Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74812
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭淑芬(Soo-Fin Cheng)
dc.contributor.authorChun-Chang Ouen
dc.contributor.author歐俊昌zh_TW
dc.date.accessioned2021-06-17T09:08:03Z-
dc.date.available2024-12-02
dc.date.copyright2019-12-02
dc.date.issued2019
dc.date.submitted2019-11-22
dc.identifier.citation[1] S.H. Fang, H.W. Chen, Air quality and pollution control in Taiwan, Atmos. En-viron. 30 (1996) 735–741. doi:https://doi.org/10.1016/1352-2310(94)00214-2.
[2] Environmental Protection Administration (2015). Clean Air Action Plans: 2015-2020. Environmental Protection Administration, Executive Yuan.
[3] EPA drafting rules to reduce emission of hazardous air pollutants. (2017) Re-trieved September 30, 2017, from https://english.ey.gov.tw/News_Content.aspx?n=3FA02B129BCA256C&sms=925E4E62B451AB83&s=66BE1CA05B2156FB
[4] N.P. Cheremisinoff, Handbook of Air Pollution Prevention and Control, Else-vier Science, 2002.
[5] W.T. Tsai, Current status of air toxics management and its strategies for con-trolling emissions in Taiwan, Toxics. 4 (2016). doi:10.3390/toxics4020008.
[6] E. Uhde, T. Salthammer, Impact of reaction products from building materials and furnishings on indoor air quality—A review of recent advances in indoor chemistry, Atmos. Environ. 41 (2007) 3111–3128. doi:https://doi.org/10.1016/j.atmosenv.2006.05.082.
[7] G.C.A. Corporation, U.S.E.P.A.O.of Air Quality Planning, Standards, Locating and Estimating Air Emissions from Sources of Formaldehyde, National Tech-nical Information Service, 1984.
[8] W.H. Organization, IARC monographs on the evaluation of carcinogenic risks to humans. Volume 88: Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol, World Health Organization, 2004.
[9] S. Duhayon, P. Hoet, G. VanMaele-Fabry, D. Lison, Carcinogenic potential of formaldehyde in occupational settings: a critical assessment and possible im-pact on occupational exposure levels, Int. Arch. Occup. Environ. Health. 81 (2008) 695–710. doi:10.1007/s00420-007-0241-9.
[10] J.P. Bellat, I. Bezverkhyy, G. Weber, S. Royer, R. Averlant, J.M. Giraudon, J.F. Lamonier, Capture of formaldehyde by adsorption on nanoporous materials, J. Hazard. Mater. 300 (2015) 711–717. doi:10.1016/j.jhazmat.2015.07.078.
[11] J. Yu, X. Li, Z. Xu, W. Xiao, NaOH-modified ceramic honeycomb with en-hanced formaldehyde adsorption and removal performance, Environ. Sci. Technol. 47 (2013) 9928–9933. doi:10.1021/es4019892.
[12] T. Noguchi, A. Fujishima, P. Sawunyama, K. Hashimoto, Photocatalytic Deg-radation of Gaseous Formaldehyde Using TiO2 Film, Environ. Sci. Technol. 32 (1998) 3831–3833. doi:10.1021/es980299+.
[13] X. Zhang, Q. Liu, Visible-light-induced degradation of formaldehyde over tita-nia photocatalyst co-doped with nitrogen and nickel, Appl. Surf. Sci. 254 (2008) 4780–4785. doi:10.1016/j.apsusc.2008.01.094.
[14] J. Quiroz, J.M. Giraudon, A. Gervasini, C. Dujardin, C. Lancelot, M. Trentesaux, J.F. Lamonier, Total Oxidation of Formaldehyde over MnOx-CeO2 Catalysts: The Effect of Acid Treatment, ACS Catal. 5 (2015) 2260–2269. doi:10.1021/cs501879j.
[15] S. Rong, P. Zhang, Y. Yang, L. Zhu, J. Wang, F. Liu, MnO2 Framework for In-stantaneous Mineralization of Carcinogenic Airborne Formaldehyde at Room Temperature, ACS Catal. 7 (2017) 1057–1067. doi:10.1021/acscatal.6b02833.
[16] Y. Wang, S. Yao, M. Crocker, X. Zhu, B. Chen, J. Xie, C. Shi, D. Ma, An ener-gy-efficient catalytic process for the tandem removal of formaldehyde and benzene by metal/HZSM-5 catalysts, Catal. Sci. Technol. 5 (2015) 4968–4972. doi:10.1039/c5cy00758e.
[17] C. Ma, D. Wang, W. Xue, B. Dou, H. Wang, Z. Hao, Investigation of formalde-hyde oxidation over Co3O4-CeO2 and Au/Co3O4-CeO2 catalysts at room tem-perature: Effective removal and determination of reaction mechanism, Environ. Sci. Technol. 45 (2011) 3628–3634. doi:10.1021/es104146v.
[18] C. Zhang, F. Liu, Y. Zhai, H. Ariga, N. Yi, Y. Liu, K. Asakura, M. Flytza-ni-Stephanopoulos, H. He, Alkali-metal-promoted Pt/TiO2opens a more effi-cient pathway to formaldehyde oxidation at ambient temperatures, Angew. Chemie - Int. Ed. 51 (2012) 9628–9632. doi:10.1002/anie.201202034.
[19] C. Zhang, H. He, K.i. Tanaka, Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature, Appl. Catal. B Environ. 65 (2006) 37–43. doi:10.1016/j.apcatb.2005.12.010.
[20] X. Yang, X. Yu, M. Lin, M. Ge, Y. Zhao, F. Wang, Interface effect of mixed phase Pt/ZrO2 catalysts for HCHO oxidation at ambient temperature, J. Mater. Chem. A. 5 (2017) 13799–13806. doi:10.1039/c7ta03888g.
[21] S.J. Park, I. Bae, I.S. Nam, B.K. Cho, S.M. Jung, J.H. Lee, Oxidation of for-maldehyde over Pd/Beta catalyst, Chem. Eng. J. 195–196 (2012) 392–402. doi:10.1016/j.cej.2012.04.028.
[22] Y. Li, C. Zhang, J. Ma, M. Chen, H. Deng, H. He, High temperature reduction dramatically promotes Pd/TiO2 catalyst for ambient formaldehyde oxidation, Appl. Catal. B Environ. 217 (2017) 560–569. doi:10.1016/j.apcatb.2017.06.023.
[23] B. Chen, C. Shi, M. Crocker, Y. Wang, A. Zhu, Appl. Catal. B Environ. Catalytic removal of formaldehyde at room temperature over supported gold catalysts, 133 (2013) 245–255.
[24] H.F. Li, N. Zhang, P. Chen, M.F. Luo, J.Q. Lu, High surface area Au/CeO2 cata-lysts for low temperature formaldehyde oxidation, Appl. Catal. B Environ. 110 (2011) 279–285. doi:10.1016/j.apcatb.2011.09.013.
[25] B. Liu, C. Li, Y. Zhang, Y. Liu, W. Hu, Q. Wang, L. Han, J. Zhang, Investigation of catalytic mechanism of formaldehyde oxidation over three-dimensionally ordered macroporous Au/CeO2 catalyst, Appl. Catal. B Environ. 111–112 (2012) 467–475. doi:10.1016/j.apcatb.2011.10.036.
[26] Z. Qu, S. Shen, D. Chen, Y. Wang, Highly active Ag/SBA-15 catalyst using post-grafting method for formaldehyde oxidation, J. Mol. Catal. A Chem. 356 (2012) 171–177. doi:10.1016/j.molcata.2012.01.013.
[27] L. Ma, D. Wang, J. Li, B. Bai, L. Fu, Y. Li, Ag/CeO2 nanospheres: Efficient cat-alysts for formaldehyde oxidation, Appl. Catal. B Environ. 148–149 (2014) 36–43. doi:10.1016/j.apcatb.2013.10.039.
[28] B. Bai, J. Li, Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation, ACS Catal. 4 (2014) 2753–2762. doi:10.1021/cs5006663.
[29] X. Tang, J. Chen, Y. Li, Y. Li, Y. Xu, W. Shen, Complete oxidation of formal-dehyde over Ag/MnOx-CeO2 catalysts, Chem. Eng. J. 118 (2006) 119–125. doi:10.1115/1.2173666.
[30] G. Li, L. Li, Highly efficient formaldehyde elimination over meso-structured M/CeO2 (M = Pd, Pt, Au and Ag) catalyst under ambient conditions, RSC Adv. 5 (2015) 36428–36433. doi:10.1039/c5ra04928h.
[31] L. Nie, J. Yu, M. Jaroniec, F.F. Tao, Room-temperature catalytic oxidation of formaldehyde on catalysts, Catal. Sci. Technol. 6 (2016) 3649–3669. doi:10.1039/c6cy00062b.
[32] X. Shen, W. Liu, X. Gao, Z. Lu, X. Wu, X. Gao, Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palla-dium, and Their Alloys: A General Way to the Activation of Molecular Oxygen, J. Am. Chem. Soc. 137 (2015) 15882–15891. doi:10.1021/jacs.5b10346.
[33] J. Weitkamp, Zeolites and catalysis, Solid State Ionics. 131 (2000) 175–188. doi:https://doi.org/10.1016/S0167-2738(00)00632-9.
[34] H.van Koningsveld, Chapter 3 Structural Subunits in Silicate and Phosphate Structures, in: H.van Bekkum, E.M. Flanigen, and C. Jansen (Eds.), Introd. to Zeolite Sci. Pract., Elsevier, 1991: pp. 35–76. doi:https://doi.org/10.1016/S0167-2991(08)63600-9.
[35] W. Loewenstein, The distribution of aluminum in the tetrahedra of silicates and aluminates, Am. Mineral. 39 (1954) 92–96.
[36] R.G. Bell, R.A. Jackson, C.R.A. Catlow, Löwenstein’s rule in zeolite A: A computational study, Zeolites. 12 (1992) 870–871. doi:https://doi.org/10.1016/0144-2449(92)90065-W.
[37] J.M. Lee, S.M. Seo, J.M. Suh, W.T. Lim, Synthesis and single-crystal structures of fully dehydrated fully Sr2+-exchanged zeolite Y (FAU) and its benzene sorp-tion complex, |Sr37.5|[Si117Al75O384]-FAU and |Sr37.5(C6H6)33(H2O)15|[Si117Al75O384]-FAU, J. Porous Mater. 18 (2011) 523–534. doi:10.1007/s10934-010-9415-z.
[38] Y. Yang, N. Burke, J. Zhang, S. Huang, S. Lim, Y. Zhu, Influence of charge compensating cations on propane adsorption in X zeolites: Experimental measurement and mathematical modeling, RSC Adv. 4 (2014) 7279–7287. doi:10.1039/c3ra46987e.
[39] M. Hara, K. Nakajima, K. Kamata, Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals, Sci. Technol. Adv. Mater. 16 (2015). doi:10.1088/1468-6996/16/3/034903.
[40] A. Corma, J. Planelles, J. Sánchez-Marín, F. Tomás, The role of different types of acid site in the cracking of alkanes on zeolite catalysts, J. Catal. 93 (1985) 30–37. doi:10.1016/0021-9517(85)90148-4.
[41] N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review, Appl. Catal. A Gen. 398 (2011) 1–17. doi:10.1016/j.apcata.2011.03.009.
[42] A. Ribera, I.W.C.E. Arends, S.de Vries, J. Pérez-Ramı́rez, R.A. Sheldon, Prepa-ration, Characterization, and Performance of FeZSM-5 for the Selective Oxida-tion of Benzene to Phenol with N2O, J. Catal. 195 (2000) 287–297. doi:https://doi.org/10.1006/jcat.2000.2994.
[43] E.J.M. Hensen, Q. Zhu, R.A.J. Janssen, P.C.M.M. Magusin, P.J. Kooyman, R.A.van Santen, Selective oxidation of benzene to phenol with nitrous oxide over MFI zeolites: 1. On the role of iron and aluminum, J. Catal. 233 (2005) 123–135. doi:https://doi.org/10.1016/j.jcat.2005.04.009.
[44] M.J. Climent, A. Corma, S. Iborra, J. Primo, Base Catalysis for Fine Chemicals Production: Claisen-Schmidt Condensation on Zeolites and Hydrotalcites for the Production of Chalcones and Flavanones of Pharmaceutical Interest, J. Catal. 151 (1995) 60–66. doi:https://doi.org/10.1006/jcat.1995.1008.
[45] W.F. Hölderich, J. Röseler, G. Heitmann, A.T. Liebens, The use of zeolites in the synthesis of fine and intermediate chemicals, Catal. Today. 37 (1997) 353–366. doi:https://doi.org/10.1016/S0920-5861(97)81094-2.
[46] A. Corma, Role of the Zeolite Catalysts in the New Refining Strategies, in: T. Hattori, and C. Yashima (Eds.), Zeolites Microporous Cryst., Elsevier, 1994: pp. 461–472. doi:https://doi.org/10.1016/S0167-2991(08)63288-7.
[47] H.J. Moon, Development of Thin Film Inorganic Membranes for Oxygen Sep-aration, Forschungszentrum Jülich, 2012.
[48] T. Alessandro, Catalysis by Ceria and Related Materials, Catal. Sci. Ser. Vol-ume 2 (2002) 528. doi:doi:10.1142/p249.
[49] P. Sudarsanam, B. Hillary, M.H. Amin, S.B.A. Hamid, S.K. Bhargava, Struc-ture-activity relationships of nanoscale MnOx/CeO2 heterostructured catalysts for selective oxidation of amines under eco-friendly conditions, Appl. Catal. B Environ. 185 (2016) 213–224. doi:10.1016/j.apcatb.2015.12.026.
[50] A. Laachir, V. Perrichon, A. Badri, J. Lamotte, E. Catherine, J.C. Lavalley, J. E. Fallah, L. Hilaire, F.Le Normand, E. Quemere, G.N. Sauvion, O. Touret, Reduc-tion of CeO2 by hydrogen. Magnetic susceptibility and Fourier-transform in-frared, ultraviolet and X-ray photoelectron spectroscopy measurements, J. Chem. Soc. Faraday Trans. 87 (1991) 1601–1609. doi:10.1039/FT9918701601.
[51] P. Li, X. Chen, Y. Li, J.W. Schwank, A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applica-tions in reactions related to catalytic automotive emissions control, Catal. To-day. (2018). doi:https://doi.org/10.1016/j.cattod.2018.05.059.
[52] G. Li, Q. Wang, B. Zhao, M. Shen, R. Zhou, Effect of iron doping into CeO2-ZrO2 on the properties and catalytic behaviour of Pd-only three-way cat-alyst for automotive emission control, J. Hazard. Mater. 186 (2011) 911–920. doi:10.1016/j.jhazmat.2010.11.080.
[53] M. Cargnello, V.V.T. Doan-Nguyen, T.R. Gordon, R.E. Diaz, E.A. Stach, R.J. Gorte, P. Fornasiero, C.B. Murray, Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts, Science, 341 (2013) 771–773. http://science.sciencemag.org/content/341/6147/771.abstract.
[54] S. Zhang, Z. Xia, T. Ni, Z. Zhang, Y. Ma, Y. Qu, Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quino-lines at room temperature, J. Catal. 359 (2018) 101–111. doi:10.1016/j.jcat.2018.01.004.
[55] S. Carrettin, P. Concepción, A. Corma, J.M. López Nieto, V.F. Puntes, Nano-crystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude, Angew. Chemie. Int. Ed. 43 (2004) 2538–2540. doi:10.1002/anie.200353570.
[56] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Kröhnert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paál, R. Schlögl, Preferential CO ox-idation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions, J. Catal. 237 (2006) 1–16. doi:https://doi.org/10.1016/j.jcat.2005.10.014.
[57] V.G. Milt, C.A. Querini, E.E. Miró, M.A. Ulla, Abatement of diesel exhaust pollutants: NOx adsorption on Co,Ba,K/CeO2 catalysts, J. Catal. 220 (2003) 424–432. doi:https://doi.org/10.1016/S0021-9517(03)00285-9.
[58] L. Zhang, J. Pierce, V.L. Leung, D. Wang, W.S. Epling, Characterization of ce-ria’s interaction with NOx and NH3, J. Phys. Chem. C. 117 (2013) 8282–8289. doi:10.1021/jp401442e.
[59] M. Böhm, M.Z.M. Salem, J. Srba, Formaldehyde emission monitoring from a variety of solid wood, plywood, blockboard and flooring products manufac-tured for building and furnishing materials, J. Hazard. Mater. 221–222 (2012) 68–79. doi:10.1016/j.jhazmat.2012.04.013.
[60] R. Wei, H. Chen, X. Zhang, J. Suo, Removal of high concentrations of formal-dehyde in industrial exhaust by catalytic oxidation, Chinese J. Catal. 34 (2013) 1945–1950. doi:10.1016/S1872-2067(12)60696-2.
[61] N.R. Council, Formaldehyde and Other Aldehydes, National Academy Press, 1981.
[62] U.S.E.P.A.E. Standards, E. Division, Control techniques for volatile organic emissions from stationary sources, Environmental Protection Agency, Office of Air and Waste Management, Office of Air Quality Planning and Standards, Emission Standards and Engineering Division, 1978.
[63] S. Wahid, B.J. Tatarchuk, Catalytic material with enhanced contacting effi-ciency for volatile organic compound removal at ultrashort contact time, Ind. Eng. Chem. Res. 52 (2013) 15494–15503. doi:10.1021/ie400282q.
[64] J.E.van den Reijen, S. Kanungo, T.A.J. Welling, M. Versluijs-Helder, T.A. Nijhuis, K.P. deJong, P.E. deJongh, Preparation and particle size effects of Ag/Α-Al2O3 catalysts for ethylene epoxidation, J. Catal. 356 (2017) 65–74. doi:10.1016/j.jcat.2017.10.001.
[65] M.C.N. Amorim de Carvalho, F.B. Passos, M. Schmal, Study of the active phase of silver catalysts for ethylene epoxidation, J. Catal. 248 (2007) 124–129. doi:10.1016/j.jcat.2006.10.030.
[66] F. Wang, J. Ma, G. He, M. Chen, C. Zhang, H. He, Nanosize Effect of Al2O3 in Ag/Al2O3 Catalyst for the Selective Catalytic Oxidation of Ammonia, ACS Catal. 8 (2018) 2670–2682. doi:10.1021/acscatal.7b03799.
[67] L. Zhang, C. Zhang, H. He, The role of silver species on Ag/Al2O3 catalysts for the selective catalytic oxidation of ammonia to nitrogen, J. Catal. 261 (2009) 101–109. doi:10.1016/j.jcat.2008.11.004.
[68] C.D’ Agostino, S. Chansai, I. Bush, C. Gao, M.D. Mantle, C. Hardacre, S.L. James, L.F. Gladden, Assessing the effect of reducing agents on the selective catalytic reduction of NOx over Ag/Al2O3 catalysts, Catal. Sci. Technol. 6 (2016) 1661–1666. doi:10.1039/c5cy01508a.
[69] U. Kamolphop, S.F.R. Taylor, J.P. Breen, R. Burch, J.J. Delgado, S. Chansai, C. Hardacre, S. Hengrasmee, S.L. James, Low-temperature selective catalytic re-duction (SCR) of NOx with n-octane using solvent-free mechanochemically prepared Ag/Al2O3 catalysts, ACS Catal. 1 (2011) 1257–1262. doi:10.1021/cs200326m.
[70] K.I. Shimizu, A. Satsuma, Selective catalytic reduction of NO over supported silver catalysts - Practical and mechanistic aspects, Phys. Chem. Chem. Phys. 8 (2006) 2677–2695. doi:10.1039/b601794k.
[71] A. Kalantarifard, J.G. Gon, G.S. Yang, Formaldehyde adsorption in clinoptilo-lite zeolite modified with the addition of rich materials and desorption perfor-mance by microwave heating, Terr. Atmos. Ocean. Sci. 27 (2016) 865–875. doi:10.3319/TAO.2016.05.28.01(TT).
[72] 黃品豪, Y型與ZSM-5沸石應用於揮發性有機物之吸脫附特性研究 TT - Applications of Y and ZSM-5 zeolites in VOCs adsorption, 臺灣大學, 2015. http://www.airitilibrary.com/Publication/Index/U0001-1708201512143700.
[73] Y. Madier, C. Descorme, A.M. LeGovic, D. Duprez, Oxygen mobility in CeO2 and CexZr(1-x)O2 compounds: Study by CO transient oxidation and 18O/16O iso-topic exchange, J. Phys. Chem. B. 103 (1999) 10999–11006. doi:10.1021/jp991270a.
[74] P. Sudarsanam, B. Hillary, M.H. Amin, S.B.A. Hamid, S.K. Bhargava, Struc-ture-activity relationships of nanoscale MnOx/CeO2 heterostructured catalysts for selective oxidation of amines under eco-friendly conditions, Appl. Catal. B Environ. 185 (2016) 213–224. doi:10.1016/j.apcatb.2015.12.026.
[75] A. Laachir, V. Perrichon, A. Badri, J. Lamotte, E. Catherine, J.C. Lavalley, J. El Fallah, L. Hilaire, F. Le Normand, E .Quemere, G.N. Sauvion, O. Touret, Re-duction of CeO2 by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements, J. Chem. Soc. Faraday Trans. 87 (1991) 1601–1609. doi:10.1039/FT9918701601.
[76] Taiwan EPA (Taiwan Environmental Protection Administration), NIEA A724.72B.
[77] R.G. Dickinson, N.W. Jacobsen, A new sensitive and specific test for the detec-tion of aldehydes: formation of 6-mercapto-3-substituted-s-triazolo[4,3-b]-s-tetrazines, J. Chem. Soc. D Chem. Commun. (1970) 1719–1720. doi:10.1039/C29700001719.
[78] Y.-H. Hsien, C.-F. Chang, Y.-H. Chen, S. Cheng, Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves, Appl. Catal. B Environ. 31 (2001) 241–249. doi:https://doi.org/10.1016/S0926-3373(00)00283-6.
[79] L. Shi, G.M. Deng, W.C. Li, S. Miao, Q.N. Wang, W.P. Zhang, A.H. Lu, Al2O3 Nanosheets Rich in Pentacoordinate Al3+ Ions Stabilize Pt-Sn Clusters for Pro-pane Dehydrogenation, Angew. Chemie. Int. Ed. 54 (2015) 13994–13998. doi:10.1002/anie.201507119.
[80] M.V. Badani, M.A. Vannice, Effects of cesium and chlorine on oxygen adsorp-tion on promoted Ag/α-Al2O3 catalysts, Appl. Catal. A Gen. 204 (2000) 129–142. doi:https://doi.org/10.1016/S0926-860X(00)00509-3.
[81] K. Arve, K. Svennerberg, F. Klingstedt, K. Eränen, L.R. Wallenberg, J.-O. Bovin, L. Čapek, D.Y. Murzin, Structure−Activity Relationship in HC-SCR of NOx by TEM, O2-Chemisorption, and EDXS Study of Ag/Al2O3, J. Phys. Chem. B. 110 (2006) 420–427. doi:10.1021/jp055147x.
[82] F.K.V. Koch, CCLXV.—A simple electrochemical method for the simultaneous determination of the constitution and equilibrium constant of complex ions in solution. Application to complex silver ions, J. Chem. Soc. (1930) 2053–2063. doi:10.1039/JR9300002053.
[83] C.B. Baddiel, M.J. Tait, G.J. Janz, Nonaqueous Silver Nitrate Solutions. Spec-tral Studies in Acetonitrile, J. Phys. Chem. 69 (1965) 3634–3638. doi:10.1021/j100894a068.
[84] G.J. Janz, M.J. Tait, J. Meier, Infrared spectra of the complexes AgNO3.CH3CN and AgNO3.2CH3CN and their solutions in acetonitrile, J. Phys. Chem. 71 (1967) 963–968. doi:10.1021/j100863a030.
[85] N.Y. Chen, Hydrophobic properties of zeolites, J. Phys. Chem. 80 (1976) 60–64. doi:10.1021/j100542a013.
[86] R.B. Borade, Synthesis and characterization of ferrisilicate zeolite of pentasil group, Zeolites. 7 (1987) 398–403. doi:https://doi.org/10.1016/0144-2449(87)90003-0.
[87] Y. Li, C. Zhang, H. He, J. Zhang, M. Chen, Influence of alkali metals on Pd/TiO2 catalysts for catalytic oxidation of formaldehyde at room temperature, Catal. Sci. Technol. 6 (2016) 2289–2295. doi:10.1039/c5cy01521a.
[88] C. Zhang, Y. Li, Y. Wang, H. He, Sodium-promoted Pd/TiO2 for catalytic oxida-tion of formaldehyde at ambient temperature, Environ. Sci. Technol. 48 (2014) 5816–5822. doi:10.1021/es4056627.
[89] C. Kosanović, K. Havancsák, B. Subotić, V. Svetličić, T.M. Radić, Á. Cziráki, G. Huhn, I. Buljan, V. Smrečki, Study of the mechanism of formation of nano-crystalline zeolite X in heterogeneous system, Microporous Mesoporous Mater. 142 (2011) 139–146. doi:10.1016/j.micromeso.2010.11.027.
[90] P. Morales-Pacheco, F. Alvarez, L. Bucio, J.M. Domínguez, Synthesis and structural properties of zeolitic nanocrystals II: FAU-type zeolites, J. Phys. Chem. C. 113 (2009) 2247–2255. doi:10.1021/jp8070713.
[91] B.V. L’vov, A.V. Novichikhin, Mechanism of thermal decomposition of anhy-drous metal nitrates, Spectrochim. Acta Part B At. Spectrosc. 50 (1995) 1427–1448. doi:10.1016/0584-8547(95)01401-2.
[92] A.M. Ferraria, A.P. Carapeto, A.M. Botelho do Rego, X-ray photoelectron spec-troscopy : Silver salts revisited, 86 (2012) 1988–1991. doi:10.1016/j.vacuum.2012.05.031.
[93] S.G. Aspromonte, M.D. Mizrahi, F.A. Schneeberger, J.M.R. López, A.V. Boix, Study of the Nature and Location of Silver in Ag-Exchanged Mordenite Cata-lysts. Characterization by Spectroscopic Techniques, (2013). doi:10.1021/jp4046269.
[94] M.T. Czyyk, R.A. de Groot, G. Dalba, P. Fornasini, A. Kisiel, F. Rocca, E. Bu-rattini, Ag2O band structure and x-ray-absorption near-edge spectra, Phys. Rev. B. 39 (1989) 9831–9838. doi:10.1103/PhysRevB.39.9831.
[95] T. Miyamoto, H. Niimi, Y. Kitajima, T. Naito, K. Asakura, Ag L3-edge X-ray absorption near-edge structure of 4d10 (Ag+) compounds: Origin of the edge peak and its chemical relevance, J. Phys. Chem. A. 114 (2010) 4093–4098. doi:10.1021/jp907669s.
[96] S. Yuvaraj, F.Y. Lin, T.H. Chang, C.T. Yeh, Thermal decomposition of metal nitrates in air and hydrogen environments, J. Phys. Chem. B. 107 (2003) 1044–1047. doi:10.1021/jp026961c.
[97] H. Tan, J. Wang, S. Yu, K. Zhou, Support Morphology-Dependent Catalytic Ac-tivity of Pd/CeO2 for Formaldehyde Oxidation, Environ. Sci. Technol. 49 (2015) 8675–8682. doi:10.1021/acs.est.5b01264.
[98] G.D. Chukin, A.S. Kulikov, S.A. Sergienko, Nature of Lewis acidity in H-zeolites, React. Kinet. Catal. Lett. 27 (1985) 287–291. doi:10.1007/BF02070459.
[99] A. Jentys, G. Warecka, M. Derewinski, J.A. Lercher, Adsorption of water on ZSM 5 zeolites, J. Phys. Chem. 93 (1989) 4837–4843. doi:10.1021/j100349a032
[100] H. Jobic, A. Tuel, M. Krossner, J. Sauer, Water in interaction with acid sites in H-ZSM-5 zeolite does not form hydroxonium ions. A comparison between neu-tron scattering results and ab initio calculations, J. Phys. Chem. 100 (1996) 19545–19550. doi:10.1021/jp9619954.
[101] G.S. Pozan, Effect of support on the catalytic activity of manganese oxide cat-alyst for toluene combustion, J. Hazard. Mater. 221–222 (2012) 124–130. doi:10.1016/j.jhazmat.2012.04.022.
[102] J. Bedia, J. M.Rosas, J. Rodríguez-Mirasol, T. Cordero, Pd supported on meso-porous activated carbons with high oxidation resistance as catalysts for toluene oxidation, Appl. Catal. B Environ. 94 (2010) 8–18. doi:10.1016/j.apcatb.2009.10.015.
[103] C. Chen, J. Zhu, F. Chen, X. Meng, X. Zheng, X. Gao, F.S. Xiao, Enhanced per-formance in catalytic combustion of toluene over mesoporous Beta zeo-lite-supported platinum catalyst, Appl. Catal. B Environ. 140–141 (2013) 199–205. doi:10.1016/j.apcatb.2013.03.050.
[104] T. Barakat, V. Idakiev, R. Cousin, G.S. Shao, Z.Y. Yuan, T. Tabakova, S. Siffert, Total oxidation of toluene over noble metal based Ce, Fe and Ni doped titanium oxides, Appl. Catal. B Environ. 146 (2014) 138–146. doi:10.1016/j.apcatb.2013.05.064.
[105] C. He, Y. Yu, L. Yue, N. Qiao, J. Li, Q. Shen, W. Yu, J. Chen, Z. Hao, Low-temperature removal of toluene and propanal over highly active mesopo-rous CuCeOx catalysts synthesized via a simple self-precipitation protocol, Appl. Catal. B Environ. 147 (2014) 156–166. doi:10.1016/j.apcatb.2013.08.039.
[106] J. Raskó, T. Kecskés, J. Kiss, Adsorption and reaction of formaldehyde on TiO2-supported Rh catalysts studied by FTIR and mass spectrometry, J. Catal. 226 (2004) 183–191. doi:10.1016/j.jcat.2004.05.024.
[107] Y. Yue, D. Yuchi, P. Guan, J. Xu, L. Guo, J. Liu, Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of car-bon nanotubes, Nat. Commun. 7 (2016) 1–7. doi:10.1038/ncomms12251.
[108] M. Shao, H. Cui, S. Guo, L. Zhao, Y. Tan, Effects of calcination and reduction temperature on the properties of Ni-P/SiO2 and Ni-P/Al2O3 and their hydro-denitrogenation performance, RSC Adv. 8 (2018) 6745–6751. doi:10.1039/c7ra11907k.
[109] M.K. Oudenhuijzen, P.J. Kooyman, B. Tappel, J.A. VanBokhoven, D.C. Kon-ingsberger, Understanding the influence of the pretreatment procedure on plat-inum particle size and particle-size distribution for SiO2 impregnated with [Pt2+(NH3)4](NO3−)2: A combination of HRTEM, mass spectrometry, and quick EXAFS, J. Catal. 205 (2002) 135–146. doi:10.1006/jcat.2001.3433.
[110] E. Poggio, M. Jobbágy, M. Moreno, M. Laborde, F. Mariño, G. Baronetti, In-fluence of the calcination temperature on the structure and reducibility of nanoceria obtained from crystalline Ce(OH)CO3 precursor, Int. J. Hydrogen Energy. 36 (2011) 15899–15905. doi:10.1016/j.ijhydene.2011.09.026.
[111] N. Padmanathan, S. Selladurai, Shape controlled synthesis of CeO2 nanostruc-tures for high performance supercapacitor electrodes, RSC Adv. 4 (2014) 6527–6534. doi:10.1039/c3ra43339k.
[112] F.B. Passos, M. Schmal, R. Fréty, Effect of lithium and residual nitrate species on platinum dispersion in Pt/Al2O3 catalysts, Catal. Letters. 14 (1992) 57–64. doi:10.1007/BF00764219.
[113] C.C. Addison, N. Logan, Anhydrous metal nitrates, in: Adv. Inorg. Chem. Ra-diochem., Elsevier, 1964: pp. 71–142.
[114] B. Klingenberg, M.A. Vannice, Influence of pretreatment on lanthanum nitrate, carbonate, and oxide powders, Chem. Mater. 8 (1996) 2755–2768. doi:10.1021/cm9602555.
[115] X. Wang, Q. Gao, C. Wu, J. Hu, M. Ruan, Preparation, channel surface hydroxyl characterization and photoluminescence properties of nanoporous nickel phos-phate VSB-1, Microporous Mesoporous Mater. 85 (2005) 355–364. doi:10.1016/j.micromeso.2004.12.027.
[116] K.S. Ranjith, R.B. Castillo, M. Sillanpaa, R.T. Rajendra Kumar, Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on vis-ible photocatalytic and photo sensing properties, Appl. Catal. B Environ. 237 (2018) 128–139. doi:10.1016/j.apcatb.2018.03.099.
[117] X. Du, C. Li, L. Zhao, J. Zhang, L. Gao, J. Sheng, Y. Yi, J. Chen, G. Zeng, Pro-motional removal of HCHO from simulated flue gas over Mn-Fe oxides modi-fied activated coke, Appl. Catal. B Environ. 232 (2018) 37–48. doi:10.1016/j.apcatb.2018.03.034.
[118] D. Zemlyanov, G. Weinberg, U. Wild, R. Schlögl, Formation of a liquid film of AgNO3 on a silver surface, Catal. Letters. 64 (2000) 113–118. doi:10.1023/A:1019015826651.
[119] I. Miguel-García, S. Parres-Esclapez, D. Lozano-Castelló, A. Bueno-López, H2 assisted decomposition of cerium nitrate to ceria with enhanced catalytic prop-erties, Catal. Commun. 11 (2010) 848–852. doi:10.1016/j.catcom.2010.03.007.
[120] D. Jiang, W. Wang, S. Sun, L. Zhang, Y. Zheng, Equilibrating the plasmonic and catalytic roles of metallic nanostructures in photocatalytic oxidation over Au-modified CeO2, ACS Catal. 5 (2015) 613–621. doi:10.1021/cs501633q.
[121] A. Muñoz-Murillo, L.M. Martínez T., M.I. Domínguez, J.A. Odriozola, M.A. Centeno, Selective CO methanation with structured RuO2/Al2O3 catalysts, Appl. Catal. B Environ. 236 (2018) 420–427. doi:10.1016/j.apcatb.2018.05.020.
[122] S. Hosokawa, H. Kanai, K. Utani, Y.I. Taniguchi, Y. Saito, S. Imamura, State of Ru on CeO2 and its catalytic activity in the wet oxidation of acetic acid, Appl. Catal. B Environ. 45 (2003) 181–187. doi:10.1016/S0926-3373(03)00129-2.
[123] L. Wang, J. Chen, A. Patel, V. Rudolph, Z. Zhu, Catalytic performance of Ru nanoparticles supported on different mesoporous silicas for preferential oxida-tion of CO in H2-rich atmosphere, Appl. Catal. A Gen. 447–448 (2012) 200–209. doi:10.1016/j.apcata.2012.09.044.
[124] S. Scirè, R. Fiorenza, A. Gulino, A. Cristaldi, P.M. Riccobene, Selective oxida-tion of CO in H2-rich stream over ZSM5 zeolites supported Ru catalysts: An investigation on the role of the support and the Ru particle size, Appl. Catal. A Gen. 520 (2016) 82–91. doi:10.1016/j.apcata.2016.04.011.
[125] B. Bai, Q. Qiao, H. Arandiyan, J. Li, J. Hao, Three-dimensional ordered meso-porous MnO2-supported Ag nanoparticles for catalytic removal of formalde-hyde, Environ. Sci. Technol. 50 (2016) 2635–2640. doi:10.1021/acs.est.5b03342.
[126] K.A. Resende, A.H. Braga, F.B. Noronha, C.E. Hori, Hydrodeoxygenation of phenol over Ni/Ce1-xNbxO2 catalysts, Appl. Catal. B Environ. 245 (2019) 100–113. doi:10.1016/j.apcatb.2018.12.040.
[127] J.F. Herbst, J.W. Wilkins, Relativistic calculations of 2p excitation energies in the rare-earth metals, Phys. Rev. B. 26 (1982) 1689–1701. doi:10.1103/PhysRevB.26.1689.
[128] A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, J. Petiau, Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption, Phys. Rev. B. 35 (1987) 806–812. doi:10.1103/PhysRevB.35.806.
[129] D.D. Beck, T.W. Capehart, R.W. Hoffman, Determination of Ce valence in Rh-Ce/Al2O3 catalysts by X-ray absorption, Chem. Phys. Lett. 159 (1989) 205–213. doi:10.1016/0009-2614(89)87411-1.
[130] T.S. Wu, Y. Zhou, R.F. Sabirianov, W.N. Mei, Y.L. Soo, C.L. Cheung, X-ray ab-sorption study of ceria nanorods promoting the disproportionation of hydrogen peroxide, Chem. Commun. 52 (2016) 5003–5006. doi:10.1039/c5cc10643e.
[131] A.J.F. Van Hoof, I.A.W. Filot, H. Friedrich, E.J.M. Hensen, Reversible restruc-turing of silver particles during ethylene epoxidation, ACS Catal. 8 (2018) 11794–11800. doi:10.1021/acscatal.8b03331.
[132] C. Shi, M. Cheng, Z. Qu, X. Bao, On the correlation between microstructural changes of Ag-H-ZSM-5 catalysts and their catalytic performances in the se-lective catalytic reduction of NOx by methane, J. Mol. Catal. A Chem. 235 (2005) 35–43. doi:10.1016/j.molcata.2004.10.045.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74812-
dc.description.abstract甲醛是常見的揮發性有機物之一,主要來源來自於工業廢氣的排放、居家的建築材料以及建築裝飾油漆,並且對於人體產生健康的危害。因此如何減少生活中的甲醛以降低對於人體健康危害的風險變成最重要的課題。甲醛氧化反應因為具有高效率並且可以將甲醛轉化成無害的水及二氧化碳,因此被視為最具可行性的甲醛移除方法。在甲醛氧化反應當中,一般以鉑、鈀與金為主的觸媒,價格昂貴且可以在較低溫的環境有效地進行反應;以銀為基礎的觸媒雖然價格較為便宜,但卻需要較高的反應溫度才可進行。本篇論文是以含浸法的方式將銀負載於不同的載體上,而載體選擇上有Na-Y型沸石、H-Y型沸石及二氧化鈰奈米粒子。利用氮氣等溫吸附脫附(N2 adsorption–desorption)、電感耦合電漿體質譜(ICP-MS)、X光粉末繞射(XRD)、X光電子光譜(XPS)、X光吸收光譜(XAS)、掃描穿透式電子顯微鏡附X射線能量散佈分析(STEM/EDS)、高分辨透射電子顯微鏡(HRTEM)、傅里葉轉換紅外光譜(FTIR)、氫氣程溫還原分析(H2-TPR)、原位擴散反射紅外光谱(in-situ DRIFTS)與熱分析-質譜儀(TA-MS)來鑑定觸媒材料的性質結構、化學態的變化以及負載銀的顆粒大小,以便去探討觸媒材料的特性與甲醛反應的活性的關聯性。
以銀負載於Y型沸石之觸媒為例,將以Na離子交換之Y型沸石、鍛燒步驟、還原步驟以及製備硝酸銀溶液的溶液選擇進行探討。觸媒的最佳銀金屬負載量為6 wt%。製備觸媒的含浸溶液可為水與乙腈,分別適用於具有親水性及疏水性的沸石表面特性上。6%Ag/NaY40觸媒經由723K鍛燒處理後,於473 K下進行氫氣還原反應,所獲得的觸媒標示為6Ag/NaY40-723-R。該觸媒在400 ppm的甲醛濃度下,反應溫度為373 K,反應72小時候依舊可維持趨近於100%的甲醛轉化率,二氧化碳選擇轉化率為95%以上。在環境的相對溼度為50%狀態下,水氣的存在仍可促進銀負載於Y型沸石之觸媒在甲醛氧化反應的進行並提升其反應活性。在420 ppm的甲醛與920 ppm的甲苯共存環境下,反應溫度提高至473K時,依舊可維持約98%的甲醛轉化率。從XRD, TEM and Ag L3-XANES的分析結果可知,6Ag/NaY40-723-R具有最佳的催化效果來自於表面的金屬銀奈米粒子具有高度分散性。
以銀負載於二氧化鈰奈米粒子之觸媒為例,鍛燒溫度的不同及氫氣還原的前處理會影響觸媒在甲醛氧化反應的催化活性。6%Ag/CeO2觸媒經由573K鍛燒處理後,於473 K下進行氫氣還原反應,所獲得的觸媒標示為6Ag/CeO2-573-R,該觸媒在400 ppm的甲醛濃度下,反應溫度為333K,反應72小時候依舊可維持95%的甲醛轉化率,二氧化碳選擇轉化率為98%以上。Ag/CeO2觸媒的催化活性與銀的氧化態與粒子大小有關。金屬銀粒子均勻分散於二氧化鈰奈米粒子表面上,有利於氧氣分子的吸附而產生表面活性氧化物,進而促使甲醛氧化反應可在低溫下進行。
另一方面,二氧化鈰奈米粒子表面的羥基群可以穩定甲醛分子吸附在觸媒表面上以及藉由中間產物的去氫反應來促進甲醛氧化反應的進行。
zh_TW
dc.description.abstractFormaldehyde (HCHO) is one of the most common VOCs emitted from industrial exhaust stream, building materials and decorative paint, and it can cause serious health problems. It is important to reduce the concentration of HCHO in the outdoor and indoor air to improve public health risk. Among the methods for HCHO removal, catalytic oxi-dation of HCHO is regarded as the most promising method due to its higher efficiency and resulting harmless products of CO2 and H2O. Compared to Pt, Pd and Au-based cat-alysts, Ag-based catalysts were significantly less expensive but showed good perfor-mance in HCHO oxidation at relatively high temperature. In this thesis, Ag-based cata-lysts with different supports (sodium-form zeolite Y, proton-form zeolite Y and CeO2 na-noparticles) were fabricated through impregnation method and used as the catalysts in HCHO oxidation. The catalytic activities were correlated with the structure, chemical state, and particle size of supported Ag catalysts, which were characterized systematically by N2 adsorption–desorption, ICP-MS, XRD, XPS, XAS, STEM/EDS, HRTEM, FTIR, H2-TPR, in-situ DRIFTS, and TA-MS.
In the case of zeolite Y supported Ag catalysts, factors examined include Na content in zeolite Y, thermal pre-treatment, Ag loading, and the solvent to dissolve the silver salt. Water and acetonitrile were found to be suitable solvents for impregnating Ag on zeolite Y with more hydrophilic and hydrophobic surfaces, respectively. The 6 wt% Ag loading was found to give the optimal catalytic activity. 6%Ag/NaY40 calcined at 723 K in air and then reduced at 473 K in 10% H2/N2 stream showed excellent activities and stabilities for HCHO oxidation at 373 K, achieving ca. 100% conversion of 400 ppm HCHO and CO2 selectivity was maintained above 95%. The addition of moisture (Relative Humidity of 50%) to the reaction mixture considerably enhanced the conversion of HCHO oxida-tion over Ag/zeolite Y catalysts. The HCHO conversion over 6Ag/NaY-723-R catalyst could be achieved about 98% at 473 K under 400 ppm HCHO and 920 ppm toluene co-existence. XRD, TEM and Ag L3-XANES results showed that the excellent performance of the catalysts is ascribed to high dispersion of Ag nanoparticles.
In the case of Ag-supported on CeO2 nanoparticles (NPs), the pre-treatments of Ag/CeO2 catalysts by calcining at different temperatures and H2 reduction were found to significantly influence their catalytic activities in HCHO oxidation. The 6wt%Ag/CeO2 catalyst calcined at 573 K and then reduced at 473 K with 10%H2/N2 showed 95% con-version of 400 ppm formaldehyde at 333 K under high gas hourly space velocity (GHSV = 24400 h−1) and CO2 selectivity is maintained above 98%. The catalytic activities were correlated with the oxidation state and particle size of silver. Metallic Ag particles well dispersed on CeO2 NPs could adsorb oxygen readily and generate surface active oxygen species, which contributed to the oxidation of HCHO at low temperature. The retention of surface hydroxyl groups on the surface of CeO2 NPs also promoted the catalytic per-formance for HCHO oxidation probably by stabilizing the adsorbed HCHO molecules and removing proton from surface intermediates.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:08:03Z (GMT). No. of bitstreams: 1
ntu-108-D01223130-1.pdf: 9680740 bytes, checksum: c84bc3a25aa8b7e07a7b8231b42f8895 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents謝辭 I
摘要 II
ABSTRACT IV
CONTENTS VI
LIST OF SCHEMES XI
LIST OF FIGURES XII
LIST OF TABLES XXIII
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Review on catalysts for HCHO oxidation 3
1.2.1 Pt-based catalyst 4
1.2.2 Pd-based catalyst 6
1.2.3 Au-based catalyst 7
1.2.4 Ag-based catalyst 9
1.3 Zeolite: Structure and Properties 12
1.4 Cerium dioxide (CeO2): Structure and Properties 16
1.5 Motivation 18
Chapter 2 Experimental Methods and Analysis 20
2.1 Sources of Chemical Reagents 20
2.2 Characterization Techniques 21
2.2.1 Powder X-ray diffraction (XRD) 21
2.2.2 Thermogravimetric (TG) analysis 22
2.2.3 Nitrogen physisorption 22
2.2.4 Scanning electron microscopy (SEM) 22
2.2.5 Transmission electron microscopy (TEM) 22
2.2.6 Inductive-coupling plasma-mass spectrometry (ICP-MS) 23
2.2.7 X-ray photoelectron spectroscopy (XPS) 23
2.2.8 Fourier-transform infrared spectroscopy (FTIR) 23
2.2.9 X-ray absorption spectroscopy (XAS) 23
2.2.10 H2 temperature programmed reduction (H2-TPR) 24
2.2.11 O2-chemisorption 24
2.2.12 Ultraviolet-visible spectroscopy (UV-Vis) 24
2.2.13 Gas chromatography (GC) 24
2.2.14 Diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) 25
2.2.15 Thermogravimetric analysis/mass spectrometry (TA-MS) 25
2.2.16 Raman spectroscopy 25
2.3 Measurement of catalytic activity for HCHO oxidation 26
2.4 Quantitative Analysis of Formaldehyde 27
2.4.1 Calibration curve for formaldehyde analysis 27
2.4.1.1 Standardization of Na2S2O3 Solution 28
2.4.1.2 Back-titration of Formaldehyde with Iodine 29
2.4.2 Calibration curve of Formaldehyde-AHMT derivative 31
2.4.3 Sampling procedure in fixed-bed system 33
2.5 Kinetic studies of HCHO oxidation 34
2.5.1 Turnover frequency (TOF) calculation 34
2.5.2 The Arrhenius plots and reaction order in HCHO oxidation 35
Chapter 3 Investigation of Zeolite Y Supported Ag Catalysts for Formaldehyde Oxidation 37
3.1 Catalyst preparation 37
3.1.1 Preparation of Na-form zeolite Y 37
3.1.2 Preparation of Ag/zeolite Y catalysts 37
3.2 Results and Discussion 38
3.2.1 Effect of calcination and H2 reduction 38
3.2.1.1 Structural features of catalysts 40
3.2.1.2 Catalytic activity 43
3.2.2 Solvent selection and surface modification 45
3.2.2.1 Structural features of catalysts 46
3.2.2.2 Catalytic activity 57
3.2.2.3 Kinetics studies 61
3.2.2.4 Moisture effect 64
3.2.2.5 Effect of toluene presence 67
3.2.3 Effect of metal loading 70
3.2.3.1 Structural features of catalysts 70
3.2.3.2 Catalytic activity 75
3.2.4 Reaction pathway 80
3.3 Summaries 86
Chapter 4 Influence of Pre-treatment on the Catalytic Performance of Ag/CeO2 for Formaldehyde Removal at Low Temperature 87
4.1 Catalyst preparation 87
4.1.1 Synthesis of CeO2 nanoparticles 87
4.1.2 Preparation of Ag/CeO2 catalysts 87
4.2 Results and Discussion 88
4.2.1 Effect of metal loading 88
4.2.1.1 Structural features of catalysts 88
4.2.1.2 Catalytic activity 90
4.2.2 Effect of calcination and H2 reduction 92
4.2.2.1 Structural features of catalysts 92
4.2.2.2 Oxidation State of Ag 95
4.2.2.3 Elemental distribution in Ag/CeO2 catalysts 98
4.2.2.4 Surface hydroxyl groups and nitrate residue on Ag/CeO2 catalysts 101
4.2.2.5 O 1s XPS analysis of Ag/CeO2 catalysts 104
4.2.2.6 Redox behaviors of catalysts 105
4.2.3 Catalytic performance of Ag/CeO2 catalysts 110
4.2.3.1 Effect of calcination and H2 reduction 110
4.2.3.2 Kinetics studies 113
4.2.3.3 Durability of catalyst at low temperature 116
4.2.3.4 Moisture effect 118
4.3 Catalytic active sites on Ag/CeO2 catalysts 122
4.3.1 Role of cerium in Ag/CeO2 catalysts 122
4.3.2 Role of silver on Ag/CeO2 catalysts in HCHO oxidation 126
4.3.3 Role of hydroxyl groups on Ag/CeO2 catalysts in HCHO oxidation 129
4.3.4 Reaction pathway 132
4.4 Summaries 136
Chapter 5 Modification of Ag/NaY catalyst with CeO2 for HCHO oxidation 137
5.1 Catalyst preparation 137
5.1.1 Preparation of Ag/CeO2/NaY catalyst 137
5.1.2 Preparation of Ag-CeO2/NaY catalyst 137
5.2 Results and Discussion 138
5.2.1 Structural features of catalysts 138
5.2.2 Catalytic activity 143
5.3 Summaries 145
Chapter 6 Conclusions 146
References 149
dc.language.isoen
dc.title負載銀之Y型沸石與二氧化鈰觸媒的製備與其應用於甲醛氧化反應的研究zh_TW
dc.titlePreparation of Y-Zeolite and CeO2 Supported Ag Catalysts and Their Applications in Formaldehyde Oxidationen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.oralexamcommittee牟中原(Chung-Yuan Mou),陳浩銘(Hao-Ming Chen),劉沂欣(Yi-Hsin Liu),游文岳(Wen-Yueh Yu)
dc.subject.keyword甲醛,氧化反應,銀觸媒,二氧化鈰,Y型沸石,zh_TW
dc.subject.keywordformaldehyde,oxidation,Ag-based catalyst,CeO2,Zeolite Y,en
dc.relation.page173
dc.identifier.doi10.6342/NTU201904307
dc.rights.note有償授權
dc.date.accepted2019-11-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
9.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved