Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74852
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor毛明華(Ming-Hua Mao)
dc.contributor.authorCheng-Hao Chuen
dc.contributor.author朱承澔zh_TW
dc.date.accessioned2021-06-17T09:08:51Z-
dc.date.available2024-11-04
dc.date.copyright2019-11-04
dc.date.issued2019
dc.date.submitted2019-10-29
dc.identifier.citation[1] A. C. Ford, J. C. Ho, Y.-L. Chueh, Y.-C. Tseng, Z. Y. Fan, J. Guo, J. Bokor, and A. Javey, 'Diameter-Dependent Electron Mobility of InAs Nanowires,' Nano Lett., vol. 9, no. 1, pp. 360-365, 2009.
[2] M. Scheffler, S. Nadj-Perge, L. P. Kouwenhoven, M. T. Borgström, and E. P. A. M. Bakkers, 'Diameter-dependent conductance of InAs nanowires,' J. Appl. Phys., vol. 106, no. 12, p. 124303, 2009.
[3] J. J. Hou, F. Y. Wang, N. Han, H. S. Zhu, K. W. Fok, W. C. Lam, S. P. Yip, T. F. Hung, J. E.-Y. Lee, and J. C. Ho, 'Diameter dependence of electron mobility in InGaAs nanowires,' Appl. Phys. Lett., vol. 102, no. 9, p. 093112, 2013.
[4] M. Lee, H. Kim, H. Lee, S. Nam, W. Park, and K. Kim, 'Electrical Properties of Silicon Nanowire Fabricated by Patterning and Oxidation Process,' IEEE Trans. Nanotechnol., vol. 11, no. 3, pp. 565-569, 2012.
[5] X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li, and C. M. Lieber, 'InAs/InP Radial Nanowire Heterostructures as High Electron Mobility Devices,' Nano Letters, vol. 7, no. 10, pp. 3214-3218, 2007.
[6] F. Y. Wang, S. P. Yip, N. Han, K. W. Fok, H. Lin, J. J. Hou, G. F. Dong, T. F. Hung, K. S. Chan, and J. C. Ho, 'Surface roughness induced electron mobility degradation in InAs nanowires,' Nanotechnology, vol. 24, no. 37, p. 375202, 2013.
[7] Z. Cui, T. Ishikura, F. Jabeen, J. C. Harmand, and K. Yoh, 'Fabrication and characterization of a δ-dope InAs/InP core shell nanowire transistor,' J. Cryst. Growth, vol. 378, pp. 511-514, 2013.
[8] M. D. Schroer and J. R. Petta, 'Correlating the Nanostructure and Electronic Properties of InAs Nanowires,' Nano Lett., vol. 10, no. 5, pp. 1618-1622, 2010.
[9] Y. Gu, J. P. Romankiewicz, J. K. David, J. L. Lensch, and L. J. Lauhon, 'Quantitative Measurement of the Electron and Hole Mobility−Lifetime Products in Semiconductor Nanowires,' Nano Lett., vol. 6, pp. 948-952, 2006.
[10] J. E. Allen, E. R. Hemesath, and L. J. Lauhon, 'Scanning Photocurrent Microscopy Analysis of Si Nanowire Field-Effect Transistors Fabricated by Surface Etching of the Channel,' Nano Lett., vol. 9, pp. 1903-1908, 2009.
[11] R. Graham, C. Miller, E. Oh, and D. Yu, 'Electric Field Dependent Photocurrent Decay Length in Single Lead Sulfide Nanowire Field Effect Transistors,' Nano Lett., vol. 11, pp. 717-722, 2011.
[12] A. D. Mohite, D. E. Perea, S. Singh, S. A. Dayeh, I. H. Campbell, S. T. Picraux, and H. Htoon, 'Highly Efficient Charge Separation and Collection across in Situ Doped Axial VLS-Grown Si Nanowire p–n Junctions,' Nano Lett., vol. 12, no. 4, pp. 1965-1971, 2012.
[13] B. H. Son, J.-K. Park, J. T. Hong, J.-Y. Park, S. Lee, and Y. H. Ahn, 'Imaging Ultrafast Carrier Transport in Nanoscale Field-Effect Transistors,' ACS Nano, vol. 8, no. 11, pp. 11361-11368, 2014.
[14] M. Triplett, Y. Yang, F. Léonard, A. A. Talin, M. S. Islam, and D. Yu, 'Long Minority Carrier Diffusion Lengths in Bridged Silicon Nanowires,' Nano Lett., vol. 15, pp. 523-529, 2015.
[15] C. Gutsche, R. Niepelt, M. Gnauck, A. Lysov, W. Prost, C. Ronning, and F.-J. Tegude, 'Direct Determination of Minority Carrier Diffusion Lengths at Axial GaAs Nanowire p–n Junctions,' Nano Lett., vol. 12, pp. 1453-1458, 2012.
[16] C. Y. Chen, A. Shik, A. Pitanti, A. Tredicucci, D. Ercolani, L. Sorba, F. Beltram, and H. E. Ruda, 'Electron beam induced current in InSb-InAs nanowire type-III heterostructures,' Appl. Phys. Lett., vol. 101, p. 063116, 2012.
[17] G. Chen, T. McGuckin, C. J. Hawley, E. M. Gallo, P. Prete, I. Miccoli, N. Lovergine, and J. E. Spanier, 'Subsurface Imaging of Coupled Carrier Transport in GaAs/AlGaAs Core–Shell Nanowires,' Nano Lett., vol. 15, pp. 75-79, 2015.
[18] Z. Liu, T. Luo, B. Liang, G. Chen, G. Yu, X. M. Xie, D. Chen, and G. Z. Shen, 'High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared,' Nano Res., journal article vol. 6, no. 11, pp. 775-783, 2013.
[19] J. Miao, W. Hu, N. Guo, Z. Lu, X. Zou, L. Liao, S. Shi, P. Chen, Z. Fan, J. C. Ho, T.-X. Li, X. S. Chen, and W. Lu, 'Single InAs Nanowire Room-Temperature Near-Infrared Photodetectors,' ACS Nano, vol. 8, pp. 3628-3635, 2014.
[20] N. Guo, W. Hu, L. Liao, S. Yip, J. C. Ho, J. Miao, Z. Zhang, J. Zou, T. Jiang, S. Wu, X. Chen, and W. Lu, 'Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature,' Adv. Mater., vol. 26, no. 48, pp. 8203-8209, 2014.
[21] H. Wook Shin, S. Jun Lee, D. Gun Kim, M.-H. Bae, J. Heo, K. Jin Choi, W. Jun Choi, J.-w. Choe, and J. Cheol Shin, 'Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays,' Sci. Rep., Article vol. 5, p. 10764, 2015.
[22] F. Patolsky and C. M. Lieber, 'Nanowire nanosensors,' Mater. Today, vol. 8, no. 4, pp. 20-28, 2005.
[23] X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, 'Single-nanowire electrically driven lasers,' Nature, vol. 421, pp. 241-245, 2003.
[24] D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, 'Optically pumped room-temperature GaAs nanowire lasers,' Nat. Photon., vol. 7, pp. 963-968, 2013.
[25] S. A. Dayeh, D. P. R. Aplin, X. Zhou, P. K. L. Yu, E. T. Yu, and D. Wang, 'High Electron Mobility InAs Nanowire Field-Effect Transistors,' Small, vol. 3, pp. 326-332, 2007.
[26] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, 'Nanowire transistors without junctions,' Nat. Nanotech., vol. 5, pp. 225-229, 2010.
[27] J. J. Gu, Y. Q. Liu, Y. Q. Wu, R. Colby, R. G. Gordon, and P. D. Ye, 'First experimental demonstration of gate-all-around III-V MOSFETs by top-down approach,' IEEE Int. Electron Devices Meet., pp. 33.2.1-33.2.4, 2011.
[28] K. Tomioka, M. Yoshimura, and T. Fukui, 'A III-V nanowire channel on silicon for high-performance vertical transistors,' Nature, vol. 488, no. 7410, pp. 189-192, 2012.
[29] K. M. Persson, M. Berg, M. B. Borg, J. Wu, S. Johansson, J. Svensson, K. Jansson, E. Lind, and L. E. Wernersson, 'Extrinsic and Intrinsic Performance of Vertical InAs Nanowire MOSFETs on Si Substrates,' IEEE Trans. Electron Devices, vol. 60, pp. 2761-2767, 2013.
[30] D. Y. Fu, J. J. Zou, K. Wang, R. Zhang, D. Yu, and J. Q. Wu, 'Electrothermal Dynamics of Semiconductor Nanowires under Local Carrier Modulation,' Nano Lett., vol. 11, no. 9, pp. 3809-3815, 2011.
[31] R. Xiao, Y. Hou, M. Law, and D. Yu, 'On the Use of Photocurrent Imaging To Determine Carrier Diffusion Lengths in Nanostructured Thin-Film Field-Effect Transistors,' J. Phys. Chem. C, vol. 122, no. 32, pp. 18356-18364, 2018.
[32] C. H. Chu, M.-H. Mao, C. W. Yang, and H. H. Lin, 'A New Analytic Formula for Minority Carrier Decay Length Extraction from Scanning Photocurrent Profiles in Ohmic-Contact Nanowire Devices,' Sci. Rep., vol. 9, no. 1, p. 9426, 2019.
[33] Y. H. Ahn, J. Dunning, and J. Park, 'Scanning Photocurrent Imaging and Electronic Band Studies in Silicon Nanowire Field Effect Transistors,' Nano Letters, vol. 5, no. 7, pp. 1367-1370, 2005.
[34] J. E. Allen, D. E. Perea, E. R. Hemesath, and L. J. Lauhon, 'Nonuniform Nanowire Doping Profiles Revealed by Quantitative Scanning Photocurrent Microscopy,' Adv. Mater., vol. 21, no. 30, pp. 3067-3072, 2009.
[35] J. H. Yoon, H. J. Jung, J. T. Hong, J.-Y. Park, S. Lee, S. W. Lee, and Y. H. Ahn, 'Electronic Band Alignment at Complex Oxide Interfaces Measured by Scanning Photocurrent Microscopy,' Sci. Rep., vol. 7, no. 1, p. 3824, 2017.
[36] A. Woessner, P. Alonso-González, M. B. Lundeberg, Y. Gao, J. E. Barrios-Vargas, G. Navickaite, Q. Ma, D. Janner, K. Watanabe, A. W. Cummings, T. Taniguchi, V. Pruneri, S. Roche, P. Jarillo-Herrero, J. Hone, R. Hillenbrand, and F. H. L. Koppens, 'Near-field photocurrent nanoscopy on bare and encapsulated graphene,' Nat. Commun., vol. 7, p. 10783, 2016.
[37] T. Wang, S. Hu, B. Chamlagain, T. Hong, Z. Zhou, S. M. Weiss, and Y.-Q. Xu, 'Visualizing Light Scattering in Silicon Waveguides with Black Phosphorus Photodetectors,' Adv. Mater., vol. 28, no. 33, pp. 7162-7166, 2016.
[38] D. Vasileska, S. M. Goodnick, and G. Klimeck, Computational Electronics. CRC Press, 2010.
[39] W. van Roosbroeck, 'Theory of the flow of electrons and holes in germanium and other semiconductors,' Bell Syst. Tech. J., vol. 29, no. 4, pp. 560-607, 1950.
[40] E. M. Grumstrup, M. M. Gabriel, E. M. Cating, C. W. Pinion, J. D. Christesen, J. R. Kirschbrown, E. L. Vallorz, J. F. Cahoon, and J. M. Papanikolas, 'Ultrafast Carrier Dynamics in Individual Silicon Nanowires: Characterization of Diameter-Dependent Carrier Lifetime and Surface Recombination with Pump–Probe Microscopy,' J. Phys. Chem. C, vol. 118, no. 16, pp. 8634-8640, 2014.
[41] D. B. M. Klaassen, 'A unified mobility model for device simulation—I. Model equations and concentration dependence,' Solid-State Electronics, vol. 35, no. 7, pp. 953-959, 1992.
[42] D. M. Caughey and R. E. Thomas, 'Carrier mobilities in silicon empirically related to doping and field,' Proc. IEEE, vol. 55, no. 12, pp. 2192-2193, 1967.
[43] J. Dziewior and W. Schmid, 'Auger coefficients for highly doped and highly excited silicon,' Appl. Phys. Lett., vol. 31, no. 5, pp. 346-348, 1977.
[44] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles. Singapore: McGraw-Hill, 2012.
[45] G. Koblmüller, K. Vizbaras, S. Hertenberger, S. Bolte, D. Rudolph, J. Becker, M. Döblinger, M.-C. Amann, J. J. Finley, and G. Abstreiter, 'Diameter dependent optical emission properties of InAs nanowires grown on Si,' Appl. Phys. Lett., vol. 101, no. 5, p. 053103, 2012.
[46] H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, 'Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,' Nanotechnology, vol. 24, no. 21, p. 214006, 2013.
[47] A. C. Ford, S. Chuang, J. C. Ho, Y.-L. Chueh, Z. Y. Fan, and A. Javey, 'Patterned p-Doping of InAs Nanowires by Gas-Phase Surface Diffusion of Zn,' Nano Lett., vol. 10, no. 2, pp. 509-513, 2010.
[48] M. P. Mikhailova, M. Levinshtein, and S. Rumyantsev, M. Shur, Ed. Handbook Series on Semiconductor Parameters (Chapter 7: InAs). World Scientific, 1996.
[49] S. A. Dayeh, D. Susac, K. L. Kavanagh, E. T. Yu, and D. Wang, 'Field Dependent Transport Properties in InAs Nanowire Field Effect Transistors,' Nano Lett., vol. 8, no. 10, pp. 3114-3119, 2008.
[50] J. N. Chazalviel, Coulomb Screening by Mobile Charges: Applications to Materials Science, Chemistry, and Biology. Birkhäuser Boston, 1999.
[51] D. Ferry, Semiconductor Transport. Taylor & Francis, 2000.
[52] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits. Wiley, 2012.
[53] M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, 'Empirical low-field mobility model for III–V compounds applicable in device simulation codes,' J. Appl. Phys., vol. 87, no. 6, pp. 2890-2900, 2000.
[54] T. Váczi, 'A New, Simple Approximation for the Deconvolution of Instrumental Broadening in Spectroscopic Band Profiles,' Appl. Spectrosc., vol. 68, no. 11, pp. 1274-1278, 2014.
[55] M. N. Neuman, 'Rules for resolution correction of measured linewidths,' Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 41, no. 10, pp. 1163-1171, 1985.
[56] R. K. Singh, S. N. Singh, B. P. Asthana, and C. M. Pathak, 'Deconvolution of lorentzian Raman Linewidth: Techniques of polynomial fitting and extrapolation,' J. Raman Spectrosc, vol. 25, no. 6, pp. 423-428, 1994.
[57] C. H. Chu and M.-H. Mao, 'Feasibility Study of Scanning Photocurrent Microscopy in Ultra-Thin Silicon Nanowire Ohmic-Contact Devices,' presented at the Microoptics Conference (MOC), 2019.
[58] J. Chen, T. Saraya, and T. Hiramoto, 'Experimental Investigations of Electron Mobility in Silicon Nanowire nMOSFETs on (110) Silicon-on-Insulator,' IEEE Electron Device Letters, vol. 30, no. 11, pp. 1203-1205, 2009.
[59] J. M. Dorkel and P. Leturcq, 'Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level,' Solid-State Electronics, vol. 24, no. 9, pp. 821-825, 1981.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74852-
dc.description.abstract具空間解析能力之電流量測技術如掃瞄式光電流顯微術(scanning photocurrent microscopy)已被應用於在製作成完整元件之前的半導體結構,如奈米線中,探索本質的載子傳輸特性。此光電流量測技術為許多以奈米線為基礎元件,包含了光偵測器、太陽能元件、雷射、感測器及電晶體等,提供了寶貴的載子傳輸資訊。在本論文中,我們將利用掃瞄式光電流顯微術來探討半導體奈米線中載子的傳輸特性。
  首先,我們利用數值模擬的方式在PN接面型(p-n junction-based)及歐姆接觸型奈米線元件中解互相耦合的帕松方程式(Poisson’s equation)與兩條連續方程式。過去在文獻中,往往都使用一個簡單的指數遞減函數來擷取載子擴散長度或是載子衰減長度。我們的數值模擬結果驗證了對於有著巨大內建電場的PN接面型(p-n junction-based)元件,確實能基於掃瞄式光電流輪廓僅受到載子擴散機制影響的假設,利用一個簡單的指數遞減函數由掃瞄式光電流輪廓中擷取出載子擴散長度。然而我們發現,在無巨大內建電場的歐姆接觸型元件中,該傳統擷取技術將不再有效。有別於文獻中過於簡化的模型,我們保留了激發光感應電場(ΔE)的影響,由帕松方程式及連續方程式出發,成功的推導了掃瞄式光電流輪廓的新解析公式,我們發現掃瞄式光電流輪廓與少數載子衰減長度間的關係可以用一個特殊的解析公式來表示。我們先以數值模擬驗證了在歐姆接觸型元件中所推導出解析公式於砷化銦及矽奈米線中的有效性,並且在許多不同材料參數與操作條件下探討解析公式的適用範圍。我們也實際以N型砷化銦奈米線來演示載子衰減長度的擷取技術,於不同激發強度及不同外加電場的實驗結果也進一步確認了解析公式的有效性。
  我們也以數值模擬的方式探討了歐姆接觸型元件於強光激發下的掃瞄式光電流輪廓,指出了文獻中對於歐姆接觸型元件中掃瞄式光電流輪廓的錯誤理解,我們發現了在強光激發下的掃瞄式光電流輪廓雖然會呈現一個簡單的指數遞減趨勢,但由掃瞄式光電流輪廓擷取出的光電流衰減長度卻與載子實際的衰減長度相差很多,故我們認為歐姆接觸型元件並不適合在強光激發條件下擷取載子衰減長度。
zh_TW
dc.description.abstractSpatially resolved current measurements such as scanning photocurrent microscopy (SPCM) serve as important tools to explore the intrinsic carrier transport properties directly in semiconductor structures, such as nanowires, before they are put into device fabrications. These techniques provide valuable information for a wide range of nanowire-based devices including photodetectors, photovoltaics, lasers, sensors, and transistors. However, there is not always a rigorous theoretical model established for every important device category, for example, ohmic-contact devices. In this dissertation, the carrier transport in semiconductor nanowires is studied both theoretically and experimentally using scanning photocurrent microscopy.
First, scanning photocurrent profiles in both p-n junction and ohmic-contact nanowire devices are theoretically studied by solving the coupled Poisson’s and two continuity equations numerically. In the literature, a simple-exponential-decay formula is always used to extract the carrier diffusion length or carrier decay length from scanning photocurrent profiles in nanowire devices. This conventional fitting formula based on the assumption of carrier diffusion dominance in the scanning photocurrent profiles was verified numerically in p-n junction devices where a large built-in electric field exists. However, the scanning photocurrent profiles in ohmic-contact devices cannot be appropriately fitted by the conventional fitting formula. Furthermore, the scanning photocurrent profile and the carrier spatial distribution strikingly do not share the same functional form in such devices. In order to extract the transport parameters from the scanning photocurrent profiles, an analytic formula is derived by solving the coupled Poisson’s and continuity equations. Unlike the over-simplified model in the literature, the influence of photo-carrier-induced electric field ΔE is included in our analytical model. A surprising new analytic relation between the scanning photocurrent profile and the minority carrier decay length was established. The effectiveness of the formula in nanowires with different mobility values under different pumping and bias conditions was thoroughly discussed. The analytic formula was applied in n-InAs ohmic-contact nanowire devices, and the experimental photocurrent profiles also confirmed the adequacy of the derived analytic formula. Electric-field dependence of the carrier decay length was directly observed. Then the mobility-lifetime product and the carrier diffusion length can be obtained. With an accompanying pump-probe carrier lifetime measurement, the minority carrier mobility was obtained.
The photocurrent profiles of ohmic-contact nanowire devices in strong excitation regime were also investigated using numerical simulation, and the misinterpretation of the scanning photocurrent profiles in literature is indicated. For the analysis of experimental results in SPCM and EBIC techniques, a simplified model based on the assumption of zero-ΔE is always used throughout the literature. Based on the over-simplified model in the literature, simple exponential decay function is applied to extract the carrier transport parameters in nanowire devices. According to our numerical simulation, the scanning photocurrent profiles in strong excitation regime did resemble simple exponential decay functions which are similar to those reported experimentally in the SPCM literature. However, the fitted photocurrent decay length was found to be remarkably different from the fitted carrier decay length. Carrier decay length extraction from such photocurrent decay profiles under strong excitation can suffer large inaccuracy in ohmic-contact nanowire devices. Therefore, SPCM should be avoided to operate under strong excitation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:08:51Z (GMT). No. of bitstreams: 1
ntu-108-D03943019-1.pdf: 7959788 bytes, checksum: cbe665ef5b784f39fee9f7750ecd5f6e (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
中文摘要 i
Abstract iii
Table of Contents v
List of Figures vii
Chapter 1 Introduction 1
1.1 Overview of Scanning Photocurrent Microscopy 1
1.2 Extraction of Carrier Transport Parameters in Nanowires 5
1.3 Organization of the Dissertation 7
Chapter 2 Numerical Study for SPCM 8
2.1 Numerical Simulation for SPCM 8
2.2 Extraction of Carrier Diffusion Length in P-N Junction Devices 9
2.3 Extraction of Carrier Decay Length in Ohmic-Contact Devices 19
Chapter 3 Analytical Model for SPCM in Ohmic-Contact Nanowire Devices 25
3.1 Derivation of Analytic Formula 25
3.1.1 Fitting Function Development for Carrier Decay Length Extraction 40
3.2 Effectiveness of the Analytical Model 40
3.2.1 Ultrathin Si Nanowires 49
Chapter 4 Device Fabrications 53
4.1 Sample Descriptions and Preparations 53
4.2 Nanowire Positioning 54
4.3 Patterning of Electrodes 55
Chapter 5 Measurements and Results 57
5.1 Measurement Schemes 57
5.1.1 Scanning Photocurrent Microscopy 57
5.1.2 Reflective Pump-Probe Setup 59
5.2 Pumping-Density -Dependent SPCM 60
5.3 Electric-Field-Dependent SPCM 62
5.4 Reflective Pump-Probe Carrier Lifetime Measurement 64
5.5 Summary 66
Chapter 6 SPCM Profiles in Strong Excitation Regime 67
6.1 Overview 67
6.2 Simulation Results and Discussion 70
6.3 Summary 73
Chapter 7 Conclusions and Future Directions 74
7.1 Conclusions 74
7.2 Future Directions 76
Reference 77
dc.language.isoen
dc.subject載子衰減長度zh_TW
dc.subject掃描式光電流顯微術zh_TW
dc.subject奈米線zh_TW
dc.subjectScanning photocurrent microscopyen
dc.subjectNanowireen
dc.subjectCarrier decay lengthen
dc.title應用掃描式光電流顯微術於半導體奈米線之載子傳輸特性研究zh_TW
dc.titleStudy of Carrier Transport in Semiconductor Nanowires using Scanning Photocurrent Microscopyen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.oralexamcommittee胡振國(Jenn-Gwo Hwu),林浩雄(Hao-Hsiung Lin),陳敏璋(Miin-Jang Chen),吳肇欣(Chao-Hsin Wu),林聖迪(Sheng-Di Lin)
dc.subject.keyword掃描式光電流顯微術,奈米線,載子衰減長度,zh_TW
dc.subject.keywordScanning photocurrent microscopy,Nanowire,Carrier decay length,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201904245
dc.rights.note有償授權
dc.date.accepted2019-10-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
7.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved