Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74808
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊家驤
dc.contributor.authorChieh Chungen
dc.contributor.author鍾杰zh_TW
dc.date.accessioned2021-06-17T09:07:58Z-
dc.date.available2029-12-31
dc.date.copyright2019-12-17
dc.date.issued2019
dc.date.submitted2019-11-25
dc.identifier.citation[1] R. Bloss, “Mobile Hospital Robots Cure Numerous Logistic Needs,” Industrial Robot, vol. 38, no. 6, pp. 567–571, Oct. 2011.
[2] N. Mathew, S. L. Smith and S. L. Waslander, “Planning Paths for Package Delivery in Heterogeneous Multirobot Teams,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 4, pp. 1298–1308, Oct. 2015.
[3] N. Agmon, G. A. Kaminka and S. Kraus, “Multi-Robot Adversarial Patrolling: Facing a Full-Knowledge Opponent,” Journal of Artificial Intelligence Research, vol. 42, pp. 887–916, Dec. 2011.
[4] S. Witwicki, J. C. Castillo, J. Messias, J. Capitan, F. S. Melo, P. U. Lima and M. Veloso, “Autonomous Surveillance Robots: A Decision-Making Framework for Networked Multiagent Systems,” IEEE Robotics & Automation Magazine, vol. 24, no. 3, pp. 52–64, Sep. 2017.
[5] S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson, D. Hahnal, M. Montemerlo, A. Morris, Z. Omohundro, C. Reverte and W. Whittaker, “Autonomous Exploration and Mapping of Abandoned Mines,” IEEE Robotics & Automation Magazine, vol. 11, no. 4, pp. 79–91, Dec. 2004.
[6] M. Bajracharya, M. W. Maimone and D. Helmick, “Autonomy for Mars Rovers: Past, Present, and Future,” Computer, vol. 41, no. 12, pp. 44–50, Dec. 2008.
[7] R. Siegwart, I. R. Nourbakhsh and D. Scaramuzza, Introduction to Autonomous Mobile Robots, Cambridge (Mas.): MIT Press, 2011.
[8] J. Bialkowski, S. Karaman and E. Frazzoli, “Massively Parallelizing the RRT and the RRT*,” IEEE International Conference on Robotics and Automation, pp. 3513– 3518, Sep. 2011.
[9] C. Park, J. Pan and D. Manocha, “Real- Time Optimization-¬Based Planning in Dynamic Environments Using GPUs,” IEEE International Conference on Robotics and Automation, pp. 4090–4097, May 2013.
[10] Y. Kim, D. Shin, J. Lee, Y. Lee and H. J. Yoo, “A 0.55V 1.1mW Artificial-Intelligence Processor with PVT Compensation for Micro Robots,” IEEE International Conference on Solid- State Circuits, pp. 258–259, Feb. 2016.
[11] R. E. Korf, “Depth-First Iterative-Deepening: An Optimal Admissible Tree Search,” Artificial Intelligence, vol. 27, no. 1, pp. 97–109, Sep. 1985.
[12] S. R. Lindemann and S. M. LaValle, “Current Issues in Sampling-Based Motion Planning,” The International Symposium on Robotics Research, pp. 36–54, Oct. 2003.
[13] K. I. Tsianos, I. A. Sucan and L. E. Kavraki, “Sampling-Based Robot Motion Planning: Towards Realistic Applications,” Computer Science Review, vol. 1, no. 1, pp. 2–11, Aug. 2007.
[14] I. A. Sucan and L. E. Kavraki, “On the Implementation of Single-Query Sampling-Based Motion Planners,” IEEE International Conference on Robotics and Automation, pp. 2005–2011, May 2010.
[15] S. M. LaValle and J. J. Kuffnar, “Randomized Kinodynamic Planning,” IEEE International Conference on Robotics and Automation, vol. 1, pp. 473–479, May 1999.
[16] L. G. D. O. Veras, F. L. L. Medeiros and L. N. F. Guimaraes, “Systematic Literature Review of Sampling Process in Rapidly -Exploring Random Trees,” IEEE Access, vol. 7, pp. 50933–50953, Mar. 2019.
[17] L. Ma, J. Xue, K. Kawabata, J. Zhu, C. Ma and N. Zheng, “Efficient Sampling-Based Motion Planning for On* Road Autonomous Driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 4, pp. 1961–1976, Aug. 2015.
[18] J. H. Park, W. J. Park, C. Lee, M. Kim, S. Kim and H. J. Kim, “Endoscopic Camera Manipulation Planning of A Surgical Robot Using Rapidly-Exploring Random Tree Algorithm,” IEEE International Conference on Control, Automation and Systems, pp. 1516–1519, Oct. 2015.
[19] N. Seegmiller, J. Gassaway, E. Johnson and J. Towler, “The Maverick Planner: An Efficient Hierarchical Planner for Autonomous Vehicles in Unstructured Environments,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2018–2023, Sep. 2017.
[20] S. Karaman and E. Frazzoli, “Sampling-Based Algorithms for Optimal Motion Planning,” The International Journal of Robotics Research, vol. 30, No. 7, pp. 846–894, June 2011.
[21] S. Xiao, N. Bergmann and A. Postula, “Parallel RRT* Architecture Design for Motion Planning,” IEEE International Conference on Field-Programmable Logic and
Applications, pp. 1–4, Sep. 2017.
[22] S. M. Lavalle, Planning Algorithms, New York (NY): Cambridge University Press, 2006.
[23] J. J. Kuffnar and S. M. LaValle, “RRT-¬Connect: An Efficient Approach to Single-Query Path Planning,” IEEE International Conference on Robotics and Automation,
vol. 2, pp. 995–1001, Apr. 2000.
[24] S. M. LaValle and J. J. Kuffnar, “Randomized Kinodynamic Planning,” The International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, May 2001.
[25] D. Hsu, J. C. Latombe and R. Motwani, “Path Planning in Expansive Configuration Spaces,” International Journal of Computational Geometry & Applications, vol. 9, nos. 4 & 5, pp. 495–512, Aug. 1999.
[26] A. Short, Z. Pan, N. Larkin and S. van Duin, “Recent Progress on Sampling Based Dynamic Motion Planning Algorithms,” IEEE International Conference on Advanced Intelligent Mechatronics, pp. 1305–1311, July 2016.
[27] J. Bruce and M. Veloso, “Real-¬Time Randomized Path Planning for Robot Navigation,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2383–2388, Oct. 2002.
[28] D. Ferguson, N. Kalra and A. Stentz, “Replanning with RRTs,” IEEE International Conference on Robotics and Automation, pp. 1243–1248, May 2006.
[29] M. Zucker, J. Kuffnar and M. Branicky, “Multipartite RRTs for Rapid Replanning in Dynamic Environments,” IEEE International Conference on Robotics and Automation, pp. 1603–1609, Apr. 2007.
[30] R. Gayle, K. R. Klingler and P. G. Xavier, “Lazy Reconfiguration Forest (LRF) - An Approach for Motion Planning with Multiple Tasks in Dynamic Environments,” IEEE International Conference on Robotics and Automation, pp. 1316–1323, Apr. 2007.
[31] S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas and N. M. Amato, “A Scalable Distributed RRT for Motion Planning,” IEEE International Conference on Robotics and Automation, pp. 5088–5095, May 2013.
[32] D. Devaurs, T. Simeon and J. Cortes “Parallelizing RRT on Distributed-Memory Architectures,” IEEE International Conference on Robotics and Automation, pp.2261–2266, May 2011.
[33] V. Honkote, D. Kurian, S. Muthukumar, D. Ghosh, S. Yada, K. Jain, B. Jackson, I. Klotchkov, M. R. Nimmagadda, S. Dattawadkar, P.Deshmukh, A. Gupta, J. Timbadiya, R. Pali, K. Narayanan, S. Chhabra, P. Dhama, N. Sreenivasulu, J. Kollikunnel, S. Kadavakpllu, V. D. Sivaraj, P. Aseron, L. Azarenkov, N. Robinson, A. Radhakrishnan, M. Moiseev, G. Nandakumar, A. Madhukumar and R. Popov, “A Distributed Autonomous and Collaborative Multi-Robot System Featuring a Low-Power Robot SoC in 22nm CMOS for Integrated Battery-Powered Minibots,” IEEE International Conference on Solid-State Circuits, pp. 48–49, Feb. 2019
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74808-
dc.description.abstract自主行動之微型機器人已廣泛應用於各種場景並已改變人類生活方式,其自主導航與控制系統需要進行大量認知處理,才能讓機器人執行複雜任務。所需之認知處理包括路徑規劃與障礙物避讓,並需對動態環境進行即時反應。然而,受限於搭載電池的續航力,認知處理必須達到高速且節能。本論文透過演算法與硬體架構之綜合最佳化,提出一個應用於二維與三維空間即時自主導航之高效節能路徑規劃處理器。此處理器採用快速探索隨機樹 (RRT) 在高維度與高解析度的地圖進行路徑規劃,並使用雙樹生長策略、分支延伸、與平行擴展等技術降低運算複雜度與記憶體需求。在原本已搜尋之路徑的基礎上,採用修剪與重複利用等策略進行動態環境下的快速路徑重新規劃。所提出之處理器使用大量平行之處理引擎陣列,其硬體架構設計確保在低複雜度實現下仍具有高效能表現。所提出之路徑規畫處理器以 40nm製程實現,在 3.65mm^2 的晶片面積上整合 2M 邏輯閘。晶片可進行二維與三維的路徑規劃,僅需低於 1ms 與 10ms 的運算時間。操作於200MHz 時脈、供應電壓為 0.9V 時,針對一過去文獻支援之 100×100二維地圖,本研究所提出之處理器晶片消耗能量僅為 1.5µJ/task,在運算時間與能量消耗皆達到上千倍的提升。zh_TW
dc.description.abstractAutonomous micro robots have been utilized in a wide range of applications, changing how humans live. The autonomous navigation system contained in these robots requires a powerful cognition processor that allows complex tasks to be performed in real-time, while adapting to dynamically changing environments. In addition, the limited lifetime of the battery that provides power to the micro robot demands energy-efficient processing of path planning. This work presents an energy­-efficient path planning processor for real­-time autonomous 2D/3D navigation via algorithm­architecture optimization. The chip utilizes the rapidly­exploring random tree (RRT) algorithm to ensure efficient planning on maps that have an increased dimension and resolution. Hardware-­friendly techniques, including a dual­tree planning strategy, branch extension, and parallel expansion, are adopted to reduce both computational complexity and memory requirement. A prune-­and-­reuse strategy is also adopted in order to quickly respond to dynamic scenarios by reusing part of the previously generated path. An array of processing engines is designed as the core of the processor to enable parallel expansion, with the optimal number of processing engines determined through latency analysis. Low complexity implementation for operations in each processing engine are proposed to reduce hardware complexity while maintaining high performance. Fabricated in 40nm CMOS technology, the chip integrates 2M logic gates in an area of 3.65mm^2, supporting planning tasks on both 2D and 3D maps, with latencies of less than 1 and 10 ms, respectively. For a 100×100 2D map, the proposed processor dissipates 1.5µJ/tasks at a supply voltage of 0.9V and an operating frequency of 200MHz. Compared to prior design, improvements of three orders­-of-­magnitude are achieved in both latency and energy dissipation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:07:58Z (GMT). No. of bitstreams: 1
ntu-108-R06943011-1.pdf: 5579151 bytes, checksum: 332fd77166f9e9128c583a39a3358567 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 ii
誌謝 iii
摘要 iv
ABSTRACT v
Contents vii
List of Figures ix
List of Tables x
1 INTRODUCTION 1
2 PATH PLANNING ALGORITHMS 5
3 COMPUTATIONAL COMPLEXITY REDUCTION 8
3.1 Dual­-Tree RRT 8
3.2 Branch Extension 9
3.3 Parallel Expansion 10
3.4 Summary of Complexity and Memory Reduction 11
4 RE­-PLANNING IN DYNAMIC ENVIRONMENTS 14
5 SYSTEM ARCHITECTURE 17
5.1 Tree Expander 17
5.2 Processing Engine 19
5.2.1 Nearest Neighbor Searcher 20
5.2.2 Local Planner 20
5.3 Collision Detector 21
5.4 Re­-planning Checker 23
5.5 Memory Bank 23
6 EXPERIMENTAL VERIFICATION 26
6.1 Chip Implementation 26
6.2 Function Evaluation 26
6.3 Performance Comparison 28
7 CONCLUSION 34
References 36
dc.language.isoen
dc.subject自主導航zh_TW
dc.subject數位積體電路zh_TW
dc.subject微型機器人zh_TW
dc.subject自主機器人zh_TW
dc.subject路徑規劃zh_TW
dc.subject快速探索隨機樹zh_TW
dc.subject取樣式演算法zh_TW
dc.subjectDigital integrated circuitsen
dc.subjectAutonomous roboten
dc.subjectMicro roboten
dc.subjectAutonomous navigationen
dc.subjectSampling--based algorithmen
dc.subjectRapidly--exploring random tree (RRT)en
dc.subjectPath planningen
dc.title應用於微型機器人自主導航之路徑規劃處理器設計與實現zh_TW
dc.titleDesign and Implementation of A Path Planning Processor
for Autonomous Navigation of Micro Robots
en
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張錫嘉,闕河鳴
dc.subject.keyword路徑規劃,自主機器人,微型機器人,自主導航,取樣式演算法,快速探索隨機樹,數位積體電路,zh_TW
dc.subject.keywordPath planning,Autonomous robot,Micro robot,Autonomous navigation,Sampling--based algorithm,Rapidly--exploring random tree (RRT),Digital integrated circuits,en
dc.relation.page40
dc.identifier.doi10.6342/NTU201904283
dc.rights.note有償授權
dc.date.accepted2019-11-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
5.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved