Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭錦龍(Chin-Lung Kuo)
dc.contributor.authorChi-Hung Luen
dc.contributor.author呂季紘zh_TW
dc.date.accessioned2021-06-17T09:08:59Z-
dc.date.available2024-11-04
dc.date.copyright2019-11-04
dc.date.issued2019
dc.date.submitted2019-10-28
dc.identifier.citationYeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303.
Cantor, B., Chang, I. T. H., Knight, P., & Vincent, A. J. B. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375, 213-218.
Jien-Wei, Y. (2006). Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 31(6), 633-648.
https://mme.iitm.ac.in/hea/html/global/global-publications.html
Tsai, M. H., & Yeh, J. W. (2014). High-entropy alloys: a critical review. Materials Research Letters, 2(3), 107-123.
Miracle, D. B., & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511.
Tsai, K. Y., Tsai, M. H., & Yeh, J. W. (2013). Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 61(13), 4887-4897.
Kucza, W., Dąbrowa, J., Cieślak, G., Berent, K., Kulik, T., & Danielewski, M. (2018). Studies of “sluggish diffusion” effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach. Journal of Alloys and Compounds, 731, 920-928.
Ranganathan, S. (2003). Alloyed pleasures: multimetallic cocktails. Current science, 85(5), 1404-1406.
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H., George, E. P., & Ritchie, R. O. (2014). A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345(6201), 1153-1158.
T.J. Chen, Electrical properties of simple-phase high-entropy AlxCoCrFeNi (0≤ x≤ 2) alloys, Master thesis, Department of Material Science and Engineering, NTHU, Taiwan, 2006.
Chou, H. P., Chang, Y. S., Chen, S. K., & Yeh, J. W. (2009). Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Materials Science and Engineering: B, 163(3), 184-189.
Tong, C. J., Chen, Y. L., Yeh, J. W., Lin, S. J., Chen, S. K., Shun, T. T., ... & Chang, S. Y. (2005). Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 36(4), 881-893.
Shun, T. T., & Du, Y. C. (2009). Microstructure and tensile behaviors of FCC Al0. 3CoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 479(1-2), 157-160.
Rao, J. C., Diao, H. Y., Ocelík, V., Vainchtein, D., Zhang, C., Kuo, C., ... & Liaw, P. K. (2017). Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal. Acta Materialia, 131, 206-220.
Feng, R., Gao, M. C., Zhang, C., Guo, W., Poplawsky, J. D., Zhang, F., ... & Liaw, P. K. (2018). Phase stability and transformation in a light-weight high-entropy alloy. Acta Materialia, 146, 280-293.
Born, M., & Oppenheimer, R. (1927). Zur quantentheorie der molekeln. Annalen der physik, 389(20), 457-484.
Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864.
Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133.
Fermi, E. (1927). Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend. Accad. Naz. Lincei, 6(602-607), 32.
Thomas, L. H. (1927, January). The calculation of atomic fields. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 23, No. 5, pp. 542-548). Cambridge University Press.
Dirac, P. A. (1930, July). Note on exchange phenomena in the Thomas atom. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 26, No. 3, pp. 376-385). Cambridge University Press.
Vosko, Seymour H., Leslie Wilk, and Marwan Nusair. 'Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis.' Canadian Journal of physics 58.8 (1980): 1200-1211.
Perdew, John P., et al. 'Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation.' Physical Review B 46.11 (1992): 6671.
Ceperley, David M., and B. J. Alder. 'Ground state of the electron gas by a stochastic method.' Physical Review Letters 45.7 (1980): 566.
Perdew, John P., and Alex Zunger. 'Self-interaction correction to density-functional approximations for many-electron systems.' Physical Review B 23.10 (1981): 5048.
Wang, Yue, and John P. Perdew. 'Spin scaling of the electron-gas correlation energy in the high-density limit.' Physical Review B 43.11 (1991): 8911.
Perdew, John P., Kieron Burke, and Matthias Ernzerhof. 'Generalized gradient approximation made simple.' Physical review letters 77.18 (1996): 3865.
Blöchl, Peter E. 'Projector augmented-wave method.' Physical review B 50.24 (1994): 17953.
Verlet, L. (1967). Computer' experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 159(1), 98.
Foiles, S. M., Baskes, M. I., & Daw, M. S. (1986). Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical review B, 33(12), 7983.
Baskes, M. I. (1992). Modified embedded-atom potentials for cubic materials and impurities. Physical Review B, 46(5), 2727.
Lee, B. J., & Baskes, M. I. (2000). Second nearest-neighbor modified embedded-atom-method potential. Physical Review B, 62(13), 8564.
Baskes, M. I. (1987). Application of the embedded-atom method to covalent materials: a semiempirical potential for silicon. Physical review letters, 59(23), 2666.
Baskes, M. I., Nelson, J. S., & Wright, A. F. (1989). Semiempirical modified embedded-atom potentials for silicon and germanium. Physical Review B, 40(9), 6085.
Lee, B. J., & Baskes, M. I. (2000). Second nearest-neighbor modified embedded-atom-method potential. Physical Review B, 62(13), 8564.
Alder, Berni J., and T E. Wainwright. 'Studies in molecular dynamics. I. General method.' The Journal of Chemical Physics 31.2 (1959): 459-466.
Verlet, Loup. 'Computer' experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules.' Physical review 159.1 (1967): 98.
Evans, Denis J., and Brad Lee Holian. 'The nose–hoover thermostat.' The Journal of chemical physics 83.8 (1985): 4069-4074.
Faken, D., & Jónsson, H. (1994). Systematic analysis of local atomic structure combined with 3D computer graphics. Computational Materials Science, 2(2), 279-286.
Xu, X. D., Liu, P., Guo, S., Hirata, A., Fujita, T., Nieh, T. G., ... & Chen, M. W. (2015). Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0. 5 high-entropy alloy. Acta Materialia, 84, 145-152.
Wang, F. J., Zhang, Y., & Chen, G. L. (2009). Atomic packing efficiency and phase transition in a high entropy alloy. Journal of Alloys and Compounds, 478(1-2), 321-324.
Guo, S., Ng, C., Lu, J., & Liu, C. T. (2011). Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of applied physics, 109(10), 103505.
Rao, J. C., Diao, H. Y., Ocelík, V., Vainchtein, D., Zhang, C., Kuo, C., ... & Liaw, P. K. (2017). Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal. Acta Materialia, 131, 206-220.
Ogura, M., Fukushima, T., Zeller, R., & Dederichs, P. H. (2017). Structure of the high-entropy alloy AlxCrFeCoNi: fcc versus bcc. Journal of Alloys and Compounds, 715, 454-459.
Zunger, A., Wei, S. H., Ferreira, L. G., & Bernard, J. E. (1990). Special quasirandom structures. Physical Review Letters, 65(3), 353.
Hsieh, K. T. (2018). 運用第一原理計算與與古典力場模型探討鉻錳鐵鈷鎳高熵合金之相穩定度和相轉變機制 (Mater's thesis). Available from airiti Library. (U0001-0308201816313700) doi:10.6342/NTU201802482
Gwalani, B., Gorsse, S., Choudhuri, D., Zheng, Y., Mishra, R. S., & Banerjee, R. (2019). Tensile yield strength of a single bulk Al0. 3CoCrFeNi high entropy alloy can be tuned from 160 MPa to 1800 MPa. Scripta Materialia, 162, 18-23.
Pavlů, J., Vřešťál, J., & Šob, M. (2010). Ab initio study of formation energy and magnetism of sigma phase in Cr–Fe and Cr–Co systems. Intermetallics, 18(2), 212-220.
Zhao, Shijun, G. Malcolm Stocks, and Yanwen Zhang. 'Stacking fault energies of face-centered cubic concentrated solid solution alloys.' Acta Materialia 134 (2017): 334-345.
Ma, Duancheng, et al. 'Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one.' Acta Materialia 100 (2015): 90-7.
Zhang, F., Wu, Y., Lou, H., Zeng, Z., Prakapenka, V. B., Greenberg, E., ... & Liu, Y. (2017). Polymorphism in a high-entropy alloy. Nature communications, 8, 15687.
Tracy, Cameron L., et al. 'High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi.' Nature communications 8 (2017): 15634.
Schuh, B., Mendez-Martin, F., Völker, B., George, E. P., Clemens, H., Pippan, R., & Hohenwarter, A. (2015). Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Materialia, 96, 258-268.
Otto, F., Dlouhý, A., Pradeep, K. G., Kuběnová, M., Raabe, D., Eggeler, G., & George, E. P. (2016). Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Materialia, 112, 40-52.
Cheng, B., Zhang, F., Lou, H., Chen, X., Liaw, P. K., Yan, J., ... & Zeng, Q. (2019). Pressure-induced phase transition in the AlCoCrFeNi high-entropy alloy. Scripta Materialia, 161, 88-92.
Horstemeyer, M. F., Hughes, J. M., Sukhija, N., Lawrimore, W. B., Kim, S., Carino, R., & Baskes, M. I. (2015). Hierarchical bridging between ab initio and atomistic level computations: Calibrating the modified embedded atom method (meam) potential (part a). Jom, 67(1), 143-147.
Hughes, J. M., Horstemeyer, M. F., Carino, R., Sukhija, N., Lawrimore, W. B., Kim, S., & Baskes, M. I. (2015). Hierarchical bridging between ab initio and atomistic level computations: Sensitivity and uncertainty analysis for the modified embedded-atom method (meam) potential (part b). Jom, 67(1), 148-153.
Choi, W. M., Jo, Y. H., Sohn, S. S., Lee, S., & Lee, B. J. (2018). Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. npj Computational Materials, 4(1), 1.
Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 117(1), 1-19.
Tian, Fuyang, et al. 'Calculating elastic constants in high-entropy alloys using the coherent potential approximation: Current issues and errors.' Computational materials science 111 (2016): 350-358.
Selke, W. (1988). The ANNNI model—theoretical analysis and experimental application. Physics Reports, 170(4), 213-264.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74858-
dc.description.abstract本篇論文利用第一原理搭配密度泛函理論計算及MEAM古典力場模型兩種方式來研究AlxCoCrFeNi高熵合金中隨著Al濃度變化的相穩定度。根據這兩種模擬方法的計算精準度以及它們所須耗費的計算資源,我將這兩種方法用於不同尺度、不同研究方向的計算模擬。
論文的第一部分我們運用第一原理計算搭配我們開發的逆蒙地卡羅方法來研究五元AlxCoCrFeNi高熵合金隨Al濃度變化的相穩定度。我們藉由逆蒙地卡羅方法來建構各種不同局域元素排序的結構,而經由這些結構的能量計算,我們首先發現B2-NiAl的析出是AlxCoCrFeNi合金從FCC結構轉變為BCC結構的重要關鍵,且Ni和Al的析出在能量上是自發性的反應。雖然如此,NiAl的析出物有兩種可能性,分別是L12-Ni3Al和B2-NiAl,而Al濃度的高低和Cr元素的局域分布都會顯著影響NiAl析出物會是哪一種結構。而藉由進一步的四元合金計算,我們探討了Ni和Al在合金中對相穩定度的影響,也探討了在含有Fe、Co、Ni、Al的有序BCC結構中,這四種元素傾向以何種方式排列。最後,我們進行了σ相的計算,搭配前述FCC及BCC結構的計算,我們以理論計算的角度解釋了文獻中提到過的σ相生成路徑。
在第二部分的研究中,我們修正了我們團隊原有的CoCrFeMnNi MEAM參數,並開發了一組新的AlCoCrFeNi MEAM參數,並驗證這些參數的結構、機械性質,以及異相之間的相對能量。最後,我們針對兩種高熵合金系統進行大尺度的分子動力學模擬,一方面用於驗證這兩組參數的可靠性;另一方面,我們藉由這種較大尺度的模擬來展示相分離或相轉變的過程,並提供了另一種相較於第一原理計算更大的尺度來佐證我們在第一部分研究中所提出的論點。
zh_TW
dc.description.abstractDensity functional theory (DFT) and modified embedded atom method (MEAM), which is a classical force field, are applied in this thesis to study the relative phase stability of FCC and BCC AlxCoCrFeNi alloys when varying Al content. Due to the accuracy and the computational demands of these two atomistic approaches, they are used in different types of researches.
In the first part of this study, an algorithm by which we can construct certain atomic structures with certain local chemical ordering is developed and is combined with first-principles static calculations to study the phase stability of AlxCoCrFeNi alloys. We find out that the formation of B2-NiAl plays a key role in the phase transition from FCC to BCC, and the segregation of Ni and Al is energy favorable. However, the stable precipitates of Ni and Al can be L12-Ni3Al or B2-NiAl; both the Al concentration and atomic distribution of Cr element can affect which type of structure NiAl precipitates may form. In addition, by further study of quaternary alloys, we find how Ni and Al can affect the phase stability and the possible atomic distribution of ordered BCC structure composed of Fe, Co, Ni, and Al. Finally, by calculations of σ phase, we explain the formation paths of σ phase that have been proposed in the literature in a theoretical point of view.
In the second part of this study, two sets of MEAM atomistic potential models are developed, one of which is for CoCrFeMnNi system, and another one is for AlCoCrFeNi system. They are validated by structural properties, mechanical properties, and relative energies between structures. After that, molecular dynamics simulations are performed to demonstrate the phase separation and phase transition behaviors that have been discussed in DFT calculations and to provide another perspective about the phase transition from large-scale atomistic simulations.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:08:59Z (GMT). No. of bitstreams: 1
ntu-108-R06527049-1.pdf: 5369922 bytes, checksum: 087d4bbfc00f5d70641f15e5633d5cad (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents論文口試委員審定書 ii
致謝 iii
摘要 iv
Abstract v
Contents vii
List of Figures x
List of Tables xiv
Chapter 1. Introduction 1
Chapter 2. Theoretical background 7
2.1 First principles calculation 7
2.2 Born-Oppenheimer approximation 7
2.3 Density functional theory (DFT) 8
2.3.1 Thomas-Fermi model 8
2.3.2 Hohenberg-Kohn theorem 9
2.3.3 Kohn-Sham equation 9
2.3.4 Exchange-correlation functional 12
2.3.5 Pseudopotential 12
2.4 Classical force field 14
2.4.1 Modified embedded atom method (MEAM) 15
2.4.2 Potential parameters optimization 18
2.5 Molecular dynamics 19
2.5.1 Verlet algorithm 19
2.5.2 Nosé-Hoover thermostat 20
2.6 Structure construction and analysis method 20
2.6.1 Common neighbor analysis (CNA) 20
2.6.2 Reverse Monte Carlo algorithm (RMC alogrithm) 22
Chapter 3. First-principles Study of the Phase Stability of AlxCoCrFeNi Alloy 26
3.1 Introduction 26
3.2 Computational details 31
3.3 Results and discussion 32
3.3.1 Homogeneous AlxCoCrFeNi solid solution 32
3.3.2 L12-Ni3Al segregated FCC and B2-NiAl segregated BCC 34
3.3.3 Prediction of thermodynamically stable structures of AlxCoCrFeNi alloys 42
3.3.4 The effects of the addition of Ni or Al on the phase stability of the CoCrFe alloy 48
3.3.5 The atomic distribution of Fe, Co, Ni, Al-rich B2 phase 55
3.3.6 The formation path of CoCrFe-rich σ phase in AlxCoCrFeNi alloy 58
3.4 Summary 62
Chapter 4. Development of MEAM Atomistic Potential Model for CoCrFeMnNi and AlCoCrFeNi High-entropy Alloys 64
4.1 Introduction 64
4.2 Methodology 66
4.2.1 MEAM parametrization 66
4.2.2 Stacking fault energy (SFE) calculation 68
4.2.3 Mechanical properties calculation 69
4.2.4 Computational detail 71
4.3 Modification of CoCrFeMnNi MEAM potential model 72
4.3.1 Validation of CoCrFeMnNi MEAM model 72
4.3.2 Molecular dynamics simulations of CoCrFeMnNi alloy 76
4.4 Development of AlCoCrFeNi MEAM potential model 82
4.4.1 Validation of homogeneous AlxCoCrFeNi alloys 82
4.4.2 Energies of NiAl-segragated AlxCoCrFeNi alloys 86
4.4.3 Energies of NixCoCrFe alloys 89
4.4.4 Molecular dynamics simulations of Al1.0CoCrFeNi alloy 90
4.4.5 Molecular dynamics simulations of Al0.5CoCrFeNi alloy 97
4.5 Summary 104
Chapter 5. Conclusions 106
Reference 108
Appendix 115
dc.language.isoen
dc.subject相穩定度zh_TW
dc.subject古典力場模型zh_TW
dc.subject高熵合金zh_TW
dc.subject第一原理計算zh_TW
dc.subjectfirst-principles calculationen
dc.subjecthigh-entropy alloyen
dc.subjectclassical modelingen
dc.subjectphase stabilityen
dc.title運用第一原理計算搭配古典力場模型探討鋁鈷鉻鐵鎳高熵合金的析出行為及相穩定度zh_TW
dc.titleFirst-principles Calculations and MEAM Modeling of the Precipitation Behavior and Phase Stability in the AlCoCrFeNi High-entropy Alloyen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee許文東(Wen-Dung Hsu),吳鉉忠(Hsuan-Chung Wu),李明憲(Ming-Hsien Lee)
dc.subject.keyword高熵合金,第一原理計算,古典力場模型,相穩定度,zh_TW
dc.subject.keywordhigh-entropy alloy,first-principles calculation,classical modeling,phase stability,en
dc.relation.page123
dc.identifier.doi10.6342/NTU201904184
dc.rights.note有償授權
dc.date.accepted2019-10-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
5.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved