請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7481
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉致為 | |
dc.contributor.author | Jhih-Yang Yan | en |
dc.contributor.author | 顏智洋 | zh_TW |
dc.date.accessioned | 2021-05-19T17:44:36Z | - |
dc.date.available | 2023-08-15 | |
dc.date.available | 2021-05-19T17:44:36Z | - |
dc.date.copyright | 2018-08-15 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-13 | |
dc.identifier.citation | [1.1] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler, J. Sandford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, C. Weber, P. Yashar, K. Zawadzki, K. Mistry, 'A 22nm high performance and lowpower CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors,' in Proc. Symposium on VLSI Technology, June 2012, pp. 131-132.
[1.2] Christianto C. Liu, Shuo-Mao Chen, Feng-Wei Kuo, Huan-Neng Chen, En-Hsiang Yeh, Cheng-Chieh Hsieh, Li-Hsien Huang, Ming-Yen Chiu, John Yeh, Tsung-Shu Lin, Tzu-Jin Yeh, Shang-Yun Hou, Jui-Pin Hung, Jing-Cheng Lin, Chewn-Pu Jou, Chuei-Tang Wang, Shin-Puu Jeng, Douglas C.H. Yu, 'High-performance integrated fan-out wafer level packaging (InFO-WLP): Technology and system integration,' in IEEE IEDM Tech. Dig., Dec. 2012, pp. 14.1.1-14.1.4. [1.3] Liping Wang, Andrew R. Brown, Mihail Nedjalkov, Craig Alexander, Binjie Cheng, Campbell Millar, and Asen Asenov, “Impact of self-heating on the statistical variability in bulk and SOI FinFETs,” IEEE Transactions on Electron Devices, Vol. 62, No. 7, July 2015, pp. 2106-2112. [1.4] E. Bury, B. Kaczer, P. Roussel, R. Ritzenthaler, K. Raleva, D. Vasileska, and G. Groeseneken, 'Experimental validation of self-heating simulations and projections for transistors in deeply scaled nodes,' Reliability Physics Symposium (IRPS), 2014 IEEE International, pp. XT.8.1- XT.8.6. [1.5] E. Bury, B. Kaczer, J. Mitard, N. Collaert, N.S. Khatami, Z. Aksamija, D. Vasileska, K. Raleva, L. Witters, G. Hellings, D. Linten, G. Groeseneken, and A. Thean, 'Characterization of self-heating in high-mobility Ge FinFET pMOS devices,' in Proc. Symposium on VLSI Technology, June 2015, pp. T60–T61. [1.6] Hai Jiang, Xiaoyan Liu, Nuo Xu, Yandong He, Gang Du, and Xing Zhang, 'Investigation of self-heating effect on hot carrier degradation in multiple-Fin SOI FinFETs,' Electron Device Letters, IEEE 36.12 (2015): pp.1258-1260. [1.7] Steven Mittl and Fernando Guarín, ' Self-Heating and Its Implications on Hot Carrier Reliability Evaluations,' Reliability Physics Symposium (IRPS), 2015 IEEE International, pp. 4A.4.1-4A.4.4. [1.8] A. Laurent, X. Garros, S. Barraud, G.Mariniello, G. Reimbold, D. Roy, E.Vincent, and G.Ghibaudo, 'Hot Carrier Degradation in Nanowire Transistors: Physical mechanisms, Width dependence and Impact of Self-Heating,' in Proc. Symposium on VLSI Technology, June 2016, pp. T48–T49. [1.9] S. E. Liu, J. S. Wang, Y. R. Lu, D. S. Huang, C. F. Huang, W. H. Hsieh, J. H. Lee, Y. S. Tsai, J. R. Shih, Y.-H. Lee, and K. Wu, 'Self-heating effect in FinFETs and its impact on device reliability characterization,' Reliability Physics Symposium (IRPS), 2014 IEEE International, pp. 4A.4.1-4A.4.4. [1.10] S. Mei, N. Raghavan, M. Bosman, D. Linten, G. Groeseneken, N. Horiguchi, and K.L. Pey, ' New understanding of dielectric breakdown in advanced FinFET devices – physical, electrical, statistical and multiphysics study,' in IEEE IEDM Tech. Dig., Dec. 2016, pp. 15.5.1-15.5.4. [1.11] Mitsumasa Koyanagi, ' Heterogeneous 3D Integration - Technology Enabler toward Future Super-Chip,' in IEEE IEDM Tech. Dig., Dec. 2013, pp. 1.2.1-1.2.8. [2.1] C.W. Chang, S.E. Liu, B.L. Lin, C.C. Chiu, Y.-H. Lee, and K. Wu, ' Thermal Behavior of Self-heating Effect in FinFET Devices Acting on Back-end Interconnects,' Reliability Physics Symposium (IRPS), 2015 IEEE International, pp. 2F.6.1- 2F.6.5. [2.2] E. Bury, B. Kaczer, D. Linten, L. Witters, H. Mertens, N. Waldron, X. Zhou, N. Collaert, N. Horiguchi, A. Spessot, and G. Groeseneken, ' Self-heating in FinFET and GAA-NW using Si, Ge and III/V channels,' in IEEE IEDM Tech. Dig., Dec. 2016, pp. 15.6.1-15.6.4. [2.3] Muhammad Abdul Wahab, SangHoon Shin, and Muhammad Ashraful Alam, ' 3D modeling of spatio-temporal heat-transport in III-V gate-all-around transistors allows accurate estimation and optimization of nanowire temperature, ' IEEE Transactions on Electron Devices. Vol.62, No.11, Nov. 2015, pp.3595-3604. [2.4] F. Menges, F. Motzfeld, H. Schmid, P. Mensch, M. Dittberner, S. Karg, H. Riel, and B. Gotsmann, ' Local thermometry of self-heated nanoscale devices,' in IEEE IEDM Tech. Dig., Dec. 2016, pp. 15.8.1-15.8.4. [2.5] D. Jang, E. Bury, R. Ritzenthaler, M. Garcia Bardon, T. Chiarella, K. Miyaguchi, P. Raghavan, A. Mocuta, G. Groeseneken, A. Mercha, D. Verkest, and A. Thean, ' Self-heating on bulk FinFET from 14nm down to 7nm node,' in IEEE IEDM Tech. Dig., Dec. 2015, pp. 11.6.1-11.6.4. [2.6] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, K. Zhang, ' A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588m2 SRAM cell size,' in IEEE IEDM Tech. Dig., Dec. 2014, pp. 3.7.1-3.7.4. [2.7] Ramez Cheaito, John C. Duda, Thomas E. Beechem, Khalid Hattar, Jon F. Ihlefeld, Douglas L. Medlin, Mark A. Rodriguez, Michael J. Campion, Edward S. Piekos, and Patrick E. Hopkins, ' Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films,' Physical Review Letters, 109, 195901, 2012. [2.8] Changwook Jeong, Supriyo Datta, and Mark Lundstrom, ' Thermal conductivity of bulk and thin-film silicon: A Landauer approach,' Journal of Applied Physics, 111.9, 093708, 2012. [2.9] Hazim B. Awbi, ' Calculation of convective heat transfer coefficients of room surfaces for natural convection,' Energy and Building, 28. 2, 1998, pp. 219-227. [3.1] Hadi Esmaeilzadeh, Emily Blem, Rene´e St. Amant, Karthikeyan Sankaralingam, and Doug Burger, ' Dark Silicon and the End of Multicore Scaling,' IEEE Micro, vol.32, no.3, May/June 2012, pp.122-134. [3.2] C.W. Chang, S.E. Liu, B.L. Lin, C.C. Chiu, Y.-H. Lee, and K. Wu, ' Thermal Behavior of Self-heating Effect in FinFET Devices Acting on Back-end Interconnects,' Reliability Physics Symposium (IRPS), 2015 IEEE International, pp. 2F.6.1- 2F.6.5. [3.3] E. Bury, B. Kaczer, D. Linten, L. Witters, H. Mertens, N. Waldron, X. Zhou, N. Collaert, N. Horiguchi, A. Spessot, and G. Groeseneken, ' Self-heating in FinFET and GAA-NW using Si, Ge and III/V channels,' in IEEE IEDM Tech. Dig., Dec. 2016, pp. 15.6.1-15.6.4. [4.1] Muhammad Abdul Wahab, SangHoon Shin, and Muhammad Ashraful Alam,' 3D modeling of spatio-temporal heat-transport in III-V gate-all-around transistors allows accurate estimation and optimization of nanowire temperature, ' IEEE Transactions on Electron Devices, Vol. 62, No. 11, Nov. 2015, pp.3595-3604. [4.2] Brian Swahn and Soha Hassoun, 'Electro-Thermal Analysis of Multi-Fin Devices,' IEEE Transactions on very large scale integration (VLSI) systems, Vol. 16, No. 7, July 2008, pp.816-829. [4.3] Eric Pop, Robert Dutton, and Kenneth Goodson,' Thermal Analysis of Ultra-Thin Body Device Scaling,' in IEEE IEDM Tech. Dig., Dec. 2003, pp. 36.6.1-36.6.4. [4.4] Mayank Shrivastava, Manish Agrawal, Sunny Mahajan, Harald Gossner, Thomas Schulz, Dinesh Kumar Sharma, and V. Ramgopal Rao,' Physical Insight Toward Heat Transport and an Improved Electrothermal Modeling Framework for FinFET Architectures,' IEEE Transactions on Electron Devices, Vol. 59, No. 5, May 2012, pp.1353-1363. [4.5] Ming-Cheng Cheng, Jeffrey A. Smith, Wangkun Jia, and Ryan Coleman,' An Effective Thermal Model for FinFET Structure,' IEEE Transactions on Electron Devices, Vol. 61, No. 1, Jan. 2014, pp.202-206. [4.6] BSIM-CMG v110.0.0 manual, p.71, 2015. [4.7] H. Jiang, L. Shen, S.H. Shin, N. Xu, G. Du, B.-Y. Nguyen, O. Faynot, M.A. Alam, X. Zhang, X. Y. Liu,' Unified Self-Heating Effect Model for Advanced Digital and Analog Technology and Thermal-Aware Lifetime Prediction Methodology,' in Proc. Symposium on VLSI Technology, June 2017, pp. T136–T137. [4.8] Woojin Ahn, Chunsheng Jiang, Jun Xu, and Muhammad Ashraful Alam, ' A New Framework of Physics-Based Compact Model Predicts Reliability of Self-Heated Modern ICs: FinFET, NWFET, NSHFET Comparison,' in IEEE IEDM Tech. Dig., Dec. 2017, pp. 13.6.1-13.6.4. [4.9] E. S. Landry and A. J. H. McGaughey,' Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations,' Phys. Rev. B 80, 165304 (2009) [4.10] National institute for material science, Japan. (http://interface.nims.go.jp) [4.11] Jie Chen, Gang Zhang, and Baowen Li,' Thermal contact resistance across nanoscale silicon dioxide and silicon interface, ' Journal of Applied Physics 112, 064319 (2012). [5.1] James R. Black, ' Current Limitations of thin Film Conductors,' Reliability Physics Symposium (IRPS), 1982 IEEE International, pp. 300- 306. [5.2] C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han, D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S. Jaloviar, I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J. Leib, A. Madhavan, K. Marla, H. Meyer, T. Mule, C. Parker, S. Parthasarathy, C. Pelto, L. Pipes, I. Post, M. Prince, A. Rahman, S. Rajamani, A. Saha, J. Dacuna Santos, M. Sharma, V. Sharma, J. Shin, P. Sinha, P. Smith, M. Sprinkle, A. St. Amour, C. Staus, R. Suri, D. Towner, A. Tripathi, A. Tura, C. Ward, and A. Yeoh, ' A 10nm High Performance and Low-Power CMOS Technology Featuring 3rd Generation FinFET Transistors, Self-Aligned Quad Patterning, Contact over Active Gate and Cobalt Local Interconnects,' in IEEE IEDM Tech. Dig., Dec. 2016, pp. 29.1.1-29.1.4. [6.1] R. Weerasekera, H. Y. Li, L. W. Yi, H. Sanming, J. Shi, J. Minkyu, and K. H. Teo, “On the impact of Through-Silicon-Via induced stress on 65-nm CMOS devices”, IEEE Electron Device Letters, Vol. 34, No. 1, pp. 18-20, 2013. [6.2] J. West, Y. S. Choi, and C. Vartuli, “Practical implications of via-middle Cu TSV-induced stress in a 28nm CMOS technology for wide-IO logic memory interconnects,” in Proc. VLSI Symp. Technol., 2012, pp. 101–102. [6.3] Y. Yang, G. Katti, R. Labie, Y. Travaly, B. Verlinden, and I. De Wolf, “Electrical evaluation of 130-nm MOSFETs with TSV proximity in 3D-SIC structure,” in Proc. IEEE IITC, 2010, pp. 1–3. [6.4] S. Cho, S. Kang, K. Park, J. Kim, K. Yun, K. Bae, W. S. Lee, S. Ji, E. Kim, J. Kim, Y. L. Park, and E. S. Jung, 'Impact of TSV proximity on 45nm CMOS devices in wafer Level,' in Proc. IEEE IITC, 2011, pp. 1–3. [6.5] A. Mercha, G. Van der Plas, V. Moroz, I. De Wolf, P. Asimakopoulos, N. Minas, S. Domae, D. Perry, M. Choi, A. Redolfi, C. Okoro, Y. Yang, J. Van Olmen, S. Thangaraju, D. Sabuncuoglu Tezcan, P. Soussan, J.H. Cho, A. Yakovlev, P. Marchal, Y. Travaly, E. Beyne, S. Biesemans, and B. Swinnen, “Comprehensive analysis of the impact of single and arrays of through silicon vias induced stress on high-k/metal gate CMOS performance,” IEDM Tech. Dig., 2010, pp. 2.2.1-2.2.4. [6.6] M. Aoki, F. Furuta, K. Hozawa, Y. Hanaoka, H. Kikuchi, A. Yanagisawa, T. Mitsuhashi, and K. Takeda, “Fabricating 3D integrated CMOS devices by using wafer stacking and via-last TSV technologies,” IEDM Tech. Dig., 2013, pp. 29.5.1-29.5.4. [6.7] W. Guo, V. Moroz, G. Van der Plas, M. Choi, A. Redolfi, L. Smith, G. Eneman, S. Van Huylenbroeck, P. D. Su, A. Ivankovic, B. De Wachter, I. Debusschere, K. Croes, I. De Wolf, A. Mercha, G. Beyer, B. Swinnen, and E. Beyne, “Copper through silicon via induced keep out zone for 10nm node bulk FinFET CMOS technology,” IEDM Tech. Dig., 2013, pp. 12.8.1-12.8.4. [6.8] S.-R. Jan, T.-P. Chou, C.-Y. Yeh, C. W. Liu, R. V. Goldstein, V. A. Gorodtsov, and P. S. Shushpannikov, “A compact analytic model of the strain field induced by through silicon vias,” IEEE Trans. Electron Devices, Vol. 59, No. 3, pp. 777–782, Mar. 2012. [6.9] M.-Y. Tsai, P.-S. Huang, and P.-C. Lin, “A study of overlaying dielectric layer and its local geometry effects on TSV-induced KOZ in 3-D IC,” IEEE Trans. on Electron Devices, Vol. 61, No. 9, pp.3090-3095, 2014. [6.10] S. E. Thompson, S. Guangyu, Y. S. Choi, and T. Nishida, “Uniaxial process induced strained-Si: Extending the CMOS roadmap,” IEEE Trans. on Electron Devices, Vol. 53, No. 5, pp. 1010–1020, May 2006. [6.11] H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,' Appl. Phys. Lett. 98, 101106 (2011). [6.12] S. Suthram, J. C. Ziegert, T. Nishida, and S. E. Thompson, 'Piezoresistance coefficients of (100) silicon nMOSFETs measured at low and high (∼ 1.5 GPa) channel stress,' IEEE Electron Device Letters, Vol. 28, No. 1, pp. 58-61, 2007. [6.13] G. Sun, Y. Sun, T. Nishida, and S. E. Thompson 'Hole mobility in silicon inversion layers: Stress and surface orientation.' Journal of Applied Physics 102.8 (2007): 084501-084501. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7481 | - |
dc.description.abstract | 本篇論文之目的為對三維電晶體之自發熱效應及三維積體電路穿矽連通柱造成之截止區提出模型並驗證。三維電晶體相比平面電晶體能提供更好的電性表現,然而單位面積功率的提高、材料的低熱導率皆使元件操作溫度升高,而元件溫度升高將導致元件表現衰退及可靠度問題,因此需要有準確的模型及驗證方法,才能監控三維電晶體中的自發熱行為;三維積體電路比起平面系統單晶片有許多優點:更大的頻寬、更短的導線長度、更高的製程選擇靈活度等,然而其所使用之穿矽連通柱於周遭矽晶圓上造成額外的應變將影響元件表現,因此需要有準確的截止區模型作為電路設計的參考。
在自然對流的狀況下,空氣與散熱表面的邊界需考慮一極大的額外熱阻,此熱阻並在晶片面朝上及晶片面朝下時造成元件散熱路徑的不同。為了能準確描述元件的本質自發熱行為,吾人藉由提出之「二階偽等溫面模型」精準的計算後段繞線熱阻,方得以於晶片面朝下及晶片面朝上的條件分別由總熱阻中萃取出鰭式電晶體的本質熱阻。由於鰭式電晶體具備一垂直非對稱結構,在晶片面朝上時,鰭式電晶體有比起晶片面朝下時更大的本質熱阻。藉由電熱模擬軟體,本篇論文指出因矽鍺源/汲極的低熱導係數,在一反向器中,p型元件比起n型元件有更高的操作溫度。反向器中的溫度高低及高溫持續時間可藉由輸出負載電容及元件電流大小來調變。吾人並指出當以交流訊號驅動反向器後,殘存於元件通道中及第一層金屬導線上的溫度比起操作時溫度皆過低,導致量測困難,以至於利用此溫度作為可靠度評估指標可能高估生命期。 本篇論文提出具分佈式熱阻熱容網路之「以積體電路為重點的模擬程式所建立的熱模型」(thermal SPICE),以解決現有之雙時間常數及單時間常數模型皆無法準確預估交流元件的自發熱效應的問題。在鰭式電晶體中,熱時間常數並非單一數值,而是與輸入頻率成線性相關。邊界散射、合金散射及介面熱阻皆會提高溫度,並皆被本篇論文提出之thermal SPICE納入考量。藉由模組化鰭、金屬導線以及絕緣層,此熱模型具有元件布局及連線的彈性。於美商英特爾(intel)最先進的鰭式電晶體技術文獻指出,其將採用以鈷製成之導線,因鈷導線具有比銅導線長達5倍的電致遷移生命期,然而,當使用本論文提出之thermal SPICE對於環型震盪器進行模擬可發現,因鈷導線的熱傳導係數較低,以所得之鈷導線溫度進行理論投射,其電致遷移生命期在考慮金屬導線溫度上升的情況下對銅導線的優勢將減少至僅剩2.44倍。吾人發現模擬出之溫度可藉由額外擺放於環形震盪器上的第二層連通柱而降低。藉著第二層連通柱達成較低的鈷金屬溫度,可使得鈷導線比起原情況下的銅導線有5.56倍的電致遷移生命期。後段繞線及多鰭鰭式電晶體的熱阻可分別藉由加入額外的熱連通柱及額外的第零層連通柱來降低。 後段繞線完成後才製作之穿矽連通柱在附近的元件中施加額外的應變。本篇論文中於十二吋晶圓上量測28奈米節點元件因穿矽連通柱造成的導通電流變異。在此條件下,穿矽連通柱的應力場受到後段繞線絕緣層的影響,吾人觀察到非對稱之應力場並提出其模型。有別於先前的文獻,由於徑向應力及切線應力絕對值大小並不相同,穿矽連通柱造成的截止區並不對稱。藉由量測結果及三維有限元素分析模擬,吾人提出並驗證了一非對稱截止區模型。並推測因為內建應力大小的不同,n型元件與p型元件被發現有大小相近的截止區。 | zh_TW |
dc.description.abstract | The purpose of this dissertation is to model the self-heating effect in 3D transistors and the keep-out zone of 3D-IC TSVs. 3D transistors provide better electrostatic as compared to planar transistors. However, the junction temperature increases in 3D transistors due to the increased power density and low thermal conductivity of materials. The high junction temperature degrades device performance and reliability. Accurate self-heating effect modeling can help to monitor the junction temperature for lifetime prediction. 3D-IC has the larger bandwidth, shorter interconnect length, and is more cost effective than 2D SoC. However, the through-silicon vias (TSVs) induce additional strain in nearby Si substrate. The strain field leads to the performance variation in the transistors neighboring to the TSV. Precise keep-out zone (KOZ) modeling is important for the circuit design.
With the accurate modeling of the thermal resistance of back-end-of-line (BEOL) by two-step pseudo isothermal plane, the intrinsic thermal resistances of FinFETs are extracted with face-down and face-up configurations. The intrinsic thermal resistance is affected by the direction of heat flow, and it is higher for the face-up configuration than the face-down configuration. The free convection of the air leads to a large thermal resistance. Due to the low thermal conductivity of SiGe S/D, the maximum temperature of pFET is found higher than nFET in an inverter. The output capacitive loading and the current of the inverter can control the maximum temperature and the high temperature duration. With AC input, the temperature in M1 layer and the residual temperature in the channel are found too low as compared to the real device temperature. Using the temperature on metal line as the Tj indicator may overestimate the reliability lifetime. Two tc and one tc models failed to predict accurate AC self-heating results, and a thermal SPICE modeling with distributed Rth-Cth network is proposed in this dissertation. In FinFETs, the thermal time constant of the hotspot is linearly dependent to input frequency instead of a constant. Boundary scattering, alloy scattering, and interfacial thermal resistance raise the temperature and are included in the SPICE. The device layout and interconnect routing flexibilities are achieved by using modularized components of fins, metals, and IMDs. The reported intrinsic electromigration improvement of Co interconnect (5X) could be countervailed (5X→2.44X) by the increasing Tmetal with the projection of Black’s theory. Tj (FinFET) and Tmetal are lowered by placing additional V2 on the power line of a ring oscillator. The predicted EM MTTF of Co interconnect with the lowered Tmetal by V2 insertion is ~5.65X of W/Cu interconnect. The Rth,BEOL and Rth0,FinFET can be reduced by adding thermal via in the BEOL and increasing via0s on the multi-fin FinFETs, respectively. The via-last TSV induced additional strain in nearby devices. The Ion variation is measured using 28nm node devices across 12 inch wafers. The stress field of TSV is affected by the BEOL dielectrics, and an asymmetric stress field is observed and modeled. The absolute value of radial stress does not equal to that of tangential stress and leads to the asymmetric KOZ, different from previously reported. With the help of experiment data and 3D finite element analysis (FEA) simulation, a modified KOZ model with the asymmetric radial and tangential stress field is proposed, fitted, and verified. Different internal stress in device channel leads to comparable KOZ size for nFETs and pFETs. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:44:36Z (GMT). No. of bitstreams: 1 ntu-107-F01943063-1.pdf: 4145883 bytes, checksum: 87c8592ce4ba7ea3b21188ec7d7ba704 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Motivation 1 1.2 Dissertation Organization 3 1.3 References 6 Chapter 2 Thermal Resistance Modeling of Intrinsic FinFETs and Back-end-of-line 10 2.1 Introduction 10 2.2 Electro-thermal Simulation and Boundary Conditions 12 2.2.1 FinFET Structure and Simulation Settings 12 2.2.2 Conventional Measurement and Flip-chip Packaging 14 2.3 Thermal Resistance Modeling of BEOL 17 2.3.1 Thermal Resistance Circuit 17 2.3.2 Two-step Pseudo Isothermal Plane Modeling 19 2.4 Thermal Resistance Modeling of FinFET 23 2.4.1 Intrinsic Thermal Resistance of FinFET 23 2.4.2 Layout and Geometry Dependence of Intrinsic Thermal Resistance 25 2.5 Summary 29 2.6 References 30 Chapter 3 Transient Thermal Simulation of Inverters with Capacitive Loading Effects 33 3.1 Introduction 33 3.2 Self-heating Effect in FinFETs with Transient Input 34 3.3 Electrical Characteristics of the Inverter 34 3.4 Self-heating and Output Loading Effect in Inverters 37 3.4.1 Output Capacitive Loading Effects on Tj 39 3.4.2 Drive Current, Tj, and High Temperature Duration 40 3.4.3 Layout Size Effects of Inverters 40 3.5 SHE of Inverters with AC input 43 3.5.1 Temperature Distribution on M1 Layer 43 3.5.2 Residual Temperature in the Channel 45 3.6 Summary 46 3.7 References 47 Chapter 4 Comprehensive Thermal SPICE Modeling of FinFETs and Back-end-of-line 48 4.1 Introduction 48 4.2 Frequency Dependent Thermal Time Constant in FinFETs 49 4.2.1 Issues of Lumped Rth-Cth models 49 4.2.2 Thermal time constant of scaled FinFETs 51 4.3 Thermal SPICE Modeling of FinFETs 52 4.3.1 Equivalent Circuit Models in SPICE 52 4.3.2 Modularized Fin and Power Distribution Matrix 55 4.4 DC Validation of Thermal SPICE Model 58 4.4.1 Distributed Rth Verification 58 4.4.2 Temperature on MEOL 59 4.4.3 Layout Flexibility of Thermal SPICE Model 60 4.5 Including Interfacial Thermal Resistance into SPICE 61 4.6 Summary 62 4.7 References 63 Chapter 5 Circuit Level Reliability Evaluation of Ring Oscillators using 10nm FinFETs 66 5.1 Introduction 66 5.2 AC Validation of Thermal SPICE Model and ITR Effects on Temperature 67 5.3 Transient Self-heating Effects in FinFETs 69 5.3.1 Thermal Capacitance Modeling of BEOL 69 5.3.2 Thermal Time Constants in FinFET, MEOL, BEOL, and Substrate 71 5.4 Transient Self-heating Effects on Ring Oscillator 72 5.5 Cobalt Interconnect and Electro-migration Mean Time to Failure Prediction 75 5.6 Innovations to Improve Heat Dissipation of Device and BEOL 78 5.6.1 Additional Via0 to Lower Intrinsic Thermal Resistance 78 5.6.2 Highly Thermally Conductive Via in BEOL 80 5.7 Summary 83 5.8 References 84 Chapter 6 Asymmetric Keep-out Zone Modeling of Through-Silicon Via with Experimental Verification 85 6.1 Introduction 85 6.2 TSV and Device Layout 86 6.3 3D Finite-element Analysis Simulation 87 6.3.1 Simulation Settings 87 6.3.2 STI Pattern Effects 89 6.4 Modeling of Stress Field on Silicon Surface 90 6.4.1 BEOL Dielectric Effects on the Stress Field 90 6.4.2 Modeling the asymmetric stress field 91 6.5 Asymmetric Keep-out Zone of Via-last TSV 93 6.5.1 Analytic Model of KOZ 93 6.5.2 KOZs of nFET and pFET 95 6.6 Summary 99 6.7 Reference 99 Chapter 7 Summary and Future Work 103 7.1 Summary 103 7.2 Future Work 105 | |
dc.language.iso | en | |
dc.title | 三維電晶體之自發熱效應及三維積體電路穿矽連通柱之應變/應力 | zh_TW |
dc.title | Self-heating Effects in 3D Transistors and Strain/Stress of 3D-IC TSV | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 張廖貴術,林吉聰,李敏鴻,陳敏璋,張書通 | |
dc.subject.keyword | 自發熱效應,熱阻模型,鰭式電晶體,後段繞線,以積體電路為重點的模擬程式所建立的熱模型,穿矽連通柱,非對稱截止區, | zh_TW |
dc.subject.keyword | Self-heating effect,thermal resistance modeling,FinFET,BEOL,thermal SPICE modeling,through-silicon via,asymmetric keep-out zone, | en |
dc.relation.page | 105 | |
dc.identifier.doi | 10.6342/NTU201801788 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-08-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-15 | - |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 4.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。