點墨法(Northem Blot ) . . . . . . . . . . . . . . . . . . . . . . 16
八、南方點墨法(Southem Blot ) . . . . . . . . . . . . . . . . . . . . . . . . . 18
九、 DHEA 及 6AN in vitro 對 G6PD 活性的抑制. . . . . . . . . . . 19
十、 DHEA 及 6AN in vivo 對細胞 proliferation 的抑制作用… … 19
十一、 DHEA 及 6AN 對 nude mice 腫瘤生長的抑制作用… … 20
參、結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
第一部份: G6PD 在癌細胞的表現與調控機制. . . . . . . . . . . . 21
( I )腫瘤細胞株的 G6PD 酵素活性. . . . . . . . . . . . . 21
( II)細胞株 HeLa 、 Huh-7 、 CE48T 、 CE81T 、 CE146T 之 G6PD 蛋白質、 mRNA 量的表現情形. . .22
( III)細胞株 HeLa 、 Huh-7 、 CE48T 、 CE81T 、 CE146T 之 G6PD 的 DNA 變化. . . . . . . . . 23
( IV )老鼠食道組織 G6PD 並無大量表現. . . . . . . . . . . . . . 23
( V )人類食道癌患者腫瘤組織的 G6PD 活性. . . . . . . . . . . . . . . . 24
第二部份: DHEA 、 6AN 對癌細胞的生長抑制作用. . . . . . . . . . . 24
( I ) DHEA 與 DHEA-S 的比較. . . . . . . . . . . . . . . . . . . . . . . . . 24
( II ) DHEA 與 6AN 結合處理的比例. . . . . . . . . . . . . . . . . . . . . . 25
( III ) DHEA 、6AN 對細胞生長的抑制作用. . . . . . . . . . . . . . . . . 25
( IV ) DHEA 、6AN 對細胞生長抑制的可能途徑. . . . . . . . . . . . . . 25
( V ) DHEA 、6AN 對G6PD-overexpressing cells 的生長抑制作用 … 27
(VI) DHEA 、6AN in vivo 對腫瘤生長的抑制作用. . . . . . . . . . . . . 27
肆、討論. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
圖表. . . . . . . . . . . . . . . . . . . . . . . . . 36
伍、參考資料. . . . . . . . . . . . . . . . . . 59
dc.language.isozh-TW
dc.title研究人類葡萄糖-6-磷酸去氫?(G6PD)在癌細胞的表現
及抗癌藥物對 G6PD-過度表現之纖維母細胞的影響
zh_TW
dc.titleStudy of the Expression Pattern of Human
Glucose-6-Phosphate Dehydrogenase (G6PD) in
Human Cancer Cell Lines and the Effects of
Anticancer Drugs in G6PD-overexpressing
Fibroblast Cells
en
dc.date.schoolyear87-2
dc.description.degree碩士
dc.relation.page69
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved