請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/749完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑,章良渭 | |
| dc.contributor.author | Hung-Bin Chen | en |
| dc.contributor.author | 陳鴻彬 | zh_TW |
| dc.date.accessioned | 2021-05-11T05:00:32Z | - |
| dc.date.available | 2019-08-07 | |
| dc.date.available | 2021-05-11T05:00:32Z | - |
| dc.date.copyright | 2019-08-07 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-22 | |
| dc.identifier.citation | [1] Winter, D. A., & Robertson, D. G. E. (1978). Joit torque and energy patterns in normal gait. Biological cybernetics, 29(3), 137-142.
[2] Guo, L. Y., Su, F. C., Wu, H. W., & An, K. N. (2003). Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion. Clinical Biomechanics, 18(2), 106-114. [3] Guo, L. Y., Su, F. C., & An, K. N. (2006). Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis. Clinical biomechanics, 21(2), 107-115. [4] Huang, Y. C., Guo, L. Y., Tsai, C. Y., & Su, F. C. (2013). Mechanical energy and power flow analysis of wheelchair use with different camber settings. Computer methods in biomechanics and biomedical engineering, 16(4), 403-412. [5] Kerrigan, D. C., Todd, M. K., Della Croce, U., Lipsitz, L. A., & Collins, J. J. (1998). Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments. Archives of Physical Medicine and Rehabilitation, 79(3), 317-322. [6] Winter, D. A., Patla, A. E., Frank, J. S., & Walt, S. E. (1990). Biomechanical walking pattern changes in the fit and healthy elderly. Physical Therapy, 70(6), 340-347. [7] Winter, D. A. (1983). Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences. Clinical Orthopaedics and Related Research, 175, 147-154. [8] Kepple, T. M., Siegel, K. L., & Stanhope, S. J. (1997). Relative contributions of the lower extremity joint moments to forward progression and support during gait. Gait & Posture, 6(1), 1-8. [9] Garcia, M., Chatterjee, A., Ruina, A., & Coleman, M. (1998). The simplest walking model: stability, complexity, and scaling. Journal of Biomechanical Engineering, 120(2), 281-288. [10] McGeer, T. (1990). Passive Dynamic Walking. The International Journal of Robotics Research, 9(2), 62-82. [11] Wisse, M. (2005). Three additions to passive dynamic walking: actuation, an upper body, and 3D stability. International Journal of Humanoid Robotics, 2(04), 459-478. [12] Alexander, R. M. (2005). Walking made simple. Science, 308(5718), 58-59. [13] Perry, J. (1974). Kinesiology of lower extremity bracing. Clinical Orthopaedics and Related Research, 102, 18-31. [14] Simon, S. R., Mann, R. A., Hagy, J. L., & Larsen, L. J. (1978). Role of the posterior calf muscles in normal gait. The Journal of Bone and Joint Surgery. American volume, 60(4), 465-472. [15] Sutherland, D. H., Cooper, L., & Daniel, D. (1980). The role of the ankle plantar flexors in normal walking. The Journal of Bone and Joint Surgery. American volume, 62(3), 354-363. [16] Bajd, T., Kralj, A., Karcnik, T., Savrin, R., Benko, H., & Obreza, P. (1997). Influence of electrically stimulated ankle plantar flexors on the swinging leg. Artificial Organs, 21(3), 176-179. [17] Meinders, M., Gitter, A., & Czerniecki, J. M. (1998). The role of ankle plantar flexor muscle work during walking. Scandinavian Journal of Rehabilitation Medicine, 30(1), 39-46. [18] Lipfert, S. W., Günther, M., Renjewski, D., & Seyfarth, A. (2014). Impulsive ankle push-off powers leg swing in human walking. Journal of Experimental Biology, 217(8), 1218-1228. [19] Renjewski, D., & Seyfarth, A. (2012). Robots in human biomechanics--a study on ankle push-off in walking. Bioinspiration & Biomimetics, 7(3), 036005. [20] Neptune, R. R., Kautz, S. A., & Zajac, F. E. (2001). Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. Journal of Biomechanics, 34(11), 1387-1398. [21] Liu, M. Q., Anderson, F. C., Schwartz, M. H., & Delp, S. L. (2008). Muscle contributions to support and progression over a range of walking speeds. Journal of Biomechanics, 41(15), 3243-3252. [22] Caputo, J. M., & Collins, S. H. (2014). Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking. Scientific Reports, 4, 7213. [23] Blanke, D. J., & Hageman, P. A. (1989). Comparison of gait of young men and elderly men. Physical Therapy, 69(2), 144-148. [24] Chung, M. J., & Wang, M. J. J. (2010). The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20–60 years. Gait & posture, 31(1), 131-135. [25] Boyer, K. A., Andriacchi, T. P., & Beaupre, G. S. (2012). The role of physical activity in changes in walking mechanics with age. Gait & posture, 36(1), 149-153. [26] DeVita, P., & Hortobagyi, T. (2000). Age causes a redistribution of joint torques and powers during gait. Journal of applied physiology, 88(5), 1804-1811. [27] Graf, A., Judge, J. O., Õunpuu, S., & Thelen, D. G. (2005). The effect of walking speed on lower-extremity joint powers among elderly adults who exhibit low physical performance. Archives of physical medicine and rehabilitation, 86(11), 2177-2183. [28] Riley, P. O., Della Croce, U., & Kerrigan, D. C. (2001). Effect of age on lower extremity joint moment contributions to gait speed. Gait & posture, 14(3), 264-270. [29] Boyer, K. A., Johnson, R. T., Banks, J. J., Jewell, C., & Hafer, J. F. (2017). Systematic review and meta-analysis of gait mechanics in young and older adults. Experimental gerontology, 95, 63-70. [30] McGibbon, C. A. (2003). Toward a better understanding of gait changes with age and disablement: neuromuscular adaptation. Exercise and sport sciences reviews, 31(2), 102-108. [31] Begg, R., Best, R., Dell’Oro, L., & Taylor, S. (2007). Minimum foot clearance during walking: strategies for the minimisation of trip-related falls. Gait & posture, 25(2), 191-198. [32] Lai, D. T., Taylor, S. B., & Begg, R. K. (2012). Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling. Human movement science, 31(2), 271-283. [33] Launay, C., De Decker, L., Annweiler, C., Kabeshova, A., Fantino, B., & Beauchet, O. (2013). Association of depressive symptoms with recurrent falls: a cross-sectional elderly population based study and a systematic review. The journal of nutrition, health & aging, 17(2), 152-157. [34] Eng, J. J., & Winter, D. A. (1995). Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model?. Journal of biomechanics, 28(6), 753-758. [35] McGibbon, C. A., Puniello, M. S., & Krebs, D. E. (2001). Mechanical energy transfer during gait in relation to strength impairment and pathology in elderly women. Clinical Biomechanics, 16(4), 324-333. [36] JudgeRoy, J. O., Davis III, B., & Õunpuu, S. (1996). Step length reductions in advanced age: the role of ankle and hip kinetics. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 51(6), M303-M312. [37] Siegel, K. L., Kepple, T. M., & Stanhope, S. J. (2004). Joint moment control of mechanical energy flow during normal gait. Gait & posture, 19(1), 69-75. [38] McGibbon, C. A., Krebs, D. E., & Puniello, M. S. (2001). Mechanical energy analysis identifies compensatory strategies in disabled elders’ gait. Journal of biomechanics, 34(4), 481-490. [39] De Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. Journal of Biomechanics, 29(9), 1223-1230. [40] Bell, A. L., Brand, R. A., & Pedersen, D. R. (1987). Prediction of hip joint center location from external landmarks. Journal of Biomechanics, 20(9), 913. [41] Siegel, K. L., Kepple, T. M., & Caldwell, G. E. (1996). Improved agreement of foot segmental power and rate of energy change during gait: inclusion of distal power terms and use of three-dimensional models. Journal of Biomechanics, 29(6), 823-827. [42] Takahashi, K. Z., Kepple, T. M., & Stanhope, S. J. (2012). A unified deformable (UD) segment model for quantifying total power of anatomical and prosthetic below-knee structures during stance in gait. Journal of Biomechanics, 45(15), 2662-2667. [43] Takahashi, K. Z., & Stanhope, S. J. (2013). Mechanical energy profiles of the combined ankle–foot system in normal gait: insights for prosthetic designs. Gait & Posture, 38(4), 818-823. [44] McGinley, J., Goldie, P., Greenwood, K., & Olney, S. (2003). Accuracy and reliability of observational gait analysis data: Jugments of push-off in gait after stroke. Physical Therapy, 83(2), 146-160. [45] Desloovere, K., Molenaers, G., Van Gestel, L., Huenaerts, C., Van Campenhout, A., Callewaert, B., et al. (2006). How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study. Gait & Posture, 24(2), 142-151. [46] Morgenroth, D. C., Segal, A. D., Zelik, K. E., Czerniecki, J. M., Klute, G. K., Adamczyk, P. G., et al. (2011). The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees. Gait & Posture, 34(4), 502-507. [47] Gordon, D., Robertson, E., & Winter, D. A. (1980). Mechanical energy generation, absorption and transfer amongst segments during walking. Journal of biomechanics, 13(10), 845-854. [48] Zelik, K. E., Takahashi, K. Z., & Sawicki, G. S. (2015). Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking. Journal of Experimental Biology, 218(6), 876-886. [49] Buczek, F. L., Kepple, T. M., Siegel, K. L., & Stanhope, S. J. (1994). Translational and rotational joint power terms in a six degree-of-freedom model of the normal ankle complex. Journal of Biomechanics, 27(12), 1447-1457. [50] Simonsen, E. B. (2014). Contributions to the understanding of gait control. University of Copenhagen. [51] McGibbon, C. A., & Krebs, D. E. (1999). Effects of age and functional limitation on leg joint power and work during stance phase of gait. Journal of rehabilitation research and development, 36(3), 173-182. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/749 | - |
| dc.description.abstract | 背景:
機械能量流為整合運動學與力動學資料之數學量,可將片段之肢段運動與關節角度、力矩、功率等資訊整合成完整且系統性的構圖,清晰地顯現致使動作產生的能量來龍去脈。如何表達與應用其深厚與豐富的內涵成為本研究的重點目標。 本研究的目的是建立能量流模型,並應用此模型深入探討正常人步態之能量流動特徵與動作策略。 方法: 本研究使用三維動作分析系統收集正常年輕人與正常老年人的步態資料,經由整合下肢各肢段與關節之能量流數據,建構出正常年輕人於push-off時期之能量流動路徑圖,並使用因素分析,萃取並比較正常年輕人與正常老年人於不同步行速度下之擺盪期(swing phase)能量流動特徵。 結果: 收集八名正常年輕人資料的研究結果顯示在push-off時期,踝關節產生之能量絕大多數是用以提昇同側肢段之動能,而傳遞至骨盆的能量僅是踝關節產生最大能量值之10%。收集十名正常年輕人與十名正常老年人資料的因素分析結果顯示,正常年輕人於自選步行速度與快速步行之情況下,皆呈現相似地擺盪期能量流動特徵。而正常老年人於快速步行之情況下,其擺盪期能量流動特徵與自選步行速度下之呈現特徵相反。 結論: 本研究已開發一個能量流模型,建立關節能與肢段能之橋段,其中關鍵之能量流參數可對應到現今習用之動作分析參數如關節功率與肢段動位能變化率等。透過觀察與分析模型中機械能之流動特徵,可直覺式地推論動作策略的能量調節機制,提供臨床研究人員從整體探討動作策略與能量使用效率之有利工具。本研究亦嘗試提供另一種能量流模型之應用方法,從高維度之能量流資料中,使用因素分析來比較不同族群間能量流動模式之差異。 | zh_TW |
| dc.description.abstract | Background:
Mechanical energy flow of human movement is an integrated presentation of kinematics and kinetics, which provides a systematic picture and potentially could be a powerful tool for clinicians and researchers to look into the movement strategies and energy efficiency of human movement. The purpose of this research is to develop an energy flow model with a perspective on bridging joint and segmental energetics. The energy flow model is utilized to investigate walking strategy adopted by the healthy young adults and the elders in order to demonstrate clinical applications of the developed energy flow model. Method: Healthy young adults and healthy elders were be recruited in this research. Gait data of all participants were captured by three-dimensional motion capture system. Energetic data of the pelvis and lower limb were used to construct an energy flow diagram at the instant of peak ankle power generation during push-off in young adults. The factor analysis was then applied to extract the high-dimensional energy flow characteristics of the swing leg in young adults and the elders. Results: Results of 8 healthy young adults suggest that the ankle mainly contributes to increase the kinetic energy of the ipsilateral leg in preparation for swing during push-off. The magnitude of the power flowing to the pelvis, which could be used for forward propulsion, was only 10% of that generated by the ankle. The results of factor analysis of 10 healthy young adults and 10 healthy elders showed that the young adults have similar energy flow characteristics of the swing leg for both fast and self-selected walking speeds, while the elderly showed an opposite energy flow pattern especially at the fast walking speed. The hip power and the knee power were also found to mainly correspond to the swing acceleration and deceleration, respectively. Conclusions: A new symbolic convention of energy flow diagram was developed to manifest where the generated ankle power is transmitted to in order to ease of interpreting the function of the ankle. By comparing the energy flow characteristics of the elders with young adults, this research demonstrated a valuable tool to explore the change of the gait characteristics in the elderly and could help to facilitate the understanding of the neuromuscular adaptation due to aging. The proposed energy flow analysis is also a useful analytic tool with applications across many disciplines, for example, evaluating the energy performance of elite athletes, designing the powered prostheses, and revealing the compensatory movement strategy of people with disabilities. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-11T05:00:32Z (GMT). No. of bitstreams: 1 ntu-108-D95548011-1.pdf: 6268195 bytes, checksum: 9e3b61cefa79d2dfd069fbbca18d5518 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要………………………………………….……………………………………I
Abstract………………………………………………….…………………………...III Contents………………………………………………….…………………………..VI List of Figures……………………………………………..………………………….IX List of Tables………………………………………………..………………………..XI Chapter 1 Introduction…………………………………….………………………...1 1.1 Research motivations………………………………………………..……...1 1.2 Literature review……………………………………………………..……..1 1.2.1 Development of the energy flow model…………………………….1 1.2.2 Movement strategy of walking during ankle push-off………………3 1.2.3 Movement strategy of walking in the elders…………………………5 1.3 Research objectives…………………………………………………………8 Chapter 2 Materials and Methods…………………………………………………..11 2.1 Subjects…………………………………………………………………...11 2.2 Instrumentation……………………………………………………………11 2.3 Experimental protocol…………………………………………………….15 2.4 Energy flow model………………………………………………………...20 2.4.1 Detailed energy flow diagram……………………………………..20 2.4.2 Simplified energy flow diagram…………………………………...24 2.5 Data analysis………………………………………………………………29 2.5.1 Construction of detailed energy flow diagram of push-off…………29 2.5.2 Factor analysis of the energy flow characteristics in swing phase…29 2.5.3 Verification of the proposed energy flow analysis…………………31 Chapter 3 Mechanical energy utilization of ankle push-off in young adults………..35 3.1 Detailed energy flow diagram during ankle push-off……………………..35 3.2 Energy flow between the shank and the foot………………………………36 3.3 Utilization of ankle power………………………………………………...37 3.4 Energy flow of the pelvis…………………………………………………38 3.5 Segmental energetics……………………………………………………...40 3.6 Discussion………………………………………………………………...43 Chapter 4 Comparisons of swing energy flow characteristics between the young adults and the elders…………………………………………………………………49 4.1 Mean profiles of the energy flow data in swing phase…………………..49 4.2 Factor analysis on energy flow mean profiles in swing phase……………55 4.3 Swing energy flow characteristics demonstrated in simplified energy flow diagram…………………………………………………………………….58 4.4 Discussion………………………………………………………………...62 Chapter 5 Conclusions…………………………………………………………..69 References……………………………………………………………………………71 Appendix I……………………………………………………………………………79 Appendix II...…………………………………………………………………………83 | |
| dc.language.iso | en | |
| dc.subject | 生物力學 | zh_TW |
| dc.subject | 因素分析 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 步態 | zh_TW |
| dc.subject | 能量流 | zh_TW |
| dc.subject | Biomechanics | en |
| dc.subject | Energy flow | en |
| dc.subject | Swing | en |
| dc.subject | Gait | en |
| dc.subject | Push-off | en |
| dc.subject | Aging | en |
| dc.subject | Ankle power | en |
| dc.title | 步態機械能量流分析與臨床應用 | zh_TW |
| dc.title | Mechanical Energy Flow Analysis and Clinical Applications on Human Walking | en |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭智修,許維君,劉倩秀 | |
| dc.subject.keyword | 步態,能量流,生物力學,老化,因素分析, | zh_TW |
| dc.subject.keyword | Ankle power,Push-off,Biomechanics,Energy flow,Gait,Aging,Swing, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU201901683 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-07-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 6.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
