請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74963完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周俊廷 | |
| dc.contributor.author | Chia-Fu Lee | en |
| dc.contributor.author | 李加富 | zh_TW |
| dc.date.accessioned | 2021-06-17T09:11:24Z | - |
| dc.date.available | 2019-09-03 | |
| dc.date.copyright | 2019-09-03 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-27 | |
| dc.identifier.citation | [1] O. Bibani and S. Yangui and R. H. Glitho and W. Gaaloul and N. Ben HadjAlouane and M. J. Morrow and P. A. Polakos, “A Demo of a PaaS for IoT ApplicationsProvisioninginHybridCloud/FogEnvironment”,IEEEInternational Symposium on Local and Metropolitan Area Networks, pp. 1- 2, June 2016.
[2] X. Masip-Bruin and E. Marín-Tordera and G. Tashakor and A. Jukan and G. Ren, “Foggy Clouds and Cloudy Fogs: A Real Need for Coordinated Management of Fog-to-Cloud Computing Systems”, IEEE Wireless Communications vol.23, no. 5, pp. 120-128, Oct. 2016 [3] M.ChiangandT.Zhang,“Fog and IoT: An Overview of Research Opportunities”, IEEE Internet of Things Journal vol. 3, no. 6, pp. 854-864, Dec. 2016 [4] K. Liang and L. Zhao and X. Chu and H. Chen, “An Integrated Architecture for Software Defined and Virtualized Radio Access Networks with Fog Computing”, IEEE Network vol. 31, no. 1, pp. 80-87, Jan. 2017 [5] M. M. Rahman and C. Despins and S. Affes, “ Design Optimization of Wireless AccessVirtualizationBasedonCost: QoSTrade-OffUtilityMaximization”,IEEE TransactionsonWirelessCommunicationsvol.15,no.9,pp.6146-6162,Sept.2016 [6] M. Satyanarayanan and P. Bahl and R. Caceres and N. Davies, “The Case for VM-Based Cloudlets in Mobile Computing”, IEEE Pervasive Computing vol. 8, no. 4, pp. 14-23, Oct. 2009 [7] M. Peng and S. Yan and K. Zhang and C. Wang, “Fog-Computing-Based Radio Access Networks: Issues and Challenges”, IEEENetworkvol.30, no.4, pp.46-53, July 2016 [8] X. Cui and Y. Jiang and X. Chen and F. Zhengy and X. You, “Graph-based Cooperative Caching in Fog-RAN”, International Conference on Computing, Networking and Communications, pp. 166-171, March 2018 [9] A. P. Silva and B. A. Abreu and E. B. Silva and M. Carvalho and M. Nunes and M. Marotta and A. Hammad and C. F. M. Silva and J. F. N. Pinheiro and C. B. Both and J. M. Marquez-Barja and L. A. DaSilva, “Impact of Fog and Cloud Computing on an IoT Service Running over an Optical/Wireless Network Testbed”, IEEE Conference on Computer Communications Workshops, pp. 535540, May 2017 [10] M. Peng and Y. Li and Z. Zhao and C. Wang, “ System Architecture and Key Technologiesfor5GHeterogeneousCloudRadioAccessNetworks”,IEEENetwork vol. 29, no. 2, pp. 6-14, March 2015 [11] M. M. Rahman and C. Despins and S. Affes, “Analysis of CAPEX and OPEX Benefits of Wireless Access Virtualization”, IEEE International Conference on Communications Workshops, pp. 436-440, June 2013 [12] A. V. Dastjerdi and R. Buyya, “ Fog Computing: Helping the Internet of Things Realize Its Potential ”, Computer vol. 49, no. 8, pp. 112-116, Aug. 2016 [13] S. Zaidi and M. Azzakhmam and S. Affes and C. Despins and K. Zarifi and P. Zhu, “Graph-Optimized Progressive Hybrid Greyfield Wireless Access Virtualization”, IEEE 17th International Conference on Ubiquitous Wireless Broadband, pp. 1-6, Sept. 2017 [14] M. Yannuzzi and R. Milito and R. Serral-Gracià and D. Montero and M. Nemirovsky, “Key Ingredients in an IoT Recipe: Fog Computing, Cloud Computing, and More Fog Computing”, IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, pp. 325-329, Dec 2014 [15] K.LiangandL.ZhaoandX.ZhaoandY.WangandS.Ou,“JointResourceAllocation and Coordinated Computation Offloading for Fog Radio Access Networks”, China Communications vol. 13, no. 2, pp. 131-139, Nov. 2016 [16] Y. Shih and W. Chung and A. Pang and T. Chiu and H. Wei, “Enabling LowLatency Applications in Fog-Radio Access Networks”, IEEE Network vol. 31, no. 1, pp. 52-58, Jan. 2017 [17] FabioGiustandGianlucaVerinandKirilAntevskiandJoeyChouandYonggang Fang and Walter Featherstone and Francisco Fontes and Danny Frydman and Alice Li and Antonio Manzalini and Debashish Purkayastha and Dario Sabella and Christof Wehner and Kuo-Wei Wen and Zheng Zhou, “MEC Deployments in 4G and Evolution Towards 5G”, Feb. 2018 [18] Y. Ku and D. Lin and H. Wei, “Fog RAN over General Purpose Processor Platform”, IEEE 84th Vehicular Technology Conference, pp. 1-2, Sep. 2016 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74963 | - |
| dc.description.abstract | 霧計算(Fog Computing)允許在網絡的邊緣部署應用程序以減少延遲。而集
中式無線電接入網絡(Cloud Radio Access Network)則被認為是最可能實現霧 計算 的平台。然而,原本在集中式無線電接入網絡中使用的通用處理器 (General Purpose Processor),其計算和存儲資源可能不足以同時支持基帶處 理(Baseband Processing)和霧計算。因此,問題就是要如何利用通用處理器的 計算和存儲資源 來實現高效率和低延遲。 在本篇論文中,我們研究集中式無線電接入網絡中的霧計算,它支持延遲 敏感(Delay-Sensitive)和延遲容忍(Delay-Tolerant)應用。為了分析集中式無 線電接 入網絡中的霧計算系統,我們將系統抽象為排隊模型(Queueing Model)。在排隊 模型中,我們嘗試找到最佳資源分配方式。該最佳資源的分配 方式會讓丟失率 (Loss Rate)最小化並且滿足平均端到端延遲(Average End to-End Delay)的要求。 我們提出了兩種尋找最佳資源分配方式的方法。首先,我們提出了一種窮 舉方法(Exhaustive Approach)。在使用窮舉方法時,必須比較所有資源分配方 法 的丟失率和平均端到端延遲。而為了找到其中一個資源分配方法的丟失率和 平 均端到端延遲時,我們提出將傑克森網路(Jackson Network)當作解數學的 方式。 其次,我們也提供了一種啟發式方法(Heuristic Approach)。雖然窮舉 方法總能找 到最佳的資源分配方式,然而當系統變大時,找到最佳資源分配方 式所需的時 間將會指數上升。因此,此種啟發式方法就是節省許多時間卻能找 到效能相近 的資源分配方式。 為了驗證在窮舉方法中,使用傑克森網路是一個合理的數學解法,我們構 建了一個模擬工具來模擬不同資源分配方案的丟失率和平均端到端延遲。而最 後結果顯示,使用傑克森網路來計算的數學結果和模擬結果差異最大為 0.1 %。 表示傑克森網路實際是可以被拿來應用的。而為了驗證啟發式方法是否可 行, 我們將它找到的結果與窮舉方法的結果進行比較。而結果顯示,兩種方法 的所 找出來的資源分配方式,其產生的丟失率差異最大為 0.25%。因此,這 種啟發 方法是可以應用在估計大型的系統的資源分配方式。 | zh_TW |
| dc.description.abstract | Fog computing approach enables the deployment of applications at the network edgetoreducedelay. Thecloud-basedradioaccessnetwork(C-RAN)isconsideredas an effective platform to implement fog computing. However, computing and storage resources of general purpose processors (GPPs) in the C-RAN might not be enough to support baseband processing and fog computing at the same time. The problem becomes how to utilize the computing and storage resources of GPPs to achieve high efficiency and low delay. In this thesis, we explore fog computing in C-RAN that supports both delaysensitive (DS) and delay-tolerant (DT) applications. To analyze the system of fog computing in C-RAN, we abstract the system as a queueing model. In the queueing model, wetry tofind thebest resourceallocationschemethatminimizes theloss rate with the constraint of the average end-to-end delay. In this thesis, we propose two approaches to find the best resource allocation scheme. First, a exhaustive approach is proposed. While using exhaustive approach, all of the loss rates and average end-to-end delay of resource allocation schemes have to be found. Jackson network is proposed to be applied in the mathematical tool to find the loss rate and the average end-to-end delay of a resource allocation scheme. Second, a heuristic approach is proposed. Although the exhaustive approach can always find the best resource allocation scheme, it takes too much time to find the scheme when the system size is large. As a result, the heuristic approach is proposed to find the resource allocation scheme that has the similar loss rate and average end-to-end delay to the loss rate and average end-to-end delay of the best resource allocation scheme.
To validate results from the mathematical tool in the exhaustive approach, we also build a simulation tool to find the loss rate and the average end-to-end delay of a resource allocation scheme. Results show that there are at most 0.1% differences of results from the mathematical tool and from the simulation tool. To validate results from the heuristic approach, we compare them to results from exhaustive approach. Results show that the difference of loss rates found both approach is at most 0.25% while constrains are still held in heuristic approach | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T09:11:24Z (GMT). No. of bitstreams: 1 ntu-108-R04942119-1.pdf: 3394539 bytes, checksum: bda366fe55cdd66d4d6973604d69640e (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | ABSTRACT ....................................................................................... iii
LIST OF TABLES................................................................................ vi LIST OF FIGURES ........................................................................... vii CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1 1.1 Computing Architecture for IoT . . . . . . . . . . . . . . . . . . . . 2 1.2 Resource Allocation Problem . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 The queueing Model . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 The Objective function ................................................................... 10 1.3 Proposed Solutions and Performance Evaluation ...................................... 11 1.4 Organization of this thesis .......................................................................... 12 CHAPTER 2 RELATED WORK .................................................. 13 CHAPTER 3 SYSTEM SETTING AND ASSUMPTION ................ 17 3.1 The Application Scenario ........................................................................... 17 3.2 Procedure to Model the Fog Computing Network .................................... 18 3.3 Parameters of the Abstracted Model .......................................................... 21 CHAPTER 4 PROBLEM STATEMENT ............................................... 23 4.1 Performance Indexes ....................................................................................... 23 4.1.1 loss rate of applications .................................................................. 23 4.1.2 Average end-to-end delay of applications ...................................... 24 4.2 Trade off between PLoss,DS and WDS ..................................................... 25 4.3 Resource Allocation Problem ..................................................................... 26 CHAPTER 5 SOLUTIONS AND PERFORMANCE EVALUATION 27 5.1 Exhaustive Approach .................................................................................. 28 5.2 Heuristic Approach ..................................................................................... 35 CHAPTER 6 CONCLUSIONS ................................................................ 42 | |
| dc.language.iso | zh-TW | |
| dc.subject | 排隊模型 | zh_TW |
| dc.subject | 啟發方法 | zh_TW |
| dc.subject | 窮舉方法 | zh_TW |
| dc.subject | 資源分配最佳化 | zh_TW |
| dc.subject | 集中式無線接入網路 | zh_TW |
| dc.subject | 霧運算 | zh_TW |
| dc.subject | 傑克森網路 | zh_TW |
| dc.subject | Heuristic approach | en |
| dc.subject | C-RAN | en |
| dc.subject | Resource allocation | en |
| dc.subject | Queueing model | en |
| dc.subject | Jackson network | en |
| dc.subject | Exhaustive approach | en |
| dc.subject | Fog computing | en |
| dc.title | 在無線接取網路中的霧運算資源分配研究 | zh_TW |
| dc.title | Dynamic Resource Allocation for Fog Computing in
Radio Access Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏宏宇,逄愛君,施吉昇 | |
| dc.subject.keyword | 霧運算,集中式無線接入網路,資源分配最佳化,排隊模型,傑克森網路,窮舉方法,啟發方法, | zh_TW |
| dc.subject.keyword | Fog computing,C-RAN,Resource allocation,Queueing model,Jackson network,Exhaustive approach,Heuristic approach, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU201902203 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
