Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74912
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳
dc.contributor.authorBo-Ting Lien
dc.contributor.author李柏霆zh_TW
dc.date.accessioned2021-06-17T09:10:08Z-
dc.date.available2024-10-17
dc.date.copyright2019-10-17
dc.date.issued2019
dc.date.submitted2019-09-26
dc.identifier.citation1. Efficiency chart (NREL). https://www.nrel.gov/pv/cell-efficiency.html.
2. Wikipedia - Silicon. https://en.wikipedia.org/wiki/Silicon.
3. Wikipedia - CIGS. https://en.wikipedia.org/wiki/Copper_indium_gallium_selenide_solar_cells
4. Wikipedia - GaAs. https://en.wikipedia.org/wiki/Gallium_arsenide
5. Zhao, X.; Park, N.-G., Stability Issues on Perovskite Solar Cells. Photonics 2015, 2 (4), 1139-1151.
6. Wikipedia - Goldschmidt tolerance factor. https://en.wikipedia.org/wiki/Goldschmidt_tolerance_factor
7. Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K., Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chemistry of Materials 2015, 28 (1), 284-292.
8. Eperon, G. E.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351 (6269), 151-155.
9. Borriello, I.; Cantele, G.; Ninno, D., Ab initioinvestigation of hybrid organic-inorganic perovskites based on tin halides. Physical Review B 2008, 77 (23).
10. Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.; Gratzel, M.; De Angelis, F., Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett 2014, 14 (6), 3608-16.
11. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 2014, 7 (3), 982.
12. Futscher, M. H.; Ehrler, B., Efficiency Limit of Perovskite/Si Tandem Solar Cells. ACS Energy Letters 2016, 1 (4), 863-868.
13. Filipic, M.; Loper, P.; Niesen, B.; De Wolf, S.; Krc, J.; Ballif, C.; Topic, M., CH(3)NH(3)PbI(3) perovskite / silicon tandem solar cells: characterization based optical simulations. Opt Express 2015, 23 (7), A263-78.
14. Dubey, A.; Adhikari, N.; Mabrouk, S.; Wu, F.; Chen, K.; Yang, S.; Qiao, Q., A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry A 2018, 6 (6), 2406-2431.
15. Shi, Z.; Jayatissa, A. H., Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods. Materials (Basel) 2018, 11 (5).
16. Wikipedia - Perovskite. https://en.wikipedia.org/wiki/Perovskite_solar_cell
17. Prasanna, R.; Gold-Parker, A.; Leijtens, T.; Conings, B.; Babayigit, A.; Boyen, H.-G.; Toney, M. F.; McGehee, M. D., Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. Journal of the American Chemical Society 2017, 139 (32), 11117-11124.
18. Varignon, J.; Bibes, M.; Zunger, A., Origin of band gaps in 3d perovskite oxides. Nat Commun 2019, 10 (1), 1658.
19. Guan, J.; Tang, Z.; Guloy, A. M., [H3N(CH2)7NH3]8(CH3NH3)2Sn(IV)Sn(II)12I46- a mixed-valent hybrid compound with a uniquely templated defect-perovskite structure. Chem Commun (Camb) 2005, (1), 48-50.
20. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 2013, 13 (4), 1764-9.
21. Zhao, Y.; Tan, H.; Yuan, H.; Yang, Z.; Fan, J. Z.; Kim, J.; Voznyy, O.; Gong, X.; Quan, L. N.; Tan, C. S.; Hofkens, J.; Yu, D.; Zhao, Q.; Sargent, E. H., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun 2018, 9 (1), 1607.
22. Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; Yan, Y., Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22. Adv Mater 2016, 28 (42), 9333-9340.
23. Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Gratzel, M., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 2016, 9 (6), 1989-1997.
24. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338 (2), 643-647.
25. Zhang, W.; Saliba, M.; Moore, D. T.; Pathak, S. K.; Horantner, M. T.; Stergiopoulos, T.; Stranks, S. D.; Eperon, G. E.; Alexander-Webber, J. A.; Abate, A.; Sadhanala, A.; Yao, S.; Chen, Y.; Friend, R. H.; Estroff, L. A.; Wiesner, U.; Snaith, H. J., Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat Commun 2015, 6, 6142.
26. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-9.
27. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 2014, 13 (9), 897-903.
28. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. 2014, 347 (6221), 522-525.
29. Tsai, H.; Nie, W.; Cheruku, P.; Mack, N. H.; Xu, P.; Gupta, G.; Mohite, A. D.; Wang, H.-L., Optimizing Composition and Morphology for Large-Grain Perovskite Solar Cells via Chemical Control. Chemistry of Materials 2015, 27 (16), 5570-5576.
30. Kim, M. S.; Kim, B. G.; Kim, J., Effective variables to control the fill factor of organic photovoltaic cells. ACS Appl Mater Interfaces 2009, 1 (6), 1264-9.
31. Shockley, W.; Queisser, H. J., Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics 1961, 32 (3), 510-519.
32. Rühle, S., Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar Energy 2016, 130, 139-147.
33. Wali, Q.; Elumalai, N. K.; Iqbal, Y.; Uddin, A.; Jose, R., Tandem perovskite solar cells. Renewable and Sustainable Energy Reviews 2018, 84, 89-110.
34. Wikipedia - Solar spectrum. https://en.wikipedia.org/wiki/Air_mass_(solar_energy)
35. Tarasov, I.; Ostapenko, S.; Nakayashiki, K.; Rohatgi, A., Defect passivation in multicrystalline silicon for solar cells. Applied Physics Letters 2004, 85 (19), 4346.
36. Aydin, E.; De Bastiani, M.; De Wolf, S., Defect and Contact Passivation for Perovskite Solar Cells. Adv Mater 2019, e1900428.
37. Li, N.; Xu, F.; Qiu, Z.; Liu, J.; Wan, X.; Zhu, X.; Yu, H.; Li, C.; Liu, Y.; Cao, B., Sealing the domain boundaries and defects passivation by Poly(acrylic acid) for scalable blading of efficient perovskite solar cells. Journal of Power Sources 2019, 426, 188-196.
38. Sharma, R.; Chong, A. P.; Li, J. B.; Aberle, A. G.; Huang, Y., Role of post-metallization anneal sequence and forming gas anneal to mitigate light and elevated temperature induced degradation of multicrystalline silicon solar cells. Solar Energy Materials and Solar Cells 2019, 195, 160-167.
39. Li, B.; Ferguson, V.; Silva, S. R. P.; Zhang, W., Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces 2018, 5 (22), 1800326.
40. Zhao, P.; Kim, B. J.; Jung, H. S., Passivation in perovskite solar cells: A review. Materials Today Energy 2018, 7, 267-286.
41. Lee, S. H.; Bhopal, M. F.; Lee, D. W.; Lee, S. H., Review of advanced hydrogen passivation for high efficient crystalline silicon solar cells. Materials Science in Semiconductor Processing 2018, 79, 66-73.
42. Stranks, S. D.; Eperon, G. E.; Snaith, H. J., Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348 (6235), 683-686.
43. Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J.; Lilliu, S.; Savenije, T. J.; Rensmo, H.; Divitini, G.; Ducati, C.; Friend, R. H.; Stranks, S. D., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555 (7697), 497-501.
44. Kim, J.; Saidaminov, M. I.; Tan, H.; Zhao, Y.; Kim, Y.; Choi, J.; Jo, J. W.; Fan, J.; Quintero-Bermudez, R.; Yang, Z.; Quan, L. N.; Wei, M.; Voznyy, O.; Sargent, E. H., Amide-Catalyzed Phase-Selective Crystallization Reduces Defect Density in Wide-Bandgap Perovskites. Adv Mater 2018, 30 (13), e1706275.
45. McMeekin, D. P.; Wang, Z.; Rehman, W.; Pulvirenti, F.; Patel, J. B.; Noel, N. K.; Johnston, M. B.; Marder, S. R.; Herz, L. M.; Snaith, H. J., Crystallization Kinetics and Morphology Control of Formamidinium-Cesium Mixed-Cation Lead Mixed-Halide Perovskite via Tunability of the Colloidal Precursor Solution. Adv Mater 2017, 29 (29).
46. Yan, K.; Long, M.; Zhang, T.; Wei, Z.; Chen, H.; Yang, S.; Xu, J., Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J Am Chem Soc 2015, 137 (13), 4460-8.
47. Shen, B.; Hu, Z.; Sun, K.; Lu, C.; Jiang, Y.; Zhang, J.; Chen, Y.; Zhu, Y., Conformal coverage of TiO2 compact layers for high-efficient planar heterojunction perovskite solar cells. Organic Electronics 2018, 59, 177-183.
48. Choe, G.; Kang, J.; Ryu, I.; Song, S. W.; Kim, H. M.; Yim, S., Influence of the concentration of TiCl 4 solution used for post-treatment on mesoporous TiO 2 layers in hybrid lead halide perovskite solar cells. Solar Energy 2017, 155, 1148-1156.
49. Bedair, S. M.; Lamorte, M. F.; Hauser, J. R., A two‐junction cascade solar‐cell structure. Applied Physics Letters 1979, 34 (1), 38-39.
50. Lal, N. N.; Dkhissi, Y.; Li, W.; Hou, Q.; Cheng, Y.-B.; Bach, U., Perovskite Tandem Solar Cells. Advanced Energy Materials 2017, 7 (18), 1602761.
51. Werner, J.; Niesen, B.; Ballif, C., Perovskite/Silicon Tandem Solar Cells: Marriage of Convenience or True Love Story? - An Overview. Advanced Materials Interfaces 2018, 5 (1), 1700731.
52. Vos, A. D., Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics D: Applied Physics 1980, 13, 839-846.
53. Zhao, D.; Chen, C.; Wang, C.; Junda, M. M.; Song, Z.; Grice, C. R.; Yu, Y.; Li, C.; Subedi, B.; Podraza, N. J.; Zhao, X.; Fang, G.; Xiong, R.-G.; Zhu, K.; Yan, Y., Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy 2018, 3 (12), 1093-1100.
54. Zhao, D.; Wang, C.; Song, Z.; Yu, Y.; Chen, C.; Zhao, X.; Zhu, K.; Yan, Y., Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%. ACS Energy Letters 2018, 3 (2), 305-306.
55. Chen, B.; Yu, Z.; Liu, K.; Zheng, X.; Liu, Y.; Shi, J.; Spronk, D.; Rudd, P. N.; Holman, Z.; Huang, J., Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4%. Joule 2019, 3 (1), 177-190.
56. Qiu, Z.; Xu, Z.; Li, N.; Zhou, N.; Chen, Y.; Wan, X.; Liu, J.; Li, N.; Hao, X.; Bi, P.; Chen, Q.; Cao, B.; Zhou, H., Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber. Nano Energy 2018, 53, 798-807.
57. Zhang, D.; Najafi, M.; Zardetto, V.; Dörenkämper, M.; Zhou, X.; Veenstra, S.; Geerligs, L. J.; Aernouts, T.; Andriessen, R., High efficiency 4-terminal perovskite/c-Si tandem cells. Solar Energy Materials and Solar Cells 2018, 188, 1-5.
58. Bush, K. A.; Palmstrom, A. F.; Yu, Z. J.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.; McMeekin, D. P.; Hoye, R. L. Z.; Bailie, C. D.; Leijtens, T.; Peters, I. M.; Minichetti, M. C.; Rolston, N.; Prasanna, R.; Sofia, S.; Harwood, D.; Ma, W.; Moghadam, F.; Snaith, H. J.; Buonassisi, T.; Holman, Z. C.; Bent, S. F.; McGehee, M. D., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy 2017, 2 (4).
59. Duong, T.; Wu, Y.; Shen, H.; Peng, J.; Fu, X.; Jacobs, D.; Wang, E.-C.; Kho, T. C.; Fong, K. C.; Stocks, M.; Franklin, E.; Blakers, A.; Zin, N.; McIntosh, K.; Li, W.; Cheng, Y.-B.; White, T. P.; Weber, K.; Catchpole, K., Rubidium Multication Perovskite with Optimized Bandgap for Perovskite-Silicon Tandem with over 26% Efficiency. Advanced Energy Materials 2017, 7 (14), 1700228.
60. Han, Q.; Hsieh, Y.-T.; Meng, L.; Wu, J.-L.; Sun, P.; Yao, E.-P.; Chang, S.-Y.; Bae, S.-H.; Kato, T.; Bermudez, V.; Yang, Y., High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells. Science 2018, 361 (6405), 904-908.
61. Shen, H.; Duong, T.; Peng, J.; Jacobs, D.; Wu, N.; Gong, J.; Wu, Y.; Karuturi, S. K.; Fu, X.; Weber, K.; Xiao, X.; White, T. P.; Catchpole, K., Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy & Environmental Science 2018, 11 (2), 394-406.
62. Bremner, S. P.; Levy, M. Y.; Honsberg, C. B., Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Progress in Photovoltaics: Research and Applications 2008, 16 (3), 225-233.
63. Jablonski diagram. https://www.edinst.com/blog/jablonski-diagram/
64. Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J., Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun 2014, 5, 5784.
65. Xu, J.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J.; Kanjanaboos, P.; Sun, J. P.; Lan, X.; Quan, L. N.; Kim, D. H.; Hill, I. G.; Maksymovych, P.; Sargent, E. H., Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat Commun 2015, 6, 7081.
66. Pascoe, A. R.; Duffy, N. W.; Scully, A. D.; Huang, F.; Cheng, Y.-B., Insights into Planar CH3NH3PbI3 Perovskite Solar Cells Using Impedance Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (9), 4444-4453.
67. Yang, L.; Cai, F.; Yan, Y.; Li, J.; Liu, D.; Pearson, A. J.; Wang, T., Conjugated Small Molecule for Efficient Hole Transport in High-Performance p-i-n Type Perovskite Solar Cells. Advanced Functional Materials 2017, 27 (31), 1702613.
68. Galagan, Y.; Coenen, E. W. C.; Verhees, W. J. H.; Andriessen, R., Towards the scaling up of perovskite solar cells and modules. Journal of Materials Chemistry A 2016, 4 (15), 5700-5705.
69. Chuang, C. L.; Chang, M. W.; Chen, N. P.; Pan, C. C.; Liu, C. P., Improving Performance of CIGS Solar Cells by Annealing ITO Thin Films Electrodes. International Journal of Photoenergy 2015, 2015, 1-8.
70. TransparentConductiveOxideThinFilms.
71. Aydin, E.; De Bastiani, M.; Yang, X.; Sajjad, M.; Aljamaan, F.; Smirnov, Y.; Hedhili, M. N.; Liu, W.; Allen, T. G.; Xu, L.; Van Kerschaver, E.; Morales‐Masis, M.; Schwingenschlögl, U.; De Wolf, S., Zr‐Doped Indium Oxide (IZRO) Transparent Electrodes for Perovskite‐Based Tandem Solar Cells. Advanced Functional Materials 2019, 1901741.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74912-
dc.description.abstract近幾年,鈣鈦礦太陽能電池備受矚目是因為鈣鈦礦有下列優點:低製程成本、能隙可調性和高光電轉換效率。然而對於鈣鈦礦元件的製備,常見的製程往往是需要在惰性氣體的環境中的手套箱內製作,這會使其製備的成本增加,同時也會讓製備的複雜度提升,透過熱鑄製程,鈣鈦礦前驅物相轉變成鈣鈦礦所需的時間只需幾秒鐘,如此,前驅物受到外在氣氛的影響時間大幅縮短。因此,熱鑄製程比起一般製程更有機會使鈣鈦礦太陽能電池由實驗室規模進入到量產規模。此外,為突破單電池的效率極限(蕭基-奎伊瑟極限)並進一步提升電池效率,串疊型太陽能電池逐漸受到矚目。根據理論模擬與計算,高能隙鈣鈦礦上電池(能隙~1.72 eV)串疊矽晶太陽能電池可以得到高於40%的理論效率。
為了解鈣鈦礦電池在串疊太陽能電池的實際情況,本研究製備高能隙(~1.72 eV)以及低能隙(~1.55 eV)鈣鈦礦電池,用以作為四點式串疊電池的上電池,並討論不同能隙上電池串疊的結果。為了進一步提升上電池之效率進而串疊出更優異的電池效率,膠體工程與介面處理率先被引入,藉由加入1 v.%的甲醯胺,減少鈣鈦礦前驅溶液中鉛碘錯合物數量;以及氯化鎳後處理改善氧化鎳電子傳輸層的批覆率(由91.15%提升至97.05%)後,低能隙之電池的效率可由平均16.14%提升至17.04%;而高能隙電池效率亦可由平均13.89%提升至15.18%。基於上述的實驗結果,將上述兩種能隙之鈣鈦礦電池與矽晶太陽能電池串疊,其中高能隙鈣鈦礦效率平均可達18.55%(最高20.11%),而低能隙之鈣鈦礦則可達平均20.26%(最高21.41%)。
在此研究的最後,我們也將我們低能隙鈣鈦礦電池的每層移至乾空氣下(~10 RH%)製備,對於銀電極元件,其平均效率下降到14.90%,而其與矽晶太陽能電池串疊後其效率平均為16.60%。於乾空氣中所製備的鈣鈦礦太陽能電池,效率的衰退主要是填充因子下降至71.46%所致,而填充因子的下降可歸咎於親水的功函數修飾層於含有水氣的環境中製備所致,因調整功函數的能力下降進而使得鈣鈦礦整體元件效率下降。
zh_TW
dc.description.abstractRecently, perovskite solar cells (PSCs) have attracted lots of attention due to its advantages of low processing cost, tunable bandgap (Eg) and high power conversion efficiency (PCE). However, for most of the solution process of perovskite layers, inert atmosphere is still required. By applying novel hot casting, perovskite is allowed to be fabricated in dry air since the formation of perovskite phase only takes few seconds that the influence of the atmosphere can be ignored. Therefore, hot casting brings a step closer to the commercialization of PSCs. On the other way, to break through the limit of monolithic cell and further the power conversion efficiency (PCE), establishing tandem solar cell is one of the feasible path to overcome Shockley–Queisser limit. Theoretically, wide Eg perovskite (Eg~1.72 eV) fits the requirement of the top cell when being tandem with Si bottom cell to bring out the highest prospective PCE of perovskite/silicon tandem solar cell (TSC).
Here in this work, the wide Eg (~1.72 eV) and narrow Eg (~1.55 eV) perovskite solar cell have been fabricated via hot casting for four-terminal silicon tandem solar cell. To further the PCE of hot casted top PSCs, colloid engineering and NiOx/perovskite interface modification were adopted. With 1 v.% formamide in the precursor solution, the undesired lead polyhalide colloid in precursor solution can be reduced. Moreover, the coverage of NiOx hole transport layer can be improved from 91.15% to 97.05% via NiCl2 post treatment, avoiding the leakage flow of carrier from perovskite to FTO. By combining the colloid engineering and interface modification, large grain size of perovskite with 1 v.% formamide additive and minor current leakage from NiOx/perovskite interface, the PCE of PSC has been improved. For narrow Eg PSC, the PCE is increased from 16.14% to 17.04% and for wide Eg PSC, the PCE is increased from 13.89% to 15.18%. Based on the above results, the 4T narrow Eg and wide Eg perovskite/Si TSCs are demonstrated in this work. The former exhibits an average PCE of 20.26% (21.41% for champion device) and the latter has an average PCE of 18.55% (20.11% for champion device). Then we demonstrate that all layers of narrow Eg PSC and TSC can be fabricated in dry air (~10 RH%). The average PCE of 14.90% can be attained for opaque electrode and 16.60% for TSC. The decrease of PCE loss of all layer fabricated in dry air PSC can be ascribed to the hydrophilic work function modifier which is susceptible to the small amount of moisture in dry air, and therefore deteriorated the fill factor as well as PCE of PSC.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:10:08Z (GMT). No. of bitstreams: 1
ntu-108-R06527040-1.pdf: 5614048 bytes, checksum: befc909e5907a6d0300ad92ea8691238 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Recent development of solar cell 1
1.1.1 Si 2
1.1.2 CIGS 3
1.1.3 GaAs 4
1.1.4 Perovskite 4
1.2 Perovskite solar cells (PSCs) 6
1.2.1 Working principle of PSCs 6
1.2.2 Eg modification of perovskite 8
1.2.3 Processing of perovskite layer 10
1.3 Photovoltaic parameters 14
1.4 Theoretical efficiency of single junction solar cells 16
1.4.1 Shockley-Queisser limit 16
1.4.2 Toward Shockley-Queisser limit – Defect passivation for PSCs 22
1.5 Reduction of spectrum loss by tandem structure 34
1.5.1 Tandem architectures 35
1.5.2 Recent development of TSCs 37
1.6 Motivation 41
Chapter 2 Experimental Section 43
2.1 Chemicals 43
2.2 Instruments 45
2.3 Experimental procedures 47
2.3.1 Preparation of NiOx precursor solution 47
2.3.2 Preparation of perovskite precursor solution 47
2.3.3 Preparation of TEACl post treatment solution 48
2.3.4 Preparation of PC61BM solution 49
2.3.5 Preparation of PEI solution 49
2.3.6 Device Fabrication 49
2.3.7 Characterization of materials and devices 51
Chapter 3 Results and Discussion 55
3.1 Colloid engineering of perovskite precursor 56
3.1.1 Quality improvement of perovskite thin film using formamide additive 56
3.1.2 Effect of formamide additive on device performance 61
3.1.3 Characteristic analysis of carriers of perovskite thin films 63
3.1.4 Space charge limited current (SCLC) model of perovskite thin films 68
3.2 NiCl2 post treatment for Sol-Gel NiOx 73
3.2.1 Morphology control of Sol-Gel NiOx by NiCl2 post treatment 73
3.2.2 Effect of NiCl2 post treatment on device performance 75
3.2.3 Charge transfer behaviors between perovskite and NiOx 78
3.2.4 Effect of NiCl2 post treatment on the conductivity of NiOx 84
3.3 Applying tandem structure 88
3.4 Performance of devices fabricated in air 92
Chapter 4 Conclusion 95
Chapter 5 Recommendation 99
dc.language.isoen
dc.title以熱鑄法製備鈣鈦礦上電池並應用於矽晶串疊型太陽能電池zh_TW
dc.titleHot-casted perovskite solar cell for Si tandem solar cellen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王立義,陳學禮,蔡豐羽
dc.subject.keyword鈣鈦礦,太陽能電池,矽晶,4節點式,串疊型,熱鑄製程,乾空氣,膠體工程,介面處理,zh_TW
dc.subject.keywordperovskite,solar cell,silicon,four terminal,tandem,hot casting,dry air,colloid engineering,interface engineering,en
dc.relation.page115
dc.identifier.doi10.6342/NTU201904157
dc.rights.note有償授權
dc.date.accepted2019-09-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
5.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved