Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74826
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor朱有花
dc.contributor.authorChia-Hui Linen
dc.contributor.author林家暉zh_TW
dc.date.accessioned2021-06-17T09:08:20Z-
dc.date.available2019-12-03
dc.date.copyright2019-12-03
dc.date.issued2019
dc.date.submitted2019-11-15
dc.identifier.citation[1] Hydrodynamic instabilities. Online: http://www.mpia.de/homes/fendt/Lehre/ Lec- ture_OUT/Instabilities_Bicknell.pdf, pages 10–19.
[2] J. Braithwaite. An introduction to hydrodynamics. Online: https://astro. uni-bonn. de/ ̃ jonathan/misc/hydro_notes. pdf, 2011.
[3] H. Childs. Visit: An end-user tool for visualizing and analyzing very large data. 2012.
[4] Z. B. Etienne, V. Paschalidis, R. Haas, P. Mösta, and S. L. Shapiro. Illinoisgrmhd: an open-source, user-friendly grmhd code for dynamical spacetimes. Classical and Quantum Gravity, 32(17):175009, 2015.
[5] I. Foster. Globus online: Accelerating and democratizing science through cloud- based services. IEEE Internet Computing, 15(3):70–73, 2011.
[6] S. Goriely, A. Bauswein, and H.-T. Janka. R-process nucleosynthesis in dynam- ically ejected matter of neutron star mergers. The Astrophysical Journal Letters, 738(2):L32, 2011.
[7] E.Gourgoulhon,P.Grandclément,J.-A.Marck,J.Novak,andK.Taniguchi.Lorene: Spectral methods differential equations solver. Astrophysics Source Code Library, 2016.
[8] D. Kasen, B. Metzger, J. Barnes, E. Quataert, and E. Ramirez-Ruiz. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Na- ture, 551(7678):80, 2017.
[9] Y.Kobayashi,M.Kato,K.Nakamura,T.Nakamura,andM.Fujimoto.Thestructure of kelvin–helmholtz vortices with super-sonic flow. Advances in Space Research, 41(8):1325–1330, 2008.
[10] J. Lattimer and M. Prakash. Neutron star structure and the equation of state. The Astrophysical Journal, 550(1):426, 2001.
[11] D. Lecoanet, M. McCourt, E. Quataert, K. J. Burns, G. M. Vasil, J. S. Oishi, B. P. Brown, J. M. Stone, and R. M. O’Leary. A validated non-linear kelvin–helmholtz benchmark for numerical hydrodynamics. Monthly Notices of the Royal Astronomi- cal Society, 455(4):4274–4288, 2015.
[12] J. Lippuner and L. F. Roberts. r-process lanthanide production and heating rates in kilonovae. The Astrophysical Journal, 815(2):82, 2015.
[13] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas, I. Hinder, B. C. Mundim, C. D. Ott, E. Schnetter, et al. The einstein toolkit: a community compu- tational infrastructure for relativistic astrophysics. Classical and Quantum Gravity, 29(11):115001, 2012.
[14] C. Matsuoka. Kelvin-helmholtz instability and roll-up. Scholarpedia, 9(3):11821, 2014.
[15] C. J. Moore, R. H. Cole, and C. P. Berry. Gravitational-wave sensitivity curves. Classical and Quantum Gravity, 32(1):015014, 2014.
[16] P.Mösta,B.C.Mundim,J.A.Faber,R.Haas,S.C.Noble,T.Bode,F.Löffler,C.D. Ott, C. Reisswig, and E. Schnetter. Grhydro: a new open-source general-relativistic magnetohydrodynamics code for the einstein toolkit. Classical and Quantum Grav- ity, 31(1):015005, 2013.
[17] R. Rosner, A. Calder, J. Dursi, B. Fryxell, D. Q. Lamb, J. C. Niemeyer, K. Olson, P. Ricker, F. X. Timmes, J. W. Truran, et al. Flash code: Studying astrophysical thermonuclear flashes. Computing in Science & Engineering, 2(2):33–41, 2000.
[18] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, and M. L. Norman. yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data. The Astrophysical Journal Supplement Series, 192:9, Jan. 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74826-
dc.description.abstract人類第一次重力波的偵測開啟了重力波天文學的世代,緻密天體的 研究因此快速地前進,其中我們對雙中子星合併最感興趣,除了它本 身豐富的物理涵蓋了四大交互作用,也因為它是重力波源並且有光學 對應體而能支援多波段觀測,該合併過程被認為是 R-過程 (快中子捕 獲過程) 元素的主要來源,其中不穩定之元素衰變會釋放電磁波,也就 形成千新星。
我們使用 Einsteintoolkit 來做雙中子星合併的三維相對論性磁流體力學 模擬,並且比較了不同的演化方式與初始設定,我們發現沒有考慮磁 場的合併會拋出較多物質,此外若模擬的雙中子星與我們的距離在五 百萬秒差距內則使用 LIGO 可以觀測到,為了與未來的觀測比較,我 們以另外一個程式 FLASH 來放大模擬尺度。 另外為了探討千新星拋出物質的混合,我們提出考慮兩層流體與不同 初始條件的模型,藉此我們探討了局部性混合的程度與不同物理量 (如 密度、溫度、速度、核反應放熱速率) 之間的關係,我們發現了超聲速 流體造成的特徵,且核反應放熱速率會影響該特徵。 總的來說,我們探討了廣域的雙中子星合併與局部的千新興殘骸混合, 在物理尺度下不同型態的混合值得未來的探索。
zh_TW
dc.description.abstractBinary neutron star (BNS) merger is rich in fundamental physics with gravitational wave (GW) signals and electro-magnetic(EM) counterparts, and it is believed to be the major site of producing r-process elements, and the ra- diative decay of r-process elements power the kilonovae.
In this thesis, I present the results of my 3D GRMHD simulations of BNS considering different numerical schemes with various initial setups by using a full GR code, Einsteintoolkit. My results suggest that the simulations with- out consideration of magnetic field produce more outflow of dynamic ejecta and the resulting gravitational wave signal can be detected by LIGO if the merger site is less than 5 Mpc. For making predictions for future observa- tions, I extend my simulations by using a multi-D hydro code, FLASH to produce synthetic observations of the kilonovae.
In order to investigate the ejecta of nuclear heating from the decay of r-process elements on the outflow. I also perform the local mixing of kilonova ejecta with 2-layer fluid model in different initial conditions. The relation of insta- bility growth rate and different physical variables such as velocity, nuclear heating rate, density and temperature is presented. The pattern of supersonic flow is found, and nuclear heating has some impact on the final mixing.
On conclusion, both the universal view of BNS and local view of mixing of kilonova ejecta are investgated. Testing various types of mixing with at phys- ical scale is worth of future exploration.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:08:20Z (GMT). No. of bitstreams: 1
ntu-108-R06222015-1.pdf: 11391239 bytes, checksum: 29cb948efd1e2963c2eb5f3766f06d0f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents1 Introduction 1
1.1 GeneralConceptsandtheStuctureofthisThesis . . . . . . . . . . . . . 1
1.2 Formationofheavyelements(seeFig.1.1) . . . . . . . . . . . . . . . . . 1
1.3 Kilonova(seeFig.1.3) ........................... 2
2 Simulation Tools 5
3 Binary Neutron Star Merger 9
3.1 3DGRMHDsimulation........................... 9
3.1.1 Overview.............................. 9
3.1.2 Simulationsetup .......................... 11
3.1.3 Result................................ 11
3.2 Enlargement................................. 16
3.2.1 Simulationsetup .......................... 16
3.2.2 Result................................ 17
3.3 Subconclusion-1 .............................. 18
4 Local Mixing of Kilonova Ejecta 21
4.1 Simulationsetup .............................. 21
4.2 Initialfluidsproperties ........................... 22
4.3 Degreeofmixing .............................. 23
4.4 Result.................................... 24
4.4.1 Densitydependence ........................ 25
4.4.2 Heatingratedependence ...................... 25
4.4.3 Relativevelocitydependence ................... 25
4.5 Incompressible Kelvin Helmholtz Instability(KHI) . . . . . . . . . . . . 26
4.6 Compressible Kelvin Helmholtz Instability(KHI) . . . . . . . . . . . . . 29
4.7 Fourieranalysisofsimulationresults ................... 31
4.8 Subconclusion-2 .............................. 33
5 Discussion 47
5.1 Binaryneutronstarmerger ......................... 47
5.2 Localmixingofkilonovaejecta ...................... 48
5.3 Combination ................................ 48
6 Overall summary 51
Bibliography 53
dc.language.isoen
dc.subject雙中子星zh_TW
dc.subject廣義相對論zh_TW
dc.subject千新星zh_TW
dc.subject不穩定性zh_TW
dc.subject超聲速流體zh_TW
dc.subjectbinary neutron staren
dc.subjectgeneral relativityen
dc.subjectkilonovaen
dc.subjectinstabilityen
dc.subjectsupersonic flowen
dc.title雙中子星合併之廣義相對論性模擬與千新星殘骸之局部混合zh_TW
dc.titleBinary Neutron Star Merger and the Mixing of Local Kilonova Ejectaen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.coadvisor陳科榮
dc.contributor.oralexamcommittee潘國全,吳孟儒
dc.subject.keyword雙中子星,廣義相對論,千新星,不穩定性,超聲速流體,zh_TW
dc.subject.keywordbinary neutron star,general relativity,kilonova,instability,supersonic flow,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201904289
dc.rights.note有償授權
dc.date.accepted2019-11-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
11.12 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved