Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74825
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃筱鈞(Hsiao-Chun Huang)
dc.contributor.authorYun Chenen
dc.contributor.author陳筠zh_TW
dc.date.accessioned2021-06-17T09:08:19Z-
dc.date.available2019-12-11
dc.date.copyright2019-12-11
dc.date.issued2019
dc.date.submitted2019-11-15
dc.identifier.citation1. Elena, S. F.; Lenski, R. E., Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Reviews Genetics 2003, 4 (6), 457-469.
2. Nowell, P. C., The clonal evolution of tumor cell populations. Science 1976, 194 (4260), 23-8.
3. Park, S. Y.; Lee, H. E.; Li, H.; Shipitsin, M.; Gelman, R.; Polyak, K., Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2010, 16 (3), 876-87.
4. Bakhoum, S. F.; Ngo, B.; Laughney, A. M.; Cavallo, J.-A.; Murphy, C. J.; Ly, P.; Shah, P.; Sriram, R. K.; Watkins, T. B. K.; Taunk, N. K.; Duran, M.; Pauli, C.; Shaw, C.; Chadalavada, K.; Rajasekhar, V. K.; Genovese, G.; Venkatesan, S.; Birkbak, N. J.; McGranahan, N.; Lundquist, M.; LaPlant, Q.; Healey, J. H.; Elemento, O.; Chung, C. H.; Lee, N. Y.; Imielenski, M.; Nanjangud, G.; Pe’er, D.; Cleveland, D. W.; Powell, S. N.; Lammerding, J.; Swanton, C.; Cantley, L. C., Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 2018, 553, 467.
5. Maheswaran, S.; Haber, D. A., Circulating tumor cells: a window into cancer biology and metastasis. Current opinion in genetics & development 2010, 20 (1), 96-9.
6. Hanahan, D.; Weinberg, R. A., The hallmarks of cancer. Cell 2000, 100 (1), 57-70.
7. Hanahan, D.; Weinberg, R. A., Hallmarks of cancer: the next generation. Cell 2011, 144 (5), 646-74.
8. Chu, Y.-W.; Yang, P.-C.; Yang, S.-C.; Shyu, Y.-C.; Hendrix, M. J. C.; Wu, R.; Wu, C.-W., Selection of Invasive and Metastatic Subpopulations from a Human Lung Adenocarcinoma Cell Line. American Journal of Respiratory Cell and Molecular Biology 1997, 17 (3), 353-360.
9. Brown, K. S.; Blower, M. D.; Maresca, T. J.; Grammer, T. C.; Harland, R. M.; Heald, R., Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. The Journal of cell biology 2007, 176 (6), 765-70.
10. Goshima, G.; Scholey, J. M., Control of mitotic spindle length. Annual review of cell and developmental biology 2010, 26, 21-57.
11. Goshima, G.; Wollman, R.; Stuurman, N.; Scholey, J. M.; Vale, R. D., Length control of the metaphase spindle. Current biology : CB 2005, 15 (22), 1979-88.
12. Hara, Y.; Kimura, A., Cell-size-dependent spindle elongation in the Caenorhabditis elegans early embryo. Current biology : CB 2009, 19 (18), 1549-54.
13. Yang, C.-F.; Tsai, W.-Y.; Chen, W.-A.; Liang, K.-W.; Pan, C.-J.; Lai, P.-L.; Yang, P.-C.; Huang, H.-C., Kinesin-5 Contributes to Spindle-length Scaling in the Evolution of Cancer toward Metastasis. Scientific Reports 2016, 6, 35767.
14. Hazel, J.; Krutkramelis, K.; Mooney, P.; Tomschik, M.; Gerow, K.; Oakey, J.; Gatlin, J. C., Changes in cytoplasmic volume are sufficient to drive spindle scaling. Science 2013, 342 (6160), 853-6.
15. Wilbur, J. D.; Heald, R., Mitotic spindle scaling during Xenopus development by kif2a and importin α. eLife 2013, 2, e00290.
16. Waitzman, J. S.; Rice, S. E., Mechanism and regulation of kinesin-5, an essential motor for the mitotic spindle. Biology of the cell 2014, 106 (1), 1-12.
17. Olmsted, Z. T.; Colliver, A. G.; Riehlman, T. D.; Paluh, J. L., Kinesin-14 and kinesin-5 antagonistically regulate microtubule nucleation by γ-TuRC in yeast and human cells. Nat Commun 2014, 5, 5339.
18. Kapitein, L. C.; Peterman, E. J.; Kwok, B. H.; Kim, J. H.; Kapoor, T. M.; Schmidt, C. F., The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 2005, 435 (7038), 114-8.
19. Oriola, D.; Needleman, D. J.; Brugues, J., The Physics of the Metaphase Spindle. Annual review of biophysics 2018, 47, 655-673.
20. Janisch, K. M.; McNeely, K. C.; Dardick, J. M.; Lim, S. H.; Dwyer, N. D., Kinesin-6 KIF20B is required for efficient cytokinetic furrowing and timely abscission in human cells. Molecular biology of the cell 2018, 29 (2), 166-179.
21. Shrestha, S.; Hazelbaker, M.; Yount, A. L.; Walczak, C. E., Emerging Insights into the Function of Kinesin-8 Proteins in Microtubule Length Regulation. Biomolecules 2018, 9 (1).
22. Ramkumar, N.; Baum, B., Coupling changes in cell shape to chromosome segregation. Nature reviews. Molecular cell biology 2016, 17 (8), 511-21.
23. Scholey, J. M.; Brust-Mascher, I.; Mogilner, A., Cell division. Nature 2003, 422 (6933), 746-52.
24. Dumont, S.; Mitchison, T. J., Force and length in the mitotic spindle. Current biology : CB 2009, 19 (17), R749-61.
25. Miller, A. L., The contractile ring. Current biology : CB 2011, 21 (24), R976-8.
26. Brust-Mascher, I.; Scholey, J. M., Microtubule flux and sliding in mitotic spindles of Drosophila embryos. Molecular biology of the cell 2002, 13 (11), 3967-75.
27. Sharp, D. J.; Rogers, G. C.; Scholey, J. M., Microtubule motors in mitosis. Nature 2000, 407 (6800), 41-7.
28. Fischer-Friedrich, E.; Hyman, A. A.; Jülicher, F.; Müller, D. J.; Helenius, J., Quantification of surface tension and internal pressure generated by single mitotic cells. Scientific Reports 2014, 4, 6213.
29. Civelekoglu-Scholey, G.; Scholey, J. M., Mitotic force generators and chromosome segregation. Cellular and molecular life sciences : CMLS 2010, 67 (13), 2231-50.
30. Brust-Mascher, I.; Civelekoglu-Scholey, G.; Scholey, J. M., Analysis of mitotic protein dynamics and function in Drosophila embryos by live cell imaging and quantitative modeling. Methods in molecular biology (Clifton, N.J.) 2014, 1136, 3-30.
31. Dumont, S.; Salmon, E. D.; Mitchison, T. J., Deformations Within Moving Kinetochores Reveal Different Sites of Active and Passive Force Generation. Science 2012, 337 (6092), 355-358.
32. Helmlinger, G.; Netti, P. A.; Lichtenbeld, H. C.; Melder, R. J.; Jain, R. K., Solid stress inhibits the growth of multicellular tumor spheroids. Nature biotechnology 1997, 15 (8), 778-83.
33. Nia, H. T.; Liu, H.; Seano, G.; Datta, M.; Jones, D.; Rahbari, N.; Incio, J.; Chauhan, V. P.; Jung, K.; Martin, J. D.; Askoxylakis, V.; Padera, T. P.; Fukumura, D.; Boucher, Y.; Hornicek, F. J.; Grodzinsky, A. J.; Baish, J. W.; Munn, L. L.; Jain, R. K., Solid stress and elastic energy as measures of tumour mechanopathology. Nature biomedical engineering 2016, 1.
34. Nam, S.; Hu, K. H.; Butte, M. J.; Chaudhuri, O., Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proceedings of the National Academy of Sciences of the United States of America 2016, 113 (20), 5492-7.
35. Nam, S.; Lee, J.; Brownfield, Doug G.; Chaudhuri, O., Viscoplasticity Enables Mechanical Remodeling of Matrix by Cells. Biophysical Journal 2016, 111 (10), 2296-2308.
36. Nam, S.; Chaudhuri, O., Mitotic cells generate protrusive extracellular forces to divide in three-dimensional microenvironments. Nature Physics 2018.
37. Cooper, S., Rethinking synchronization of mammalian cells for cell cycle analysis. Cellular and molecular life sciences : CMLS 2003, 60 (6), 1099-106.
38. Li, F.; Li, S.; Cheng, T., TGF-β1 Promotes Osteosarcoma Cell Migration and Invasion Through the miR-143-Versican Pathway. Cellular Physiology and Biochemistry 2014, 34 (6), 2169-2179.
39. McQueen, P.; Ghaffar, S.; Guo, Y.; Rubin, E. M.; Zi, X.; Hoang, B. H., The Wnt signaling pathway: implications for therapy in osteosarcoma. Expert Rev Anticancer Ther 2011, 11 (8), 1223-32.
40. Leow, P. C.; Yang, Z.; Ee, P. L. R., Curcumin inhibits cell proliferation, invasion and migration in U2OS human osteosarcoma cells. Cancer Research 2008, 68 (9 Supplement), 1200-1200.
41. Long, X. H.; Mao, J. H.; Peng, A. F.; Zhou, Y.; Huang, S. H.; Liu, Z. L., Tumor suppressive microRNA-424 inhibits osteosarcoma cell migration and invasion via targeting fatty acid synthase. Exp Ther Med 2013, 5 (4), 1048-1052.
42. Mohseny, A. B.; Machado, I.; Cai, Y.; Schaefer, K.-L.; Serra, M.; Hogendoorn, P. C. W.; Llombart-Bosch, A.; Cleton-Jansen, A.-M., Functional characterization of osteosarcoma cell lines provides representative models to study the human disease. Laboratory Investigation 2011, 91, 1195.
43. Gloerich, M.; Bianchini, J. M.; Siemers, K. A.; Cohen, D. J.; Nelson, W. J., Cell division orientation is coupled to cell–cell adhesion by the E-cadherin/LGN complex. Nature Communications 2017, 8, 13996.
44. Friedl, P.; Bröcker, E.-B., The biology of cell locomotion within three-dimensional extracellular matrix. Cellular and Molecular Life Sciences CMLS 2000, 57 (1), 41-64.
45. Chan, B. M.; Matsuura, N.; Takada, Y.; Zetter, B. R.; Hemler, M. E., In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells. Science 1991, 251 (5001), 1600.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74825-
dc.description.abstract癌症的起源在癌症研究中一直是尚未被釐清的一個問題。目前癌症被認為是由一個擁有不正常突變基因的細胞分裂而來,因為突變使這些細胞更容易從原位轉移或侵略到身體的其他組織或器官。基因突變帶來性狀改變,其中存在對癌細胞分裂與擴散有益的突變,擁有有益突變的癌細胞相較於其他沒有此突變基因的癌細胞,會更容易在整體的癌細胞族群中分裂與擴散,因此此突變基因便會在整個演化過程中被保留下來。
基於癌細胞的基因不穩定性,有研究指出癌細胞也如同自然界的其他個體會進行演化。肺腺癌細胞 CL1-0和CL1-5為一對有名的癌症演化案例,CL1-0取自病人腫瘤檢體,經過實驗室侵略試驗篩選出惡化程度更高的子細胞株CL1-5。CL1-5無論在細胞型態或是基因層級上都與CL1-0其母細胞株有所不同,CL1-5細胞內的紡錘絲型態也和CL1-0之間存在差異,且發現其紡錘絲長度與其細胞大小呈正相關。
在這本論文中,我們討論了紡錘絲型態是否會隨著癌症細胞演化而跟著演化,我們在不同的癌細胞株中平行地進行侵略試驗(如HeLa, U2OS, HCT116和A549),將每次篩選到的細胞保存以進行後續代數之間的比較。我們發現紡錘絲在某些經過演化的癌細胞株中有延長的趨勢,動力蛋白相關基因如KIF11也有較高的表現。但我們同時發現癌細胞間的異質性非常高,另外,篩選出的惡性子細胞株其紡錘絲也會隨著時間慢慢回到原本的長度,這部分尚需要更多的實驗去驗證許多可能的假設。
zh_TW
dc.description.abstractIn cancer literature, the origin of cancer has long been an issue for scientists to elucidate. To date, consensus is that cancer arose from an ancestral cell that bore abnormal mutation in its genome. This led to dramatic change like higher migration or invasiveness ability. Those mutations, so called beneficial mutations, let ancestral cell in population outcompeted others and thus developed into tumor mass.
It has also been found that cancer cells could evolve as other individuals in nature. A well-known example is CL series cell lines, lung adenocarcinoma cells derived from patient’s tumor and formed stable CL1-0 cell line, then followed by invasion assay to select more metastatic subclones within original cell line. In the comparison of CL1-0 and more metastatic CL1-5 subclone cell line, it showed both morphological and genomic differences. Spindles had been found distinguished between these two cell lines, in which spindles were lengthened in CL1-5 and proportional to its cell size.
In this thesis, we argued that whether spindle lengthening in metastatic cells is a general phenomenon among multiple cancer cell lines. By applying invasion assay on cell lines, like HeLa, U2OS, HCT116 and A549, we parallelly evolved cancer cells and froze cells in time series for further investigation. Spindles have lengthened in some cancer cell lines after repeated selection process, and gene expression like KIF11, encoding for motor protein, has also elevated in evolved sub-cell-lines. However, we figured that heterogeneity is high among cancer cells. Lengthened spindles in metastatic cells would gradually shrink to its original length with time. There are many possibilities that lead to this situation which need further experiments and research to clarify.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:08:19Z (GMT). No. of bitstreams: 1
ntu-108-R06b43003-1.pdf: 2981515 bytes, checksum: 5edf49746a85471d17a11283c4766910 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsCHAPTER. 1 INTRODUCTION
1.1 EXPERIMENTAL EVOLUTION IN MICROBIALS 1
1.2 CANCER EVOLUTION 1
1.3 MIGRATION AND INVASION OF CANCER CELL 2
1.4 MODEL OF CL CELL LINES 3
1.5 SPINDLE SCALING IN CANCER 3
1.6 CONTRIBUTION OF KINESIN-5 IN SPINDLE LENGTHENING 4
1.7 FORCE GENERATED DURING CELL DIVISION 5
CHAPTER 2. MATERIALS AND METHODS
2.1 CELL LINES AND CELL CULTURE CONDITION 7
2.2 TRANSWELL ASSAY 7
2.3 DOUBLE THYMIDINE SYNCHRONIZATION 9
2.4 SYNCHRONIZATION OF HYDROGEL EXPERIMENT 10
2.5 IMMUNOFLUORESCENCE 10
2.6 TIME LAPSE IMAGING 11
2.7 RT-PCR 12
2.8 S-TRITYL-L-CYSTEINE (STLC) INHIBITION 13
2.9 FORCE MEASUREMENT IN VLVG-HYDROGEL 13
2.10 TIME LAPSE IMAGING OF GEL-CAPSULATED CELLS 15
2.11 FORCES CALCULATED BY BEADS DISPLACEMENT 16
CHAPTER. 3 RESULTS AND DISCUSSION
3.1 BUILD UP THE CONDITIONS OF INVASION ASSAY 17
3.2 SELECTED CANCER CELLS POSSESSED HIGHER LEVEL OF METASTASIS 18
3.3 HETEROGENEITY OF CANCER 19
3.4 TIME-SCALED ADAPTATION 20
3.5 CELL DIVISION DYNAMICS IN EVOLVED CANCER CELLS 22
CHAPTER. 4 CONCLUSIONS AND FUTURE WORK 24
CHAPTER. 5 REFERENCE 28
dc.language.isozh-TW
dc.title平行演化癌細胞之紡錘絲長度演變與適應zh_TW
dc.titleSpindle Scaling and Adaptation in Parallel Cancer Evolutionen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee溫進德(Jin-Der Wen),吳?承(Hsuan-Chen Wu)
dc.subject.keyword癌症演化,紡錘絲演化,侵略試驗,zh_TW
dc.subject.keywordCancer evolution,spindle lengthening,invasion assay,en
dc.relation.page49
dc.identifier.doi10.6342/NTU201904271
dc.rights.note有償授權
dc.date.accepted2019-11-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
2.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved