Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74848
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭錦龍
dc.contributor.authorYou-Yi Linen
dc.contributor.author林祐儀zh_TW
dc.date.accessioned2021-06-17T09:08:46Z-
dc.date.available2024-11-04
dc.date.copyright2019-11-04
dc.date.issued2019
dc.date.submitted2019-10-29
dc.identifier.citationYeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303..
Cantor, B., Chang, I. T. H., Knight, P., & Vincent, A. J. B. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375, 213-218.
Miracle, D. B., & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511.
Jien-Wei, Y. (2006). Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 31(6), 633-648.
https://mme.iitm.ac.in/hea/html/global/global-publications.html
Tsai, M. H., & Yeh, J. W. (2014). High-entropy alloys: a critical review. Materials Research Letters, 2(3), 107-123.
Tsai, K. Y., Tsai, M. H., & Yeh, J. W. (2013). Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 61(13), 4887-4897.
Kucza, W., Dąbrowa, J., Cieślak, G., Berent, K., Kulik, T., & Danielewski, M. (2018). Studies of “sluggish diffusion” effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach. Journal of Alloys and Compounds, 731, 920-928.
Ye, Y. F., Wang, Q., Lu, J., Liu, C. T., & Yang, Y. (2016). High-entropy alloy: challenges and prospects. Materials Today, 19(6), 349-362.
Miracle, D. B., & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511.
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H., George, E. P., & Ritchie, R. O. (2014). A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345(6201), 1153-1158.
Baskes, M. I. (1992). Modified embedded-atom potentials for cubic materials and impurities. Physical review B, 46(5), 2727.
Lee, B. J., & Baskes, M. I. (2000). Second nearest-neighbor modified embedded-atom-method potential. Physical Review B, 62(13), 8564.
Faken, D., & Jónsson, H. (1994). Systematic analysis of local atomic structure combined with 3D computer graphics. Computational Materials Science, 2(2), 279-286.
Vitos, L., Nilsson, J. O., & Johansson, B. (2006). Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory. Acta Materialia, 54(14), 3821-3826.
Denteneer, P. J. H., & Van Haeringen, W. (1987). Stacking-fault energies in semiconductors from first-principles calculations. Journal of Physics C: Solid State Physics, 20(32), L883.
Cheng, C., Needs, R. J., & Heine, V. (1988). Inter-layer interactions and the origin of SiC polytypes. Journal of Physics C: Solid State Physics, 21(6), 1049.
McGreevy, R. L., & Pusztai, L. (1988). Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Molecular simulation, 1(6), 359-367.
Behler, J., & Parrinello, M. (2007). Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical review letters, 98(14), 146401.
Behler, J. (2015). Constructing high‐dimensional neural network potentials: A tutorial review. International Journal of Quantum Chemistry, 115(16), 1032-1050.
Castin, N., Messina, L., Domain, C., Pasianot, R. C., & Olsson, P. (2017). Improved atomistic Monte Carlo models based on ab-initio-trained neural networks: Application to FeCu and FeCr alloys. Physical Review B, 95(21), 214117.
Artrith, N., & Urban, A. (2016). An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2. Computational Materials Science, 114, 135-150.
Artrith, N., Urban, A., & Ceder, G. (2017). Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Physical Review B, 96(1), 014112.
Montavon, G., Orr, G., & Müller, K. R. (Eds.). (2012). Neural networks: tricks of the trade (Vol. 7700). springer.
Quiza, R., & Davim, J. P. (2011). Computational methods and optimization. In Machining of hard materials (pp. 177-208). Springer, London.
Behler, J. (2011). Atom-centered symmetry functions for constructing high-dimensional neural network potentials. The Journal of chemical physics, 134(7), 074106.
Eshet, H., Khaliullin, R. Z., Kühne, T. D., Behler, J., & Parrinello, M. (2010). Ab initio quality neural-network potential for sodium. Physical Review B, 81(18), 184107.
Khaliullin, R. Z., Eshet, H., Kühne, T. D., Behler, J., & Parrinello, M. (2010). Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface. Physical Review B, 81(10), 100103.
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.
Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558.
Kresse, G., & Hafner, J. (1994). Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251.
Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 6(1), 15-50.
Blöchl, P. E. (1994). Projector augmented-wave method. Physical review B, 50(24), 17953.
楊哲人, 林新智, 吳錫侃, 林招松, 薛承輝, 郭錦龍, 顏鴻威, 陳志遠, 陳志軒. (2019). Cantor alloy 單相合金及衍生多相高熵合金(工業級塊材與薄帶)組織-性質之開發研究 第二年度期中進度報告. (MOST 106-2218-E-002-025).
Zhao, S., Stocks, G. M., & Zhang, Y. (2017). Stacking fault energies of face-centered cubic concentrated solid solution alloys. Acta Materialia, 134, 334-345.
Hsieh, K. T. (2018). 運用第一原理計算與與古典力場模型探討鉻錳鐵鈷鎳高熵合金之相穩定度和相轉變機制 (Mater's thesis). Available from airiti Library. (U0001-0308201816313700) doi:10.6342/NTU201802482
Florio, J. V., Rundle, R. E., & Snow, A. I. (1952). Compounds of thorium with transition metals. I. The thorium–manganese system. Acta Crystallographica, 5(4), 449-457.
Kubitz, R., & Hayes, F. H. (1987). Enthalpies of mixing in the iron-manganese system by direct reaction calorimetry. Monatshefte für Chemie/Chemical Monthly, 118(1), 31-41.
Daw, M. S., & Baskes, M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29(12), 6443.
Foiles, S. M. (1985). Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method. Physical Review B, 32(12), 7685.
Baskes, M. I. (1992). Modified embedded-atom potentials for cubic materials and impurities. Physical review B, 46(5), 2727.
Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 117(1), 1-19.
Asadi, E., Zaeem, M. A., Moitra, A., & Tschopp, M. A. (2014). Effect of vacancy defects on generalized stacking fault energy of fcc metals. Journal of Physics: Condensed Matter, 26(11), 115404.
Tadmor, E. B., & Bernstein, N. (2004). A first-principles measure for the twinnability of FCC metals. Journal of the Mechanics and Physics of Solids, 52(11), 2507-2519.
He, J. Y., Liu, W. H., Wang, H., Wu, Y., Liu, X. J., Nieh, T. G., & Lu, Z. P. (2014). Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia, 62, 105-113.
Wu, Z., Parish, C. M., & Bei, H. (2015). Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys. Journal of Alloys and Compounds, 647, 815-822.
He, J. Y., Liu, W. H., Wang, H., Wu, Y., Liu, X. J., Nieh, T. G., & Lu, Z. P. (2014). Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia, 62, 105-113.
Cheng, H., Liu, X., Tang, Q., Wang, W., Yan, X., & Dai, P. (2019). Microstructure and mechanical properties of FeCoCrNiMnAlx high-entropy alloys prepared by mechanical alloying and hot-pressed sintering. Journal of Alloys and Compounds, 775, 742-751.
Chen, J., Yao, Z., Wang, X., Lu, Y., Wang, X., Liu, Y., & Fan, X. (2018). Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy. Materials Chemistry and Physics, 210, 136-145.
Kibey, S. A., Wang, L. L., Liu, J. B., Johnson, H. T., Sehitoglu, H., & Johnson, D. D. (2009). Quantitative prediction of twinning stress in fcc alloys: Application to Cu-Al. Physical Review B, 79(21), 214202.
Park, J. M., Moon, J., Bae, J. W., Jung, J., Lee, S., & Kim, H. S. (2018). Effect of annealing heat treatment on microstructural evolution and tensile behavior of Al0. 5CoCrFeMnNi high-entropy alloy. Materials Science and Engineering: A, 728, 251-258.
Gwalani, B., Gorsse, S., Choudhuri, D., Zheng, Y., Mishra, R. S., & Banerjee, R. (2019). Tensile yield strength of a single bulk Al0. 3CoCrFeNi high entropy alloy can be tuned from 160 MPa to 1800 MPa. Scripta Materialia, 162, 18-23.
Kelchner, C. L., Plimpton, S. J., & Hamilton, J. C. (1998). Dislocation nucleation and defect structure during surface indentation. Physical review B, 58(17), 11085.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74848-
dc.description.abstract本論文透過第一原理配合密度泛函理論(DFT)計算以及古典力場模型,探討CrMnFeCoNi五元高熵合金中空缺缺陷以及少量的Al原子添加對於合金相穩定性以及疊差能的影響。同時也利用類神經網路發展CoCrNi三元合金的力場模型勢能。
在第一部分中,大量的DFT計算樣本資料(38262筆)用於建立CoCrNi三元合金的類神經網路勢能(NNPs),最終30-30-1、40-40-1和50-50-1三種不同結構的NNPs的平均絕對誤差(MAE)分別為26.9、30.9和32.3 meV/atom。從CoCrNi的NNPs訓練及驗證結果可以得知,NNPs的類神經網路架構及大小需要仔細的在計算資源以及類神經複雜度間進行權衡。此外,取樣時需要使用較大的結構進行取樣,以避免因為NNPs的截止距離和週期性邊界造成取樣偏差。
第二部分中,使用DFT和古典力場模型探討空缺缺陷對於CrMnFeCoNi的影響。在純面心立方(FCC)的金屬中空缺會使疊差能(SFE)下降,但是在CrMnFeCoNi中空缺卻會使疊差能上升;但是在純FCC金屬以及CrMnFeCoNi中空缺對於疊差滑移障礙(USFE)的影響卻呈現相同的趨勢。因此,單軸壓縮的分子動力學(MD)模擬用於釐清SFE和USFE變化對於機械性質的重要性。而我們的結果顯示,在純FCC金屬和CrMnFeCoNi中,空缺都能夠有效的降低<100>方向的單軸壓縮時的六方最密堆積(HCP)轉變比率以及差排密度。這樣的結果指出,因空缺而造成的USFE變化更能夠有效的影響整體機械性質。
在第三部分中,使用DFT研究少量的Al添加對於CrMnFeCoNi五元高熵合金疊差能的影響。在較高Al濃度的情況下,Al濃度的增加會明顯提升合金整體的疊差能。若是少量Al添加的情況下,雖然Al原子的周圍其疊差能依然會因此上升,但是其他較為遠離Al的區域,其疊差能卻會因此下降,甚至低於CrMnFeCoNi中的平均疊差能。因為考慮到Al-Ni是系統中極為穩定的二元對,我們也計算了結構中含有部分Al-Ni聚集的疊差能,結果顯示,部分Al-Ni聚集會使得因Al造成的局域疊差能不均勻分布更加明顯。而在包含不同成分合金的疊差能計算結果中顯示,Ni雖然會明顯提升系統整體的疊差能,但是卻是在高熵合金中扮演穩定FCC相的重要角色,因此可知對於主要為FCC相的高熵合金中Ni是相當關鍵的元素。鍵級和Bader電荷的分析結果指出,少量Al的添加可以使得Al原子周圍局域的電荷和鍵結產生明顯的變化,而其局域的鍵級變化也能夠解釋進一步解釋上文提及之微量Al加入造成的疊差能分布變化。
zh_TW
dc.description.abstractDensity functional theory (DFT) and modified embedded atom method (MEAM) are applied in this thesis to investigate the influence of vacancy and the minor addition of Al of CrMnFeCoNi high-entropy alloys (HEAs). Neural network potentials (NNPs) is also applied in this thesis to develop the force field potential for CoCrNi alloy.
In the first part, NNPs for CoCrNi ternary alloy system are developed by massive DFT data sampling, which is 38262 samples, and lot of time for training. The final mean absolute errors(MAE) of testing set for the NNPs with 30-30-1, 40-40-1 and 50-50-1 architectures are 26.9, 30.9 and 32.3 meV/atom respectively. The training and validation results indicate that the architecture of the NNPs should be carefully selected to trade off the computational cost and the complexity of functional. Furthermore, to avoid the sampling bias due to the cutoff distance of NNPs and the periodic boundary, the larger size of the strictures in sampling data set is very important.
In the second part, DFT and classical model calculations are used to investigate the influence of vacancy for CrMnFeCoNi HEA. The stacking fault energy (SFE) decrease by the vacancies in pure FCC metals, but, in CrMnFeCoNi HEA, the SFE increase by vacancies. However, the effects of vacancy for unstable stacking fault energy(USFE) are same in both pure FCC metals and CrMnFeCoNi HEA. Therefore, uniaxial compress molecular dynamics (MD) simulations with MEAM and EAM potentials are performed to clarify the importance of SFE and USFE for mechanical properties. As a result, the vacancies effectively decrease the HCP-transition percentage and the dislocation density in <100> compress direction in both CrMnFeCoNi and pure Ni, and the decrease of USFE which affected by vacancy is more important for mechanical properties.
In the third part, DFT is applied to study the effects of minor addition of Al for CrMnFeCoNi HEA. For higher concentration of Al, the SFE obviously raise for the addition of Al. Considering the minor addition of Al, the SFE near Al atom is same with the SFE in high concentration of Al. However, the SFE of stacking fault which is 3~4 layers apart from Al atom decreases and is even below the average in CrMnFeCoNi. Because of the affinity of Al-Ni pair, the SFE of the structure with partial precipitation of Al-Ni is also calculated, and the partial precipitation of Al-Ni induces the larger difference for SFE. In addition, the results of SFE of the structures with different composition show that Ni can significantly increase the SFE, but Ni can also stabilize FCC phase in HEA. Therefore, Ni is necessary for FCC-based HEA. The Bader charge and bond order analysis indicates that the minor addition of Al significantly changes the local charge distribution and bond strength near Al atom, and the change of bond strength can be used to explain the local SFE distribution for the effect of addition of Al mentioned above.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:08:46Z (GMT). No. of bitstreams: 1
ntu-108-R06527034-1.pdf: 6658171 bytes, checksum: ce3ad2ea7427bfddc5e59e29b662a483 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents論文口試委員審定書 ii
致謝 iii
摘要 iv
Abstract vi
List of Figures xi
List of Tables xvi
Chapter 1. Introduction 1
Chapter 2. Theory and methodology 7
2.1 First-principles calculation 7
2.2 Born-Oppenheimer approximation 7
2.3 Density functional theory (DFT) 8
2.3.1 Thomas-Fermi model 8
2.3.2 Hohenberg-Kohn theorem 9
2.3.3 Kohn-Sham equation 9
2.3.4 Exchange-correlation functional 11
2.3.5 Pseudopotential 11
2.4 Modified embedding atom method (MEAM) 12
2.5 Molecular dynamics (MD) simulations 15
2.5.1 Verlet algorithm 15
2.6 Structure construction and analysis method 16
2.6.1 Common neighbor analysis (CNA) 16
2.6.2 Stacking fault energy calculation 17
2.6.3 Reverse Monte Carlo (RMC) method 19
Chapter 3. Development of Neural Network Potential Model for CoCrNi Alloy 22
3.1 Methodology 22
3.1.1 Architecture of neural-network 22
3.1.2 Data sampling 26
3.1.3 Training NNPs 27
3.2 Testing and Validation 30
3.2.1 Unary system 30
3.2.2 Binary system 32
3.2.3 Ternary system 34
3.3 Summary 35
Chapter 4. First-principles and MEAM potential study of the influence of vacancy for CrMnFeCoNi High entropy alloy 37
4.1 Introduction 37
4.2 Computational details 38
4.2.1 Energetic calculation 38
4.2.2 Uniaxial compress simulation 41
4.3 Result and Discussion 43
4.3.1 The vacancy effect in AIM1 SFE 43
4.3.2 Influence of vacancy for unstable stacking fault energy(USFE) 45
4.3.3 Vacancy effect in uniaxial compress simulation 47
4.4 Summary 63
Chapter 5. First-principles study of the effect of minor addition of Al for CrMnFeCoNi High entropy alloy 64
5.1 Introduction 64
5.2 Methodology 66
5.2.1 Computational detail 66
5.2.2 Bader charge 68
5.2.3 Bond order 68
5.2.4 Centrosymmetry parameter (CSP) 69
5.3 Result and Discussion 69
5.3.1 Stacking fault energy with AIM1 model 69
5.3.2 Stacking fault energy with supercell model 70
5.3.3 The influence of elements in Stacking fault energy 73
5.3.4 The effect of Al addition for lattice distortion 75
5.3.5 Electronic structure analysis 77
5.4 Summary 81
Chapter 6. Conclusion 83
Reference 85
Appendix 90
dc.language.isoen
dc.subject類神經網路勢能zh_TW
dc.subject高熵合金zh_TW
dc.subject古典力場模型zh_TW
dc.subject第一原理計算zh_TW
dc.subjectFirst-principles calculationen
dc.subjectClassical force field modelingen
dc.subjectArtificial neural network potentialen
dc.subjectHigh entropy alloyen
dc.title運用第一原理計算、古典力場模型及類神經網路勢能探討鉻錳鐵鈷鎳鋁高熵合金及衍生系統的相穩定性及合金設計zh_TW
dc.titleFirst-principles, Classical Modeling and Artificial Neural Network Potential Study of the Phase Stability and Alloy Design of CrMnFeCoNiAl and Derived High-entropy Alloyen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李明憲,許文東,陳馨怡
dc.subject.keyword第一原理計算,古典力場模型,類神經網路勢能,高熵合金,zh_TW
dc.subject.keywordFirst-principles calculation,Classical force field modeling,Artificial neural network potential,High entropy alloy,en
dc.relation.page95
dc.identifier.doi10.6342/NTU201904248
dc.rights.note有償授權
dc.date.accepted2019-10-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved