請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7499
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王淑慧(Shu-Huei Wang) | |
dc.contributor.author | Yu-Chih Chen | en |
dc.contributor.author | 陳昱志 | zh_TW |
dc.date.accessioned | 2021-05-19T17:44:59Z | - |
dc.date.available | 2023-09-06 | |
dc.date.available | 2021-05-19T17:44:59Z | - |
dc.date.copyright | 2018-09-06 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-10 | |
dc.identifier.citation | 1. A. Mugge, The role of reactive oxygen species in atherosclerosis. Z Kardiol 87, 851-864 (1998).
2. N. Di Pietro, G. Formoso, A. Pandolfi, Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul Pharmacol 84, 1-7 (2016). 3. Y. Zhao et al., Atherosclerosis Induced by a High-Cholesterol and High-Fat Diet in the Inbred Strain of the Wuzhishan Miniature Pig. Anim Biotechnol 29, 110-118 (2018). 4. G. Bazzoni, E. Dejana, Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84, 869-901 (2004). 5. S. Moncada, A. Higgs, The L-arginine-nitric oxide pathway. N Engl J Med 329, 2002-2012 (1993). 6. C. Gallego, D. Golenbock, M. A. Gomez, N. G. Saravia, Toll-like receptors participate in macrophage activation and intracellular control of Leishmania (Viannia) panamensis. Infect Immun 79, 2871-2879 (2011). 7. Z. Q. Yan, G. K. Hansson, Innate immunity, macrophage activation, and atherosclerosis. Immunol Rev 219, 187-203 (2007). 8. M. A. Gimbrone, Jr., G. Garcia-Cardena, Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res 118, 620-636 (2016). 9. P. Shashkin, B. Dragulev, K. Ley, Macrophage differentiation to foam cells. Curr Pharm Des 11, 3061-3072 (2005). 10. A. C. Newby, A. B. Zaltsman, Fibrous cap formation or destruction--the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res 41, 345-360 (1999). 11. M. R. Bennett, S. Sinha, G. K. Owens, Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res 118, 692-702 (2016). 12. A. G. Zaman, G. Helft, S. G. Worthley, J. J. Badimon, The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 149, 251-266 (2000). 13. V. W. van Hinsbergh, Endothelium--role in regulation of coagulation and inflammation. Semin Immunopathol 34, 93-106 (2012). 14. C. Michiels, Endothelial cell functions. J Cell Physiol 196, 430-443 (2003). 15. R. Ross, Atherosclerosis--an inflammatory disease. N Engl J Med 340, 115-126 (1999). 16. P. Conti, Y. Shaik-Dasthagirisaeb, Atherosclerosis: a chronic inflammatory disease mediated by mast cells. Cent Eur J Immunol 40, 380-386 (2015). 17. D. A. Chistiakov, A. A. Melnichenko, V. A. Myasoedova, A. V. Grechko, A. N. Orekhov, Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl) 95, 1153-1165 (2017). 18. S. S. Rensen, P. A. Doevendans, G. J. van Eys, Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 15, 100-108 (2007). 19. K. Peppel et al., Activation of vascular smooth muscle cells by TNF and PDGF: overlapping and complementary signal transduction mechanisms. Cardiovasc Res 65, 674-682 (2005). 20. J. Thyberg, Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury. Histol Histopathol 13, 871-891 (1998). 21. B. Westermann, Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817, 1833-1838 (2012). 22. S. Lee et al., Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 282, 22977-22983 (2007). 23. C. R. Chang, C. Blackstone, Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci 1201, 34-39 (2010). 24. C. Scheede-Bergdahl, A. Bergdahl, Adaptation of mitochondrial expression and ATP production in dedifferentiating vascular smooth muscle cells. Can J Physiol Pharmacol 95, 1473-1479 (2017). 25. R. J. Orton et al., Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 392, 249-261 (2005). 26. D. K. Morrison, MAP kinase pathways. Cold Spring Harb Perspect Biol 4, (2012). 27. K. Sabapathy, Role of the JNK pathway in human diseases. Prog Mol Biol Transl Sci 106, 145-169 (2012). 28. X. Sui et al., p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett 344, 174-179 (2014). 29. F. Gao et al., Involvement of the MEK-ERK/p38-CREB/c-fos signaling pathway in Kir channel inhibition-induced rat retinal Muller cell gliosis. Sci Rep 7, 1480 (2017). 30. M. Wang, Z. J. Shu, Y. Wang, W. Peng, Stachydrine hydrochloride inhibits proliferation and induces apoptosis of breast cancer cells via inhibition of Akt and ERK pathways. Am J Transl Res 9, 1834-1844 (2017). 31. J. Avruch et al., Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56, 127-155 (2001). 32. A. Cuadrado, A. R. Nebreda, Mechanisms and functions of p38 MAPK signalling. Biochem J 429, 403-417 (2010). 33. M. P. de Winther, E. Kanters, G. Kraal, M. H. Hofker, Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 25, 904-914 (2005). 34. P. S. Khushboo, V. M. Jadhav, V. J. Kadam, N. S. Sathe, Psoralea corylifolia Linn.-'Kushtanashini'. Pharmacogn Rev 4, 69-76 (2010). 35. X. Li et al., New Application of Psoralen and Angelicin on Periodontitis With Anti-bacterial, Anti-inflammatory, and Osteogenesis Effects. Front Cell Infect Microbiol 8, 178 (2018). 36. Y. Wang, C. Hong, C. Zhou, D. Xu, H. B. Qu, Screening Antitumor Compounds Psoralen and Isopsoralen from Psoralea corylifolia L. Seeds. Evid Based Complement Alternat Med 2011, 363052 (2011). 37. G. Xiao et al., Isolation of antioxidants from Psoralea corylifolia fruits using high-speed counter-current chromatography guided by thin layer chromatography-antioxidant autographic assay. J Chromatogr A 1217, 5470-5476 (2010). 38. Y. L. Hung et al., Corylin protects LPS-induced sepsis and attenuates LPS-induced inflammatory response. Sci Rep 7, 46299 (2017). 39. M. L. Ferrandiz et al., Effect of bakuchiol on leukocyte functions and some inflammatory responses in mice. J Pharm Pharmacol 48, 975-980 (1996). 40. S. Y. Choi et al., Isolation and anti-inflammatory activity of Bakuchiol from Ulmus davidiana var. japonica. J Med Food 13, 1019-1023 (2010). 41. S. F. Zaidi, K. Yamada, M. Kadowaki, K. Usmanghani, T. Sugiyama, Bactericidal activity of medicinal plants, employed for the treatment of gastrointestinal ailments, against Helicobacter pylori. Journal of ethnopharmacology 121, 286-291 (2009). 42. B. Chopra, A. K. Dhingra, K. L. Dhar, Psoralea corylifolia L. (Buguchi) - folklore to modern evidence: review. Fitoterapia 90, 44-56 (2013). 43. Y. M. Kim et al., Compound C independent of AMPK inhibits ICAM-1 and VCAM-1 expression in inflammatory stimulants-activated endothelial cells in vitro and in vivo. Atherosclerosis 219, 57-64 (2011). 44. Y. Wang et al., Artemisinin inhibits monocyte adhesion to HUVECs through the NF-kappaB and MAPK pathways in vitro. Int J Mol Med 37, 1567-1575 (2016). 45. K. S. Weber, G. Draude, W. Erl, R. de Martin, C. Weber, Monocyte arrest and transmigration on inflamed endothelium in shear flow is inhibited by adenovirus-mediated gene transfer of IkappaB-alpha. Blood 93, 3685-3693 (1999). 46. V. Ferreira et al., Macrophage-specific inhibition of NF-kappaB activation reduces foam-cell formation. Atherosclerosis 192, 283-290 (2007). 47. A. Rudijanto, The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones 39, 86-93 (2007). 48. J. L. Johnson, Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis. Cardiovasc Res 103, 452-460 (2014). 49. G. Torres et al., Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochem Pharmacol 104, 52-61 (2016). 50. A. C. Newby, Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 69, 614-624 (2006). 51. J. Hu, P. E. Van den Steen, Q. X. Sang, G. Opdenakker, Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6, 480-498 (2007). 52. Z. S. Galis et al., Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res 91, 852-859 (2002). 53. J. Kim et al., The role of heat shock protein 90 in migration and proliferation of vascular smooth muscle cells in the development of atherosclerosis. J Mol Cell Cardiol 72, 157-167 (2014). 54. S. Lim, S. Park, Role of vascular smooth muscle cell in the inflammation of atherosclerosis. BMB Rep 47, 1-7 (2014). 55. J. Y. Kim et al., Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-alpha-stimulated mouse vascular smooth muscle cells: involvement of the MAPK, NF-kappaB and AP-1 signaling pathways. Vascul Pharmacol 56, 131-141 (2012). 56. K. W. Choi et al., Inhibition of TNF-alpha-induced adhesion molecule expression by diosgenin in mouse vascular smooth muscle cells via downregulation of the MAPK, Akt and NF-kappaB signaling pathways. Vascul Pharmacol 53, 273-280 (2010). 57. M. Zerfaoui et al., Nuclear translocation of p65 NF-kappaB is sufficient for VCAM-1, but not ICAM-1, expression in TNF-stimulated smooth muscle cells: Differential requirement for PARP-1 expression and interaction. Cell Signal 20, 186-194 (2008). 58. B. Park, J. H. Yim, H. K. Lee, B. O. Kim, S. Pyo, Ramalin inhibits VCAM-1 expression and adhesion of monocyte to vascular smooth muscle cells through MAPK and PADI4-dependent NF-kB and AP-1 pathways. Biosci Biotechnol Biochem 79, 539-552 (2015). 59. E. Galkina, K. Ley, Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol 27, 165-197 (2009). 60. E. Adiguzel, P. J. Ahmad, C. Franco, M. P. Bendeck, Collagens in the progression and complications of atherosclerosis. Vasc Med 14, 73-89 (2009). 61. M. J. Barnes, R. W. Farndale, Collagens and atherosclerosis. Exp Gerontol 34, 513-525 (1999). 62. K. Ley, Y. Huo, VCAM-1 is critical in atherosclerosis. J Clin Invest 107, 1209-1210 (2001). 63. H. M. Kwon et al., Anti-inflammatory inhibition of endothelial cell adhesion molecule expression by flavone derivatives. J Agric Food Chem 53, 5150-5157 (2005). 64. R. R. Cobb, K. A. Felts, G. C. Parry, N. Mackman, Proteasome inhibitors block VCAM-1 and ICAM-1 gene expression in endothelial cells without affecting nuclear translocation of nuclear factor-kappa B. Eur J Immunol 26, 839-845 (1996). 65. A. N. Panche, A. D. Diwan, S. R. Chandra, Flavonoids: an overview. J Nutr Sci 5, e47 (2016). 66. Y. Wang et al., NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell. Biochem Biophys Res Commun 411, 543-548 (2011). 67. A. Schwarz, G. A. Bonaterra, H. Schwarzbach, R. Kinscherf, Oxidized LDL-induced JAB1 influences NF-kappaB independent inflammatory signaling in human macrophages during foam cell formation. J Biomed Sci 24, 12 (2017). 68. K. J. Moore, F. J. Sheedy, E. A. Fisher, Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13, 709-721 (2013). 69. J. L. Stoger et al., Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225, 461-468 (2012). 70. S. A. Isa et al., M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes. Lipids Health Dis 10, 229 (2011). 71. J. W. Seo, E. J. Yang, K. H. Yoo, I. H. Choi, Macrophage Differentiation from Monocytes Is Influenced by the Lipid Oxidation Degree of Low Density Lipoprotein. Mediators Inflamm 2015, 235797 (2015). 72. J. L. Beaudeux, P. Giral, E. Bruckert, M. J. Foglietti, M. J. Chapman, [Matrix metalloproteinases and atherosclerosis. Therapeutic aspects]. Ann Biol Clin (Paris) 61, 147-158 (2003). 73. A. H. Sprague, R. A. Khalil, Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78, 539-552 (2009). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7499 | - |
dc.description.abstract | 粥狀動脈硬化(Atherosclerosis)為一慢性發炎疾病,而這一連串漸進式的過程主要由巨噬細胞的活化,內皮細胞功能缺損及平滑肌細胞的發炎及大量增生導致內皮細胞內膜層大量堆積膽固醇、巨噬細胞以及間質細胞,我們簡稱斑塊,而當斑塊的不穩定度提高導致破損流入血液中所造成的堵塞,最終造成血栓、等心血管疾病的產生。Psoralea fruit extract (PFE)是由補骨脂(豆科植物)中分離出來的單萜酚,已有研究指出其萃取物具有抗菌、抗發炎等功效。所以我們想進一步探討PFE在慢性發炎疾病動脈硬化上的治療效果。然而,PFE對於內皮細胞,巨噬細胞及平滑肌細胞的作用機制尚未釐清。因此本篇主要研究目的在探討PFE對於巨噬細胞、人類臍靜脈內皮細胞及平滑肌細胞於脂多醣(LPS)及腫瘤壞死因子(TNF-α)處理下的治療效果及其中機制為何。在本篇研究中可以看到PFE藉由降低NF-κB的磷酸化減少macrophage對oxidized low density lipoprotein (oxLDL) 的吞噬及foam cells(泡沫細胞)的生成。而在內皮細胞方面,PFE具有降低血管黏附因子VCAM -1(vascular cell adhesion molecule 1)的效果,來減低血液中單核球貼附的情形。此外,PFE能抑制由LPS誘發之NF-κB的活化來降低核內p65 and的含量。而在TNF-α誘發Rat aortic Smooth Muscle Cells(RASMCs)的發炎中,PFE亦能藉由降低血管細胞黏附因子VCAM-1表現量來達到抗發炎的效果,並能藉由降低PDGF所誘發mitochrondria fission來抑制平滑肌移行的能力。綜合上述結果推測PFE具有抗發炎的功效,在未來能成為預防及治療心血管疾病的用藥。 | zh_TW |
dc.description.abstract | Chronic inflammation plays an important role in atherosclerosis progression. Psoralea fruit extract (PFE) has been reported to have anti-inflammatory activity. However, the effects of PFE on atherosclerosis and the mechanisms underlying these effects remain unknown. The aim of this study was to examine the anti-inflammatory effects of PFE on various cytokines-treated raw264.7 macrophages, human umbilical vein endothelial cells (HUVECs) and rat aortic smooth muscle cells (RASMCs) and to identify the mechanisms responsible for these effects.
First, PFE significantly decreased foam cells formation via inhibiting Nuclear Factor-ĸB(NF-κB) P65 in oxidized low-density lipoprotein (ox-LDL)-treated macrophages. Second, PFE reduced TNF-α-induced HUVEC inflammation and permeability dysfunction by decreasing vascular cell adhesion molecule-1 (VCAM-1) expression via Jun NH2-terminal kinase (JNK) pathway. Third, PFE reduced TNF-α-induced RASMC inflammation by decreasing VCAM-1 expression and NF-κB P65 activity. And these effects were inhibited by JNK phosphorylation reduction. In addition to exerting anti-inflammatory effects, PFE also inhibited platelet derived growth factor-BB (PDGF-BB)-induced RASMC migration but not proliferation in vitro. These effects may be mediated by reductions in PDGF-BB-induced mitochondrial fission. Moreover, PFE treatment reduced high cholesterol diet-induced atherosclerotic lesion in vivo. These results show that PFE may be used for the prevention and treatment of atherosclerosis. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:44:59Z (GMT). No. of bitstreams: 1 ntu-107-R05446007-1.pdf: 3224031 bytes, checksum: 54e4330c0fdcc627a182e814315bcb5a (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 目錄
致謝…………………………………………………………………………………I Abstract…………………………………………………………………………...II 摘要……………………………………………………………………………….III 目錄……………………………………………………………………………….IV 壹、 緒論……………………………………………………………………1 一、 前言……………………………………………………………………1 二、 動脈結構………………………………………………………………1 三、 動脈結構硬化形成原因…………..………………..…………………2 四、 內皮細胞與動脈硬化的關係…………………………………………3 五、 巨噬細胞與動脈硬化的關係…………………………………………3 六、 平滑肌細胞與動脈硬化的關係………………………………………4 七、 粒線體型態與平滑肌移行的關係……………………………………4 八、 動脈硬化中的訊息傳遞路徑…………………………………………5 九、 補骨脂(Psoralea corylifolia L.)與心血管疾病的關聯………………6 十、 研究動機和實驗設計…………………………………………………6 貳、 實驗材料………………………………………………………………8 一、 儀器設備………………………………………………………………8 二、 實驗材料………………………………………………………………8 藥品…………………………………………………………………8 細胞培養……………………………………………………………8 結晶紫染色…………………………………………………………9 訊號核醣核酸………………………………………………………9 西方墨點法…………………………………………………………9 細胞移行及細胞穿膜實驗………………………………………..10 免疫細胞化學染色………………………………………………..11 Luciferase assay…………………………………………………..11 BODIPY stain…………………………………………………….11 Wound healing assay……………………………………………..11 流式細胞儀………………………………………………………..11 MitoTracker stain………………………………………………...12 動物實驗…………………………………………………………..12 免疫組織染色法…………………………………………………..12 ORO stain…………………………………………………………12 馬森三色染劑……………………………………………………..12 三、 溶液配置……………………………………………………………..13 參、 實驗方法……………………………………………………………..15 一、 細胞實驗……………………………………………………………..15 人類臍帶靜脈內皮細胞之初級培養……………...……………...15 細胞株之培養……………………………………………………..15 基因表現之測定…………………………………………………..15 西方墨點法………………………………………………………..17 免疫螢光染色……………………………………………………..18 單核球黏附實驗…………………………………………………..18 細胞穿膜實驗……………………………………………………..19 BODIPY stain ……………………………………………………19 結晶紫染色分析…………………………………………………..20 細胞傷口癒合分析………………………………………………..20 流式細胞儀分析…………………………………………………..21 MitoTracker stain ………………………………………………...21 冷光報告基因檢測 ………………………………………………21 二、 動物實驗……………………………………………………………..22 動脈硬化小鼠模式………………………………………………..22 Oil red O stain…………………………………………………….22 馬森三色染劑……………………………………………………..23 主動脈蛋白質檢測………………………………………………..23 主動脈單核球黏附實驗…………………………………………..23 免疫組織化學染色………………………………………………..24 數據統計分析……………………………………………………..24 肆、 實驗結果…………………………………………………………..…25 一、 PFE具有抑制內皮細胞發炎的功能……………………………….25 二、 PFE透過抑制JNK磷酸化降低內皮細胞VCAM-1的表現量….25 三、 PFE透過抑制JNK磷酸化降低單核球黏附之情形………………26 四、 PFE有效抑制單核球移行至內膜下層的能力……………………..26 五、 PFE能抑制泡沫細胞(Foam cell)形成 ……………………………..27 六、 PFE透過抑制NF-κB活化來減少foam cell之形成……..……….27 七、 PFE無法抑制平滑肌細胞增生的功能…………………………..…28 八、 PFE具有抑制平滑肌細胞移行的作用………………………….….28 九、 PFE抑制平滑肌細胞mitochondrial fission來減緩移行作用……29 十、 PFE藉由抑制MMP 9減少平滑肌細胞移行…………………………….29 十一、 PFE具有抑制平滑肌細胞發炎的功能……..…………………………...…30 十二、 PFE藉由抑制JNK及NF-κB活化降低平滑肌細胞VCAM-1的表現 量……………………………………...……………………………….30 十三、 PFE有效減緩RASMC發炎反應且抑制單核球黏附…………........31 十四、 PFE能減少動脈硬化的發生及斑塊堆積情形……………………….31 十五、 PFE能減少動脈硬化的細胞外基質堆積…...……………………..32 十六、 PFE能降低高膽飲食誘發動脈產生VCAM-1及單核球細胞黏附的作 用……………………………………………………………….…….33 伍、 討論………………………………………………………………..…34 陸、 附圖………………………………………………………………..…37 圖一、 PFE具有抑制內皮細胞發炎的功能………………………...…37 圖二、 PFE透過抑制JNK磷酸化降低內皮細胞VCAM-1的表現量 ……………………………………………………………………38 圖三、 PFE透過抑制JNK磷酸化降低單核球黏附之情形…………..39 圖四、 PFE有效抑制單核球移行至內膜下層的能力…………………40 圖五、 PFE能抑制泡沫細胞(Foam cell)形成………………………….41 圖六、 PFE透過抑制NF-κB活化來減少foam cell之形成…….……42 圖七、 PFE無法抑制平滑肌細胞增生的功能…………………………43 圖八、 PFE具有抑制平滑肌細胞移行的作用…………………………44 圖九、 PFE抑制平滑肌細胞mitochondrial fission來減緩移行作用..45 圖十、 PFE藉由抑制MMP 9減少平滑肌細胞移行………………………..46 圖十一、 PFE具有抑制平滑肌細胞發炎的功能………………………47 圖十二、 PFE藉由抑制JNK及NF-κB活化降低平滑肌細胞VCAM-1 的表現量………………………………………………………58 圖十三、 PFE有效減緩RASMC發炎反應且抑制單核球黏附……...49 圖十四、 PFE能減少動脈硬化的發生及斑塊堆積情形………………50 圖十五、 PFE能減少動脈硬化的細胞外基質堆積……………………51 圖十六、 PFE能降低高膽固醇飲食誘發動脈產生VCAM-1及單核球細 胞黏附的作用…………………………………………………52 表一、 Apo E缺陷小鼠血清生化值檢測…….………….…………..53 柒、 參考文獻……………………………………………………………..54 | |
dc.language.iso | zh-TW | |
dc.title | 補骨脂萃取物在動脈硬化中的治療效果及相關機制 | zh_TW |
dc.title | The therapeutic effects and the relative mechanisms of psoralea fruit extract on atherosclerosis | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳金銓(Chin-Chuan Chen),王仰高(Yang-Kao Wang),夏國強(Kuo-Chiang Hsia) | |
dc.subject.keyword | 動脈硬化,補骨脂萃取物,斑塊,泡沫細胞,粒線體分裂,動脈竇, | zh_TW |
dc.subject.keyword | Atherosclerosis,Psoralea fruit extract,Plaque,Foam cell,Mitochondrial fission,Aortic sinus, | en |
dc.relation.page | 59 | |
dc.identifier.doi | 10.6342/NTU201801714 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-08-10 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
dc.date.embargo-lift | 2023-09-06 | - |
顯示於系所單位: | 解剖學暨細胞生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 3.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。