請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74881
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾雪峰(Snow H. Tseng) | |
dc.contributor.author | Cheng-Wei Ho | en |
dc.contributor.author | 何承緯 | zh_TW |
dc.date.accessioned | 2021-06-17T09:09:28Z | - |
dc.date.available | 2020-11-04 | |
dc.date.copyright | 2019-11-04 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-10-15 | |
dc.identifier.citation | [1] Zernike F. “Phase Contrast, a New Method for the Microscopic Observation of Transparent Objects.” Physica, 9, p. 686-698. (1942)
[2] Yamamoto, K. and Taira, A. “Some improvements in the phase contrast microscope.” Journal of Microscopy, 129: p. 49-62. (1983) [3] Christopher G. Rylander, Digant P. Davé, Taner Akkin, Thomas E. Milner, Kenneth R. Diller, and Ashley J. Welch, “Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy.” Opt. Lett. 29, 1509-1511. (2004) [4] Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy.” Nat. Photonics 7, 113–117. (2013) [5] Lee K, Kim K, Jung J, Heo J, Cho S, Lee S, Chang G, Jo Y, Park H, Park Y. “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications.” Sensors (Basel). 13(4):p. 4170-4191. (2013) [6] Park Y., C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine.” Nature Photonics. 12(10): p. 578-589. (2018) [7] Kachar B. “Asymmetric illumination contrast: a method of image formation for video light microscopy.” Science. 227(4688):p. 766-768. (1985) [8] C. W. See, M. Vaez Iravani, and H. K. Wickramasinghe, “Scanning differential phase contrast optical microscope: application to surface studies.” Appl. Opt. 24, 2373-2379. (1985) [9] T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology.” Opt. Express 16, 12227–12238. (2008) [10] Shalin B. Mehta and Colin J. R. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast.” Optics Letters Vol. 34, No. 13, 1924-1926. (2009) [11] D. K. Hamilton and T. Wilson, “Two-dimensional phase imaging in the scanning optical microscope.” Appl. Opt. 23, 348-352. (1984) [12] Hamilton D. & Sheppard Colin & Wilson T. “Improved imaging of phase gradients in scanning optical microscopy.” Journal of Microscopy. 135. 275 - 286. (1984) [13] Lei Tian, Jingyan Wang and Laura Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array.” Opt. Lett. 39, 1326-1329. (2014) [14] Hangwen Lu, Jaebum Chung, Xiaoze Ou and Changhuei Yang, “Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast.” Opt. Express 24, 25345-25361. (2016) [15] Tian, L. and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope.” Opt Express. 23(9): p. 11394-11403. (2015) [16] Yoshimasa Suzuki, Mayumi Odaira, Hisashi Ohde, and Yoshimasa Kawata, “Quantitative phase imaging by optimized asymmetric illumination.” Appl. Opt. 56, p. 7237-7242. (2017) [17] H. Chen and Y. Luo, “Two-Axis Isotropic Differential Phase Contrast Transfer Function Using Gradient Amplitude Modulation for Phase Imaging.” in Imaging and Applied Optics 2017, OSA Technical Digest. (2017) [18] Yu-Zi Lin, Hsi-Hsun Chen, Kuang-Yuh Huang, Yuan Luo, “Isotropic quantitative differential phase contrast microscopic imaging.” Proc. SPIE 10711, Biomedical Imaging and Sensing Conference, 107110R. (2018) [19] Yu-Zi Lin, Kuang-Yuh Huang, and Yuan Luo, “Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination.” Optics Letters 43, p. 2973-2976. (2018) [20] G. Nomarski, “Differential microinterferometer with polarized waves.” J. Phys. Radium 16(9), 9S–11S. (1955) [21] Hamilton D. & Sheppard Colin “Differential phase contrast in scanning optical microscopy.” Journal of Microscopy. 133. 27 - 39. (1984) [22] Maksymilian Pluta, “Nomarski's DIC microscopy: a review.” Proc. SPIE 1846, Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications. (1994) [23] Amos Brad & Reichelt Stefanie & Cattermole D. & Laufer Jan. “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics.” Journal of microscopy. 210. 166-75. (2003) [24] Taflove, A., & Hagness, S. C. [Computational Electrodynamics: The Finite-Difference Time-Domain Method] 3rd ed. Norwood, MA: Artech House. Chapter 17. (2005) [25] Q. H. Liu, “The pseudospectral time-domain (PSTD) method: a new algorithm for solutions of Maxwell's equations.” IEEE Antennas and Propagation Society International Symposium 1997. Digest, Montreal, Quebec, Canada, pp. 122-125 vol.1. (1997) [26] Q. H. Liu, “The PSTD algorithm: A time‐domain method requiring only two cells per wavelength.” Microwave and Optical Technology Letters. 15. 158 - 165. (1997) [27] Q. H. Liu, “Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm.” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 2, pp. 917-926. (1999) [28] Gedney Stephen, “An Anisotropic Perfectly Matched Layer Absorbing Media for the Truncation of FDTD Lattice.” Antennas and Propagation, IEEE Transactions on. 44. 1630 - 1639. (1997) [29] Roden, J. A. and Gedney, S. D., “Efficient implementation of the uniaxial‐based PML media in three‐dimensional nonorthogonal coordinates with the use of the FDTD technique.” Microw. Opt. Technol. Lett., 14: 71-75. (1997) [30] C. T. Wolfe, U. Navsariwala and S. D. Gedney, “A parallel finite-element tearing and interconnecting algorithm for solution of the vector wave equation with PML absorbing medium.” IEEE Transactions on Antennas and Propagation, vol. 48, no. 2, pp. 278-284. (2000) [31] J. W. Goodman, [Introduction to Fourier Optics] 4th ed. W.H. Freeman, Macmillan Learning. (2017) [32] N. Streibl, “Phase imaging by the transport equation of intensity.” Optics Communications, Volume 49, Issue 1, p. 6-10. (1984) [33] A. W. Lohmann, E. Tepichín, and J. G. Ramírez, “Optical implementation of the fractional Hilbert transform for two-dimensional objects.” Appl. Opt. 36, p. 6620-6626. (1997) [34] Arkadiusz Sagan, Slawomir Nowicki, Ryszard Buczynski, Marek Kowalczyk, and Tomasz Szoplik, “Imaging phase objects with square-root, Foucault, and Hoffman real filters: a comparison.” Appl. Opt. 42, p. 5816-5824. (2003) [35] C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography.” Opt. Express 13, 8693–8698. (2005) [36] T.-C. Poon and K. B. Doh, “On the Theory of Optical Hilbert transform for incoherent objects.” Opt. Express 15, p. 3006-3011. (2007) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74881 | - |
dc.description.abstract | 在本研究中,我們利用時域擬譜演算法模擬了非對稱光源微分相差顯微鏡的系統,並詳細分析探討三個在以此方法模擬相位成像時觀察到的現象,包括模擬使用介質的形狀造成差異、遠場與近場模擬的不同所造成的誤差以及吉布斯效應(Gibbs phenomenon)在模擬中的影響問題。三個現象的成因雖然各不相同,但是在詳加探討之後我們便能夠針對這些問題進行模型的改良,將造成的誤差消除或減小,以期能在數值模擬中重現微分相差式的光學系統。我們相信此法將大大幫助研究者改進微分相差顯微系統並建立更加完善、有效率的量化微分相位成像體系。 | zh_TW |
dc.description.abstract | In this research, we simulated asymmetric illumination-based differential phase contrast (AIDPC) microscope with pseudospectral time-domain (PSTD) algorithm and analyzed several phenomena observed in our simulation. Specifically, we investigated the causes of simulation errors of phase distribution, including the difference between near and far field simulation, refraction caused by the media and Gibbs phenomenon effect. By analyzing these phenomena, we can develop new strategies to eliminate the errors and build a better model to improve differential phase contrast microscope. Furthermore, the reported simulation provides potential to optimize the optical system and facilitate new optical imaging strategies with quantitative differential phase contrast microscope. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T09:09:28Z (GMT). No. of bitstreams: 1 ntu-108-R06941037-1.pdf: 19397643 bytes, checksum: 109be0dd130b13ebd6fe8afa3bc3f341 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書
誌謝 i 中文摘要 ii 英文摘要 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 簡介 1 1.1 相差成像背景介紹 1 1.2 研究動機與目的 4 1.3 論文結構 5 第二章 非對稱光源微分相差顯微鏡 6 2.1 微分相差成像 6 2.2 成像原理 8 2.3 非對稱光源修飾微分相差顯微術 14 2.4 微分相差技術與微分干涉對比技術差異 19 第三章 擬譜時域模擬法 22 3.1 擬譜時域演算法 22 3.2 奈奎斯特取樣定理 28 3.3 數值色散關係 33 3.4 單軸完美匹配層吸收邊界條件 37 3.5 擬譜時域法與時域有限差分法差異分析 42 第四章 模擬規劃與結果分析 44 4.1 一維相差成像 44 4.2 二維微透鏡成像探討 49 4.3 介質形狀影響 54 4.4 遠場近場差異 59 4.5 吉布斯效應 72 第五章 總結與未來展望 81 5.1 總結 81 5.2 未來展望 83 參考文獻 84 | |
dc.language.iso | zh-TW | |
dc.title | 初探以馬克士威方程式數值解模擬微分相差成像顯微術 | zh_TW |
dc.title | Initial Attempt to Simulate the Phenomenon of Differential Phase Contrast Microscope based upon Numerical Solutions of Maxwell’s Equations | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 駱遠(Yuan Luo),陳士元(Shih-Yuan Chen) | |
dc.subject.keyword | 擬譜時域法,微分相差成像,模擬誤差分析,吉布斯效應, | zh_TW |
dc.subject.keyword | Pseudospectral time-domain algorithm,differential phase contrast microscope,simulation error,Gibbs phenomenon, | en |
dc.relation.page | 87 | |
dc.identifier.doi | 10.6342/NTU201904208 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-10-16 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 18.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。