請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74838完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭光宇(Guang-Yu Guo) | |
| dc.contributor.author | Chun-Hung Lin | en |
| dc.contributor.author | 林俊宏 | zh_TW |
| dc.date.accessioned | 2021-06-17T09:08:34Z | - |
| dc.date.available | 2021-02-22 | |
| dc.date.copyright | 2021-02-22 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-02 | |
| dc.identifier.citation | [1] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, 'Iron-Based Layered Superconductor: LaOFeP,' Journal of the American Chemical Society 128, 10012-10013 (2006). [2] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, 'Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K,' Journal of the American Chemical Society 130, 3296-3297 (2008). [3] M. Rotter, M. Tegel, and D. Johrendt, 'Superconductivity at 38 K in the Iron Arsenide (Ba1-xKx)Fe2As2,' Physical Review Letters 101, 107006 (2008). [4] K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, F. Chen, Y.-Y. Xue, and C.-W. Chu, 'Superconducting Fe-Based Compounds (A1-xSrx)Fe2As2 with A=K and Cs with Transition Temperatures up to 37 K,' Physical Review Letters 101, 107007 (2008). [5] Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, 'Substitution Effects on FeSe Superconductor,' Journal of the Physical Society of Japan 78, 074712-074712 (2009). [6] X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin, 'The superconductivity at 18 K in LiFeAs system,' Solid State Communications 148, 538-540 (2008). [7] Z. Deng, X. C. Wang, Q. Q. Liu, S. J. Zhang, Y. X. Lv, J. L. Zhu, R. C. Yu, and C. Q. Jin, 'A new “111” type iron pnictide superconductor LiFeP,' EPL (Europhysics Letters) 87, 37004 (2009). [8] M. J. Pitcher, T. Lancaster, J. D. Wright, I. Franke, A. J. Steele, P. J. Baker, F. L. Pratt, W. T. Thomas, D. R. Parker, S. J. Blundell, and S. J. Clarke, 'Compositional Control of the Superconducting Properties of LiFeAs,' Journal of the American Chemical Society 132, 10467-10476 (2010). [9] F. Rullier-Albenque, D. Colson, and A. Forget, 'Longitudinal magnetoresistance in Co-doped BaFe2As2 and LiFeAs single crystals: Interplay between spin fluctuations and charge transport in iron pnictides,' Physical Review B 88, 045105 (2013). [10] H. K. Onnes, 'Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures,' KNAW, Proceedings 13, 1910-1911 (1911). [11] W. Meissner and R. Ochsenfeld, 'Ein neuer Effekt bei Eintritt der Supraleitfähigkeit,' Naturwissenschaften 21, 787-788 (1933). [12] J. D. Patterson and B. D. Bailey, 'Solid-State Physics: Introduction to the Theory,' 3rd ed., 2019, p. 556. [13] H. K. Onnes, 'The Superconductivity of Mercury.,' Comm. Phys. Lab. Univ., Leiden Suppl. 29 (1911). [14] F. London and H. London, 'The Electromagnetic Equations of the Supraconductor,' Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 149, 71-88 (1935). [15] V. L. a. L. Ginzburg, L.D., 'On the Theory of superconductivity,' Zh. Eksp. Teor. Fiz. 20, 1064-1082 (1950). [16] E. Maxwell, 'Isotope Effect in the Superconductivity of Mercury,' Physical Review 78, 477-477 (1950). [17] C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbitt, 'Superconductivity of Isotopes of Mercury,' Physical Review 78, 487-487 (1950). [18] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, 'Theory of Superconductivity,' Physical Review 108, 1175-1204 (1957). [19] G. M. Eliashberg, 'Interactions between electrons and lattice vibrations in a superconductor,' Soviet physics - JETP 11 (1960). [20] W. L. McMillan, 'Transition Temperature of Strong-Coupled Superconductors,' Physical Review 167, 331-344 (1968). [21] S. Sen and G.-Y. Guo, 'Pressure induced Lifshitz transition in ThFeAsN,' Physical Review Materials 4, 104802 (2020). [22] S. Sen and G.-Y. Guo, 'Electronic structure, lattice dynamics, and magnetic properties of ThXAsN (X=Fe,Co,Ni) superconductors: A first-principles study,' Physical Review B 102, 224505 (2020). [23] H. Fröhlich, 'Electrons in lattice fields,' Advances in Physics 3, 325-361 (1954). [24] C. Kittle, 'Quantum Theory of Solids,' 1987, p. 153. [25] M. Born and R. Oppenheimer, 'Zur Quantentheorie der Molekeln,' Annalen der Physik 389, 457-484 (1927). [26] L. H. Thomas, 'The calculation of atomic fields,' Mathematical Proceedings of the Cambridge Philosophical Society 23, 542-548 (1927). [27] E. J. R. A. N. L. Fermi, 'Un metodo statistico per la determinazione di alcune prioprietà dell'atomo.,' Rendiconti Academia Dei Lincei 6 (1927). [28] P. Hohenberg and W. Kohn, 'Inhomogeneous Electron Gas,' Physical Review 136, B864-B871 (1964). [29] W. Kohn and L. J. Sham, 'Self-Consistent Equations Including Exchange and Correlation Effects,' Physical Review 140, A1133-A1138 (1965). [30] J. P. Perdew, K. Burke, and M. Ernzerhof, 'Generalized Gradient Approximation Made Simple,' Physical Review Letters 77, 3865-3868 (1996). [31] A. Sommerfeld, 'Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik,' Zeitschrift für Physik 47, 1-32 (1928). [32] P. Debye, 'Zur Theorie der spezifischen Wärmen,' Annalen der Physik 344, 789-839 (1912). [33] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, 'QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,' Journal of Physics: Condensed Matter 21, 395502 (2009). [34] N. J. Ramer and A. M. Rappe, 'Application of a new virtual crystal approach for the study of disordered perovskites,' Journal of Physics and Chemistry of Solids 61, 315-320 (2000). [35] P. B. Allen and R. C. Dynes, 'Transition temperature of strong-coupled superconductors reanalyzed,' Physical Review B 12, 905-922 (1975). [36] I. R. Shein and A. L. Ivanovskii, 'Electronic properties of novel 6 K superconductor LiFeP in comparison with LiFeAs from first principles calculations,' Solid State Communications 150, 152-156 (2010). [37] U. Stockert, M. Abdel-Hafiez, D. V. Evtushinsky, V. B. Zabolotnyy, A. U. B. Wolter, S. Wurmehl, I. Morozov, R. Klingeler, S. V. Borisenko, and B. Büchner, 'Specific heat and angle-resolved photoemission spectroscopy study of the superconducting gaps in LiFeAs,' Physical Review B 83, 224512 (2011). [38] J. S. Kim, L. Y. Xing, X. C. Wang, C. Q. Jin, and G. R. Stewart, 'LiFeP: A nodal superconductor with an unusually large DC/Tc,' Physical Review B 87, 054504 (2013). [39] R. A. Jishi and H. M. Alyahyaei, 'Electronic and Lattice Dynamical Properties of the Iron-Based Superconductors LiFeAs and NaFeAs,' Advances in Condensed Matter Physics 2010, 804343 (2010). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74838 | - |
| dc.description.abstract | 自從鐵基超導體的超導性質被發現後,鐵基超導體就成為凝態物理裡熱門的研究主題。許多研究文獻顯示超導體在經過摻雜後,其超導轉移溫度會有所變化。這說明了在超導中摻雜扮演著非常重要的角色。 此論文中,我們利用密度泛函理論和密度泛函微擾理論來計算LiFeAs、LiFeP、Li(Co⁄Ni)xFe1-x As、Li(Co⁄Ni)xFe1-xP(x=0.02-0.12)的電子結構、聲子特性以及超導性質,並且討論摻雜對於LiFeAs和LiFeP的電子結構與聲子特性的影響。結果顯示,當摻雜濃度上升時,費米能級附近的態密度下降。而在聲子計算中,在聲子能譜裡隨著不同的摻雜濃度,在高頻的部分會有些微變動。經過計算後,全部材料的超導轉移溫度都非常低,與實驗並不相符。這說明這些材料的超導性質有可能不是以電子-聲子機制所誘發的。 | zh_TW |
| dc.description.abstract | Since the superconductivity was observed in the iron-based superconductors which becomes a popular topic in condensed matter physics. Many researches show that the superconducting transition temperature of the superconductors after doping changes. This implies that the doping effect plays an important role in the superconductivity. In this thesis, we use the Density Functional Theory and Density Functional Perturbation Theory to calculate the electronic structure, phonon properties and superconductivity of LiFeAs, LiFeP, Li(Co⁄Ni)xFe1-xAs and Li(Co⁄Ni)xFe1-xP with x=0.02-0.12 and discuss how the electron doping impacts on the electronic structure and phonon properties of LiFeAs and LiFeP. The results show that the density of states near the Fermi level decreases when the doping concentration increases. In phonon calculations, the resulting phonon dispersions show that they change at high frequency with different doping concentrations. The result superconducting transition temperatures of all materials are too low compared with the available experimental values. This means that the superconductivity in the iron-based superconductors may not be induced by the electron-phonon mechanism. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T09:08:34Z (GMT). No. of bitstreams: 1 U0001-0102202109114700.pdf: 9645195 bytes, checksum: d64ddd2173ed332b8a673b43593a8b55 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iii Contents iv List of Figures vi List of Tables ix Chapter 1 Introduction 1 Chapter 2 Superconductivity 3 2.1 Review of Superconductivity 3 2.2 BCS Theory 7 Chapter 3 Theoretical Background 16 3.1 Density Functional Theory 16 3.1.1 Many-Body Systems 16 3.1.2 Thomas-Fermi Approximation 17 3.1.3 Hohenberg-Kohn Theorem 18 3.1.4 Kohn-Sham Equation 19 3.1.5 Exchange-Correlation Energy 21 3.2 Density Functional Perturbation Theory 22 3.2.1 Lattice Dynamics 22 3.2.2 Density Functional Perturbation Theory 23 3.3 Specific Heat 26 3.3.1 Electronic Specific Heat 26 3.3.2 Phonon Specific Heat 28 Chapter 4 Computational Details 31 Chapter 5 Results of Calculations 34 5.1 LiFeAs and LiFeP 34 5.1.1 Optimized Structures 34 5.1.2 Electronic Structures 35 5.1.3 Phonon Properties 39 5.1.4 Superconductivity 44 5.2 Virtual Crystal Approximation 47 5.3 Li(Co⁄Ni)xFe1-xAs and Li(Co⁄Ni)xFe1-xP 50 5.3.1 Optimized Structures 51 5.3.2 Electronic Structures 53 5.3.3 Phonon Properties 58 5.3.4 Superconductivity 68 Chapter 6 Conclusion 71 Bibliography 72 | |
| dc.language.iso | en | |
| dc.subject | 超導性 | zh_TW |
| dc.subject | 摻雜 | zh_TW |
| dc.subject | 聲子 | zh_TW |
| dc.subject | 第一原理計算 | zh_TW |
| dc.subject | doping | en |
| dc.subject | phonon | en |
| dc.subject | superconductivity | en |
| dc.subject | first-principle calculation | en |
| dc.title | 以第一原理計算研究砷化鐵鋰與磷化鐵鋰摻雜鈷/鎳的晶格振動與超導性質 | zh_TW |
| dc.title | First-Principle Computational Studies on Lattice Dynamics and Superconducting Properties of LiFeAs and LiFeP Doped with Co/Ni | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏金明(Ching-Ming Wei),許琇娟(Hsiu-Chuan Hsu),詹楊皓(Yang-hao Chan) | |
| dc.subject.keyword | 第一原理計算,超導性,聲子,摻雜, | zh_TW |
| dc.subject.keyword | first-principle calculation,superconductivity,phonon,doping, | en |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU202100312 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-03 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0102202109114700.pdf 未授權公開取用 | 9.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
