請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7479
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張上淳 | zh_TW |
dc.contributor.author | 黃琬珍 | zh_TW |
dc.contributor.author | Wan-Chen Huang | en |
dc.date.accessioned | 2021-05-19T17:44:33Z | - |
dc.date.available | 2024-02-28 | - |
dc.date.copyright | 2018-10-05 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. 衛生福利部疾病管制署. <愛滋病統計資料>, available at: https://www.cdc.gov.tw/professional/list.aspx?treeid=3f2310b85436188d&nowtreeid=2285B9745A0A3CBB. Accessed on May 18, 2018.
2. Mocroft A, Ledergerber B, Katlama C, et al. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet (London, England) 2003;362:22-9. 3. 衛生福利部疾病管制署. <愛滋病檢驗及治療指引>, 2013. 4. Tsai MS, Yang CJ, Zhang JY, et al. Outcome of antiretroviral regimens prescribed by following the regulations on combination antiretroviral therapy by Taiwan Centers for Disease Control. International Congress of Drug Therapy in HIV Infection. Glasgow, UK: International AIDS Society; 2016:P047. 5. 衛生福利部疾病管制署. <新聞稿:愛滋用藥大利多,六月起與先進國家齊步>, avaiable at: http://www.cdc.gov.tw/professional/info.aspx?treeid=cf7f90dcbcd5718d&nowtreeid=f94e6af8daa9fc01&tid=A5A80A4E91A853EC. Published 2016. Accessed on May 18, 2018. 6. Product Information: TIVICAY(R) oral tablets, dolutegravir oral tablets. 荷商葛蘭素史克藥廠股份有限公司台灣分公司. 臺北市中正區忠孝西路一段66號23、24樓. 2017. 7. U.S. Department of Health and Human Services. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 2018. 8. European AIDS Clinical Society. European Guidelines for treatment of HIV-positive adults in Europe Version 9.0. 2017. 9. de Boer MG, van den Berk GE, van Holten N, et al. Intolerance of dolutegravir-containing combination antiretroviral therapy regimens in real-life clinical practice. AIDS (London, England) 2016;30:2831-4. 10. Hoffmann C, Welz T, Sabranski M, et al. Higher rates of neuropsychiatric adverse events leading to dolutegravir discontinuation in women and older patients. HIV Medicine 2017;18:56-63. 11. Borghetti A, Baldin G, Capetti A, et al. Efficacy and tolerability of dolutegravir and two nucleos(t)ide reverse transcriptase inhibitors in HIV-1-positive, virologically suppressed patients. AIDS (London, England) 2017;31:457-9. 12. 衛生福利部中央健康保險署. <健保用藥品項查詢>, available at: https://www.nhi.gov.tw/QueryN/Query1.aspx. Accessed on May 18, 2018. 13. John E. Bennett, Raphael Dolin, Blaser. MJ. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases: Elsevier Inc.; 2014. 14. National Institutes of Health, U.S. Department of Health and Human Services. The HIV Life Cycle. 2017. available at: https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/19/73/the-hiv-life-cycle. Accessed on April, 2018. 15. Maartens G, Celum C, Lewin SR. HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet (London, England) 2014;384:258-71. 16. Liu Y, Liu H, Kim BO, et al. CD4-independent infection of astrocytes by human immunodeficiency virus type 1: requirement for the human mannose receptor. Journal of Virology 2004;78:4120-33. 17. Chen P, Chen BK, Mosoian A, et al. Virological synapses allow HIV-1 uptake and gene expression in renal tubular epithelial cells. Journal of the American Society of Nephrology 2011;22:496-507. 18. Richman DD, Wrin T, Little SJ, Petropoulos CJ. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proceedings of the National Academy of Sciences of the United States of America 2003;100:4144-9. 19. Goonetilleke N, Liu MK, Salazar-Gonzalez JF, et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. The Journal of Experimental Medicine 2009;206:1253-72. 20. Alter G, Heckerman D, Schneidewind A, et al. HIV-1 adaptation to NK-cell-mediated immune pressure. Nature 2011;476:96. 21. Pantaleo G, Graziosi C, Fauci AS. The immunopathogenesis of human immunodeficiency virus infection. New England Journal of Medicine 1993;328:327-35. 22. Mehandru S, Poles MA, Tenner-Racz K, et al. Mechanisms of gastrointestinal CD4+ T-cell depletion during acute and early human immunodeficiency virus type 1 infection. Journal of Virology 2007;81:599-612. 23. Lichtfuss GF, Hoy J, Rajasuriar R, Kramski M, Crowe SM, Lewin SR. Biomarkers of immune dysfunction following combination antiretroviral therapy for HIV infection. Biomarkers in Medicine 2011;5:171-86. 24. Mehandru S, Poles MA, Tenner-Racz K, et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. The Journal of Experimental Medicine 2004;200:761-70. 25. Prendergast A, Prado JG, Kang YH, et al. HIV-1 infection is characterized by profound depletion of CD161+ Th17 cells and gradual decline in regulatory T cells. AIDS (London, England) 2010;24:491-502. 26. Saeidi A, Ellegard R, Yong YK, et al. Functional role of mucosal-associated invariant T cells in HIV infection. Journal of Leukocyte Biology 2016;100:305-14. 27. Dandekar S, George MD, Baumler AJ. Th17 cells, HIV and the gut mucosal barrier. Current Opinion in HIV and AIDS 2010;5:173-8. 28. Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Medicine 2006;12:1365-71. 29. Zeng M, Southern PJ, Reilly CS, et al. Lymphoid tissue damage in HIV-1 infection depletes naive T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathogens 2012;8:e1002437. 30. Meier A, Chang JJ, Chan ES, et al. Sex differences in the Toll-like receptor–mediated response of plasmacytoid dendritic cells to HIV-1. Nature Medicine 2009;15:955. 31. Hsue PY, Hunt PW, Sinclair E, et al. Increased carotid intima-media thickness in HIV patients is associated with increased cytomegalovirus-specific T-cell responses. AIDS (London, England) 2006;20:2275-83. 32. Kuller LH, Tracy R, Belloso W, et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Medicine 2008;5:e203. 33. Hsue PY, Scherzer R, Hunt PW, et al. Carotid Intima-Media Thickness Progression in HIV-Infected Adults Occurs Preferentially at the Carotid Bifurcation and Is Predicted by Inflammation. Journal of the American Heart Association 2012;1:jah3-e000422. 34. Marks MA, Rabkin CS, Engels EA, et al. Markers of microbial translocation and risk of AIDS-related lymphoma. AIDS (London, England) 2013;27:469-74. 35. Ancuta P, Kamat A, Kunstman KJ, et al. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PloS one 2008;3:e2516. 36. Andrade BB, Hullsiek KH, Boulware DR, et al. Biomarkers of inflammation and coagulation are associated with mortality and hepatitis flares in persons coinfected with HIV and hepatitis viruses. Journal of Infectious Diseases 2013;207:1379-88. 37. The Joint United Nations Programme on HIV/AIDS. UNAIDS DATA 2017. 2017. 38. The Joint United Nations Programme on HIV/AIDS. The Gap Report. 2014. 39. Carr A, Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS Care 1998;12:F51-8. 40. El-Sadr WM, Mullin CM, Carr A, et al. Effects of HIV disease on lipid, glucose and insulin levels: results from a large antiretroviral-naive cohort. HIV Medicine 2005;6:114-21. 41. Cooper DA, Gold J, Maclean P, et al. Acute AIDS retrovirus infection. Definition of a clinical illness associated with seroconversion. Lancet (London, England) 1985;1:537-40. 42. Osmond D, Chaisson R, Moss A, Bacchetti P, Krampf W. Lymphadenopathy in asymptomatic patients seropositive for HIV. New England Journal of Medicine 1987;317:246. 43. Greenspan D, Greenspan JS, Conant M, Petersen V, Silverman S, Jr., de Souza Y. Oral "hairy" leucoplakia in male homosexuals: evidence of association with both papillomavirus and a herpes-group virus. Lancet (London, England) 1984;2:831-4. 44. Rowland RW, Escobar MR, Friedman RB, Kaplowitz LG. Painful gingivitis may be an early sign of infection with the human immunodeficiency virus. Clinical Infectious Diseases 1993;16:233-6. 45. Coogan MM, Greenspan J, Challacombe SJ. Oral lesions in infection with human immunodeficiency virus. Bulletin of the World Health Organization 2005;83:700-6. 46. Tappero JW, Perkins BA, Wenger JD, Berger TG. Cutaneous manifestations of opportunistic infections in patients infected with human immunodeficiency virus. Clinical Microbiology Reviews 1995;8:440-50. 47. Garman ME, Tyring SK. The cutaneous manifestations of HIV infection. Dermatologic Clinics 2002;20:193-208. 48. Rao TKS, Friedman EA, Nicastri AD. The Types of Renal Disease in the Acquired Immunodeficiency Syndrome. New England Journal of Medicine 1987;316:1062-8. 49. Rao TK, Filippone EJ, Nicastri AD, et al. Associated focal and segmental glomerulosclerosis in the acquired immunodeficiency syndrome. New England Journal of Medicine 1984;310:669-73. 50. Roling J, Schmid H, Fischereder M, Draenert R, Goebel FD. HIV-associated renal diseases and highly active antiretroviral therapy-induced nephropathy. Clinical Infectious Diseases 2006;42:1488-95. 51. Phair J, Munoz A, Detels R, Kaslow R, Rinaldo C, Saah A. The risk of Pneumocystis carinii pneumonia among men infected with human immunodeficiency virus type 1. Multicenter AIDS Cohort Study Group. New England Journal of Medicine 1990;322:161-5. 52. Rimland D, Navin TR, Lennox JL, et al. Prospective study of etiologic agents of community-acquired pneumonia in patients with HIV infection. AIDS (London, England) 2002;16:85-95. 53. Kohli R, Lo Y, Homel P, et al. Bacterial pneumonia, HIV therapy, and disease progression among HIV-infected women in the HIV epidemiologic research (HER) study. Clinical Infectious Diseases 2006;43:90-8. 54. Lo HY, Chou P, Yang SL, Lee CY, HS K. Trends in Tuberculosis in Taiwan, 2002–2008. Journal of the Formosan Medical Association 2011;110:501-10. 55. Klein MB, Lu Y, DelBalso L, Cote S, Boivin G. Influenzavirus infection is a primary cause of febrile respiratory illness in HIV-infected adults, despite vaccination. Clinical Infectious Diseases 2007;45:234-40. 56. Bonacini M. Hepatobiliary complications in patients with human immunodeficiency virus infection. American Journal of Medicine 1992;92:404-11. 57. French AL, Beaudet LM, Benator DA, Levy CS, Kass M, Orenstein JM. Cholecystectomy in patients with AIDS: clinicopathologic correlations in 107 cases. Clinical Infectious Diseases 1995;21:852-8. 58. The Joint United Nations Programme on HIV/AIDS. On the Fast-Track to end AIDS. 2016. 59. 朱育萱. <2017年世界愛滋病日─愛滋去歧視,齊步邁向三零願景>. 疫情報導. 2017;33:455. 60. Margolis AM, Heverling H, Pham PA, Stolbach A. A Review of the Toxicity of HIV Medications. Journal of Medical Toxicology 2014;10:26-39. 61. Tungsiripat M, Kitch D, Glesby MJ, et al. A pilot study to determine the impact on dyslipidemia of adding tenofovir to stable background antiretroviral therapy: ACTG 5206. AIDS (London, England) 2010;24:1781-4. 62. Arribas JR, Thompson M, Sax PE, et al. Brief Report: Randomized, Double-Blind Comparison of Tenofovir Alafenamide (TAF) vs Tenofovir Disoproxil Fumarate (TDF), Each Coformulated With Elvitegravir, Cobicistat, and Emtricitabine (E/C/F) for Initial HIV-1 Treatment: Week 144 Results. Journal of Acquired Immune Deficiency Syndromes 2017;75:211-8. 63. DeJesus E, Haas B, Segal-Maurer S, et al. Superior Efficacy and Improved Renal and Bone Safety After Switching from a Tenofovir Disoproxil Fumarate- to a Tenofovir Alafenamide-Based Regimen Through 96 Weeks of Treatment. AIDS Research and Human Retroviruses 2018;34:337-42. 64. Ray AS, Fordyce MW, Hitchcock MJM. Tenofovir alafenamide: A novel prodrug of tenofovir for the treatment of Human Immunodeficiency Virus. Antiviral Research 2016;125:63-70. 65. Sabin CA, Worm SW, Weber R, et al. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration. Lancet (London, England) 2008;371:1417-26. 66. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients. AIDS (London, England) 2008;22:F17-24. 67. Dorjee K, Baxi SM, Reingold AL, Hubbard A. Risk of cardiovascular events from current, recent, and cumulative exposure to abacavir among persons living with HIV who were receiving antiretroviral therapy in the United States: a cohort study. BMC Infectious Diseases 2017;17:708. 68. Sun HY, Hung CC, Lin PH, et al. Incidence of abacavir hypersensitivity and its relationship with HLA-B*5701 in HIV-infected patients in Taiwan. The Journal of Antimicrobial Chemotherapy 2007;60:599-604. 69. Blanco JL, Whitlock G, Milinkovic A, Moyle G. HIV integrase inhibitors: a new era in the treatment of HIV. Expert Opinion on Pharmacotherapy 2015;16:1313-24. 70. Worm SW, Sabin C, Weber R, et al. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: the data collection on adverse events of anti-HIV drugs (D:A:D) study. The Journal of Infectious Diseases 2010;201:318-30. 71. Monforte A, Reiss P, Ryom L, et al. Atazanavir is not associated with an increased risk of cardio- or cerebrovascular disease events. AIDS (London, England) 2013;27:407-15. 72. LaFleur J, Bress AP, Rosenblatt L, et al. Cardiovascular outcomes among HIV-infected veterans receiving atazanavir. AIDS (London, England) 2017;31:2095-106. 73. Lennox JL, Landovitz RJ, Ribaudo HJ, et al. Efficacy and tolerability of 3 nonnucleoside reverse transcriptase inhibitor-sparing antiretroviral regimens for treatment-naive volunteers infected with HIV-1: a randomized, controlled equivalence trial. Annals of Internal Medicine 2014;161:461-71. 74. Molina JM, Cahn P, Grinsztejn B, et al. Rilpivirine versus efavirenz with tenofovir and emtricitabine in treatment-naive adults infected with HIV-1 (ECHO): a phase 3 randomised double-blind active-controlled trial. Lancet (London, England) 2011;378:238-46. 75. Cohen CJ, Andrade-Villanueva J, Clotet B, et al. Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse transcriptase inhibitors in treatment-naive adults infected with HIV-1 (THRIVE): a phase 3, randomised, non-inferiority trial. Lancet (London, England) 2011;378:229-37. 76. Cohen C, Wohl D, Arribas J, et al. STAR Study: single tablet regimen emtricitabine/rilpivirine/tenofovir DF is non‐inferior to efavirenz/emtricitabine/tenofovir DF in ART‐naïve adults. Journal of the International AIDS Society 2012;15:18221. 77. Taramasso L, Di Biagio A, Maggiolo F, et al. First-line antiretroviral therapy with efavirenz plus tenofovir disiproxil fumarate/emtricitabine or rilpivirine plus tenofovir disiproxil fumarate/emtricitabine: a durability comparison. HIV Medicine 2018. 78. Kanters S, Vitoria M, Doherty M, et al. Comparative efficacy and safety of first-line antiretroviral therapy for the treatment of HIV infection: a systematic review and network meta-analysis. Lancet HIV 2016;3:e510-e20. 79. Ford N, Shubber Z, Pozniak A, et al. Comparative Safety and Neuropsychiatric Adverse Events Associated With Efavirenz Use in First-Line Antiretroviral Therapy: A Systematic Review and Meta-Analysis of Randomized Trials. Journal of Acquired Immune Deficiency Syndromes 2015;69:422-9. 80. Al-Dakkak I, Patel S, McCann E, Gadkari A, Prajapati G, Maiese EM. The impact of specific HIV treatment-related adverse events on adherence to antiretroviral therapy: a systematic review and meta-analysis. AIDS Care 2013;25:400-14. 81. Shih HW, Hung JA, Hung CC, Wu PY, Tsai CH, SW L. Potential drug-drug interactions between antiretroviral agents and sedatives/hypnotics in the aging HIV-infected patients. 10th Asia-Pacific Congress of Medical Virology. Abstract no. PP-PE-1029. Taipei Taiwan, 15-18 October, 2015. 82. Hung JA, Wu PY, Lin SW, CC H. Potential drug-drug interactions between antiretrovirals and medications for comorbidities among the aging HIV-infected patients. 10th Asia-Pacific Congress of Medical Virology. Abstract no. P5-004. Taipei Taiwan, 15-18 October, 2015. 83. de Maat MM, de Boer A, Koks CH, et al. Evaluation of clinical pharmacist interventions on drug interactions in outpatient pharmaceutical HIV-care. Journal of Clinical Pharmacy and Therapeutics 2004;29:121-30. 84. Iniesta-Navalon C, Franco-Miguel JJ, Gascon-Canovas JJ, Rentero-Redondo L. Identification of potential clinically significant drug interactions in HIV-infected patients: a comprehensive therapeutic approach. HIV Medicine 2015;16:273-9. 85. Miller CD, El-Kholi R, Faragon JJ, Lodise TP. Prevalence and risk factors for clinically significant drug interactions with antiretroviral therapy. Pharmacotherapy 2007;27:1379-86. 86. Priyanka P, Varma DM, Immadisetti K, Rajesh R, Vidyasagar S, Guddattu V. Recognition of possible risk factors for clinically significant drug-drug interactions among Indian people living with HIV receiving highly active antiretroviral therapy and concomitant medications. International Journal of Risk and Safety in Medicine 2017;29:25-55. 87. Patel N, Borg P, Haubrich R, McNicholl I. Analysis of drug-drug interactions among patients receiving antiretroviral regimens using data from a large open-source prescription database. American Journal of Health-System Pharmacy 2018. 88. Wu PY, Cheng CY, Liu CE, et al. Multicenter study of skin rashes and hepatotoxicity in antiretroviral-naive HIV-positive patients receiving non-nucleoside reverse-transcriptase inhibitor plus nucleoside reverse-transcriptase inhibitors in Taiwan. PloS One 2017;12:e0171596. 89. Wu PY, Sun HY, Chang CY, et al. Prospective observational study of effectiveness and rate of discontinuation of lead-in dosing of efavirenz-containing regimens in HIV-infected antiretroviral-naïve patients in Taiwan. 25th European Congress of Clinical Microbriology and Infectious Diseases Abstract no. P0547. Copenhagen Denmark, 25-28 April, 2015. 90. Leutscher PD, Stecher C, Storgaard M, Larsen CS. Discontinuation of efavirenz therapy in HIV patients due to neuropsychiatric adverse effects. Scandinavian Journal of Infectious Diseases 2013;45:645-51. 91. Perez-Molina JA. Safety and tolerance of efavirenz in different antiretroviral regimens: results from a national multicenter prospective study in 1,033 HIV-infected patients. HIV Clinical Trials 2002;3:279-86. 92. Scourfield A, Zheng J, Chinthapalli S, et al. Discontinuation of Atripla as first-line therapy in HIV-1 infected individuals. AIDS (London, England) 2012;26:1399-401. 93. Fumaz CR, Tuldra A, Ferrer MJ, et al. Quality of life, emotional status, and adherence of HIV-1-infected patients treated with efavirenz versus protease inhibitor-containing regimens. Journal of Acquired Immune Deficiency Syndromes 2002;29:244-53. 94. Wu PY, Cheng CY, Luo YZ, et al. Safety of rilpivirine plus nucleoside reverse-transcriptase inhibitors in HIV-infected Taiwanese with a higher prevalence of hepatitis virus infection. Journal of the International AIDS Society 2014;17:19580. 95. Bagella P, De Socio GV, Ricci E, et al. Durability, safety, and efficacy of rilpivirine in clinical practice: results from the SCOLTA Project. Infection and Drug Resistance 2018;11:615-23. 96. Sculier D, Gayet-Ageron A, Battegay M, et al. Rilpivirine use in the Swiss HIV cohort study: a prospective cohort study. BMC Infectious Diseases 2017;17:476. 97. Lewis JM, Smith C, Torkington A, et al. Real-world persistence with antiretroviral therapy for HIV in the United Kingdom: A multicentre retrospective cohort study. Journal of Infection 2017;74:401-7. 98. Curran A, Rojas J, Cabello A, et al. Effectiveness and safety of an abacavir/lamivudine + rilpivirine regimen for the treatment of HIV-1 infection in naive patients. Journal of Antimicrobial Chemotherapy 2016;71:3510-4. 99. 衛生福利部疾病管制署. <抗人類免疫缺乏病毒處方專業審查作業>, available at: https://www.cdc.gov.tw/professional/info.aspx?treeid=7b56e6f932b49b90&nowtree id=67ccccd371d8dd79&tid=0A2499398B43C999. Published 2017. Accessed on May 18, 2018. 100. 衛生福利部疾病管制署. <10609抗人類免疫缺乏病毒藥品處方使用規範>, available at: https://www.cdc.gov.tw/professional/info.aspx?treeid=7b56e6f932b49b90 &nowtreeid=67ccccd371d8dd79&tid=E101D8EABB1B7AB7. Published 2017. Accessed on May 18, 2018. 101. Product Information: COMPLERA(R) oral tablets, emtricitabine rilpivirine tenofovir disoproxil fumarate oral tablets. 嬌生股份有限公司. 台北市敦化南路二段319號8樓. 2016. 102. Product Information: TRIUMEQ(R) oral tablets, abacavir dolutegravir lamivudine oral tablets. 荷商葛蘭素史克藥廠股份有限公司台灣分公司. 臺北市中正區忠孝西路一段66號23、24樓. 2016. 103. Product Information: GENVOYA(R) oral tablets, elvitegravir, cobicistat, emtricitabine, tenofovir alafenamide oral tablets. 香港商吉立亞醫藥有限公司台灣分公司. 臺北市信義區松仁路32號10樓之1、36號10樓之1. 2017. 104. Product Information: ATRIPLA(R) oral tablets, efavirenz emtricitabine tenofovir disoproxil fumarate oral tablets. 香港商吉立亞醫藥有限公司台灣分公司. 臺北市信義區松仁路32號10樓之1、36號10樓之1. 2017. 105. Back B, Khoo S, Gibbons S. Liverpool HIV Printable Interaction Charts, available at: https://www.hiv-druginteractions.org/printable_charts. Accessed on July, 2018. 106. 社團法人台灣露德協會. <2017年台灣地區愛滋感染者生活現況調查報告>, available at: http://www.lourdes.tw/news/show/280. Assessed on May, 2018. 107. McColl DJ, Chen X. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy. Antiviral Research 2010;85:101-18. 108. Johns BA, Kawasuji T, Weatherhead JG, et al. Carbamoyl pyridone HIV-1 integrase inhibitors 3. A diastereomeric approach to chiral nonracemic tricyclic ring systems and the discovery of dolutegravir (S/GSK1349572) and (S/GSK1265744). Journal of Medicinal Chemistry 2013;56:5901-16. 109. Kobayashi M, Yoshinaga T, Seki T, et al. In Vitro Antiretroviral Properties of S/GSK1349572, a Next-Generation HIV Integrase Inhibitor. Antimicrobial Agents and Chemotherapy 2011;55:813-21. 110. Min S, Song I, Borland J, et al. Pharmacokinetics and safety of S/GSK1349572, a next-generation HIV integrase inhibitor, in healthy volunteers. Antimicrobial Agents and Chemotherapy 2010;54:254-8. 111. Min S, Sloan L, DeJesus E, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. AIDS (London, England) 2011;25:1737-45. 112. Reese MJ, Savina PM, Generaux GT, et al. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metabolism & Disposition 2013;41:353-61. 113. Koteff J, Borland J, Chen S, et al. A phase 1 study to evaluate the effect of dolutegravir on renal function via measurement of iohexol and para-aminohippurate clearance in healthy subjects. British journal of clinical pharmacology 2013;75:990-6. 114. Zhang J, Hayes S, Sadler BM, et al. Population pharmacokinetics of dolutegravir in HIV-infected treatment-naive patients. British Journal of Clinical Pharmacology 2015;80:502-14. 115. Product Information: TIVICAY(R) oral tablets, dolutegravir oral tablets. ViiV Healthcare, Research Triangle Park, NC 27709. 2017. 116. Song I, Borland J, Chen S, et al. Effect of food on the pharmacokinetics of the integrase inhibitor dolutegravir. Antimicrobial Agents and Chemotherapy 2012;56:1627-9. 117. Summary of Product Characteristics: TIVICAY(R) film-coated tablets, dolutegravir film-coated tablets. ViiV Healthcare UK Ltd, Stockley Park West, Uxbridge, Middlesex, UB11 1BT, UK. 2018. 118. Letendre SL, Mills AM, Tashima KT, et al. ING116070: A Study of the Pharmacokinetics and Antiviral Activity of Dolutegravir in Cerebrospinal Fluid in HIV-1–Infected, Antiretroviral Therapy–Naive Subjects. Clinical Infectious Diseases 2014;59:1032-7. 119. Imaz A, Martinez-Picado J, Niubó J, et al. HIV-1-RNA Decay and Dolutegravir Concentrations in Semen of Patients Starting a First Antiretroviral Regimen. The Journal of Infectious Diseases 2016;214:1512-9. 120. Chen S, St Jean P, Borland J, et al. Evaluation of the effect of UGT1A1 polymorphisms on dolutegravir pharmacokinetics. Pharmacogenomics 2014;15:9-16. 121. Yagura H, Watanabe D, Kushida H, et al. Impact of UGT1A1 gene polymorphisms on plasma dolutegravir trough concentrations and neuropsychiatric adverse events in Japanese individuals infected with HIV-1. BMC Infectious Diseases 2017;17:622. 122. Castellino S, Moss L, Wagner D, et al. Metabolism, Excretion, and Mass Balance of the HIV-1 Integrase Inhibitor Dolutegravir in Humans. Antimicrobial Agents and Chemotherapy 2013;57:3536-46. 123. Song IH, Borland J, Savina PM, et al. Pharmacokinetics of Single-Dose Dolutegravir in HIV-Seronegative Subjects With Moderate Hepatic Impairment Compared to Healthy Matched Controls. Clinical Pharmacology in Drug Development 2013;2:342-8. 124. Weller S, Borland J, Chen S, et al. Pharmacokinetics of dolutegravir in HIV-seronegative subjects with severe renal impairment. European Journal of Clinical Pharmacology 2014;70:29-35. 125. Moltó J, Graterol F, Miranda C, et al. Removal of Dolutegravir by Hemodialysis in HIV-Infected Patients with End-Stage Renal Disease. Antimicrobial Agents and Chemotherapy 2016;60:2564-6. 126. Walmsley SL, Antela A, Clumeck N, et al. Dolutegravir plus abacavir-lamivudine for the treatment of HIV-1 infection. New England Journal of Medicine 2013;369:1807-18. 127. Raffi F, Rachlis A, Stellbrink H-J, et al. Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet (London, England) 2013;381:735-43. 128. Clotet B, Feinberg J, van Lunzen J, et al. Once-daily dolutegravir versus darunavir plus ritonavir in antiretroviral-naive adults with HIV-1 infection (FLAMINGO): 48 week results from the randomised open-label phase 3b study. Lancet (London, England) 2014;383:2222-31. 129. Cahn P, Pozniak AL, Mingrone H, et al. Dolutegravir versus raltegravir in antiretroviral-experienced, integrase-inhibitor-naive adults with HIV: week 48 results from the randomised, double-blind, non-inferiority SAILING study. Lancet (London, England) 2013;382:700-8. 130. Castagna A, Maggiolo F, Penco G, et al. Dolutegravir in antiretroviral-experienced patients with raltegravir- and/or elvitegravir-resistant HIV-1: 24-week results of the phase III VIKING-3 study. The Journal of Infectious Diseases 2014;210:354-62. 131. Viani RM, Alvero C, Fenton T, et al. Safety, Pharmacokinetics and Efficacy of Dolutegravir in Treatment-experienced HIV-1 Infected Adolescents: Forty-eight-week Results from IMPAACT P1093. Pediatric Infectious Disease Journal 2015;34:1207-13. 132. Rathbun RC, Lockhart SM, Miller MM, Liedtke MD. Dolutegravir, a second-generation integrase inhibitor for the treatment of HIV-1 infection. Annals of Pharmacotherapy 2014;48:395-403. 133. van Lunzen J, Maggiolo F, Arribas JR, et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infectious Diseases 2012;12:111-8. 134. Viani RM, Alvero C, Hazra R, Steimers D, Wiznia A. Safety and Efficacy of Dolutegravir (DTG; GSK1349572) in Treatment-Experienced HIV-1 Infected Adolescents: 24-Week Results from IMPAACT P1093. IDWeek. San Francisco, California.2013. 135. Eron JJ, Clotet B, Durant J, et al. Safety and efficacy of dolutegravir in treatment-experienced subjects with raltegravir-resistant HIV type 1 infection: 24-week results of the VIKING Study. The Journal of Infectious Diseases 2013;207:740-8. 136. Curtis L, Nichols G, Stainsby C, et al. Dolutegravir: clinical and laboratory safety in integrase inhibitor-naive patients. HIV Clinical Trials 2014;15:199-208. 137. Raffi F, Rachlis A, Stellbrink H-J, et al. Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet (London, England);381:735-43. 138. Bonfanti P, Madeddu G, Gulminetti R, et al. Discontinuation of treatment and adverse events in an Italian cohort of patients on dolutegravir. AIDS (London, England) 2017;31:455-7. 139. Elzi L, Erb S, Furrer H, et al. Adverse events of raltegravir and dolutegravir. AIDS (London, England) 2017;31:1853-8. 140. Penafiel J, de Lazzari E, Padilla M, et al. Tolerability of integrase inhibitors in a real-life setting. Journal of Antimicrobial Chemotherapy 2017;72:1752-9. 141. Lepik KJ, Yip B, Ulloa A, et al. Adverse drug reactions to integrase strand transfer inhibitors. AIDS (London, England) 2018;32:903-12. 142. Back B, Khoo S, Gibbons S. Liverpool HIV drug interaction checker, available at: https://www.hiv-druginteractions.org/checker. Accessed on May, 2018. 143. Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clinical Pharmacology & Therapeutics 1981;30:239-45. 144. Center for Drug Evaluation and Research, Food and Drug Administration, U.S. Department of Health and Human Services. Human Immunodeficiency Virus-1 Infection: Developing Antiretroviral Drugs for Treatment Guidance for Industry, available at: https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinfor mation/guidances/ucm355128.pdf. Published on May, 2015. 145. The National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.03. 2010. 146. Lin KY, Cheng CY, Li CW, et al. Trends and outcomes of late initiation of combination antiretroviral therapy driven by late presentation among HIV-positive Taiwanese patients in the era of treatment scale-up. PloS One 2017;12:e0179870. 147. Rutherford GW, Horvath H. Dolutegravir Plus Two Nucleoside Reverse Transcriptase Inhibitors versus Efavirenz Plus Two Nucleoside Reverse Transcriptase Inhibitors As Initial Antiretroviral Therapy for People with HIV: A Systematic Review. PloS One 2016;11:e0162775. 148. Adkins JC, Noble S. Efavirenz. Drugs 1998;56:1055-64; discussion 65-6. 149. Keubler A, Weiss J, Haefeli WE, Mikus G, Burhenne J. Drug interaction of efavirenz and midazolam: efavirenz activates the CYP3A-mediated midazolam 1'-hydroxylation in vitro. Drug Metabolism & Disposition 2012;40:1178-82. 150. Julia B, Tilman H, Juergen B, Walter EH, Gerd M. Potential Induction of CYP3A4 after a Single-Dose of Efavirenz Using Midazolam Pharmacokinetics as a Marker. Basic & Clinical Pharmacology & Toxicology 2009;104:515. 151. Seden K, Back D, Khoo S. Antiretroviral drug interactions: often unrecognized, frequently unavoidable, sometimes unmanageable. Journal of Antimicrobial Chemotherapy 2009;64:5-8. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7479 | - |
dc.description.abstract | 背景
自2016年起,臺灣疾病管制署將含efavirenz(EFV)、rilpivirine(RPV)、或dolutegravir(DTG)的三合一複方列為愛滋病毒感染治療之第一線推薦處方。在政府公費提供每日一次一顆複方藥物的情況下,藥物顆數(pill burden)下降,因此藥物耐受性與交互作用對病人服藥順從性及後續治療結果的影響將更為重要。 2015年在臺灣上市的DTG為愛滋病毒嵌合酶抑制劑,相較於臨床試驗中展現的高效能與極佳耐受性,許多上市後觀察性研究呈現不一致的安全性結果,部分研究顯示其神經-精神相關副作用導致的停藥比例遠比預期高。 研究目的 針對臺灣首次接受愛滋病毒感染治療者,分析使用第一線推薦處方之耐受性與藥物交互作用;並深入探討DTG於臺灣核可上市後之臨床療效與安全性。 研究方法 本研究為回溯性病歷回顧,於2016年10月至2018年4月間一所大學附設醫院收納首次接受愛滋病毒感染治療之成年病人,從開始接受抗愛滋病毒藥物治療到首次處方停止使用、滿一年使用或研究期間結束,蒐集基本資料、免疫與病毒學檢驗資料及臨床資料。主要研究指標為首次使用第一線推薦處方時,因不良反應導致之停藥,以及含DTG處方之病毒學療效與安全性。其他指標包括第一線推薦處方與併用藥間交互作用情形。以發生率來呈現比較第一線推薦處方之耐受性,不良反應與藥物之相關性利用Naranjo scale評估,含DTG處方病毒學療效則參考FDA Snapshot流程歸類,藥物交互作用偵測使用Liverpool HIV drug interaction checker。 研究結果 在19個月的研究期間共收納163名首次接受抗愛滋病毒感染治療者,絕大部分(98%)為男性,平均年齡約32 ± 8歲,用藥前平均CD4數量約363 ± 252 cells/mm3。超過一半之病人(54%)首次處方含DTG;而使用含RPV處方病人(19%),有最高之用藥前CD4數量與最低之病毒量。 總共124追蹤人年(PYFU)中,每100追蹤人年因藥物不良反應而停藥之發生率於含EFV、RPV、DTG處方分別為:34.6、4.2、7.0 (P=0.0032);事後分析顯示含EFV與DTG處方間耐受性達統計顯著差異(P=0.0033)。因為藥物不良反應而停藥之中位發生時間為32天(IQR 15-194),三者無統計顯著差異。過敏(5.5%)為最常導致停藥之不良反應,神經-精神相關(4.9%)次之,並均以含EFV處方最常見(過敏13.6%、神經-精神相關11.4%);共五名(5.7%)使用含DTG處方病人曾因藥物不良反應而停藥,以神經-精神相關最多(3/88,3.4%),腸胃道相關次之(2/88,2.3%)。 潛在藥物交互作用於含EFV、RPV、DTG處方發生比例分別為43%、27%、16%。主要為EFV組與鎮靜安眠類藥物間(32%)、DTG組與含多價陽離子制酸劑、胃乳等(26%);RPV組與制酸劑交互作用發生比例約3%。 在使用含DTG處方並至少有一次用藥後病毒量資料者,病毒學抑制失敗(定義為第七、十二個月血漿HIV病毒量分別大於200、50 copies/mL)各為4.7% (4/85)、10.6%(5/47)。在第七、十二個月仍持續使用含DTG處方者,病毒學抑制失敗分別為1%(1/77)、8%(3/39)。追蹤期間最常發生之含DTG處方相關不良反應為神經-精神(42%)與腸胃道系統(41%)相關不良反應。 結論 本研究顯示三種第一線推薦處方於臺灣首次接受愛滋病毒感染治療者之耐受性有顯著差異,接受含EFV處方者因藥物不良反應而停藥之發生率最高。藥物交互作用多發生於EFV與鎮靜安眠類藥物,以及DTG與含多價陽離子制酸劑、胃乳間。含DTG處方具臨床療效,然而長期病毒是否成功抑制需要定期監測與探討。使用含DTG處方的病人最常發生之不良反應為神經-精神與腸胃道系統如失眠、睡眠障礙、噁心、腹部不適等,但絕大部分病人能耐受。本研究為單一醫學中心研究,受限於樣本數與追蹤時間,第一線推薦處方與含DTG處方之臨床使用結果尚需更長期、較大規模之研究追蹤。 | zh_TW |
dc.description.abstract | Background
Efavirenz (EFV)-, rilpivirine (RPV)- or dolutegravir (DTG)-based single-tablet regimens have been recommended as first-line antiretroviral therapy (ART) for the treatment of human immunodeficiency virus (HIV) infection by the Taiwan Centers for Disease Control since 2016. With more convenient ART regimens provided by the government and reduced pill burden, the tolerability and drug interactions of each regimen become more crucial for optimizing medication adherence and subsequent clinical outcomes. DTG, approved in Taiwan in 2015, is an HIV integrase strand transfer inhibitor (INSTI) with high virologic efficacy and tolerability demonstrated in clinical trials. However, several observational studies reported inconsistent safety profiles of its use in real-world setting, with some showing unexpected high discontinuation (DC) due to neuropsychiatric adverse drug reaction (ADR). Objectives This study aimed to assess the tolerability and drug interactions of the first-line ART as well as clinical outcomes of DTG-based regimens in treatment-naïve HIV-positive Taiwanese since its availability for prescription in Taiwan. Methods We conducted a retrospective medical record review, collecting demographic, immuno-virologic and clinical data of enrolled patients at a university hospital between October 2016 and April 2018. Patients were followed from ART initiation to DC, up to 1 year, or study end date. Primary outcomes included DC due to ADR of the first-line ART, virologic response and safety of DTG-based regimens. Other outcome included drug interactions between ART and concomitant medications. Incidence rate was calculated. Naranjo scale and FDA Snapshot algorithms were utilized for causality assessment of the first-line ART ADR and virologic response evaluation of DTG-based regimens, respectively. Drug interactions between the first-line ART and concomitant medications were examined with Liverpool HIV drug interaction checker. Results During the 19-month study period, 163 ART-naïve patients starting ART were included. Most of them (98%) were male with a mean age of 32 ± 8 years and baseline CD4 363 ± 252 cells/mm3. More than half (54%) of patients started their first regimen with DTG. Patients on RPV-based regimens (19%) had a higher baseline CD4 cell count and lower plasma HIV RNA load. During the follow-up period, 163 patients contributed to a total of 124 person-years of follow-up (PYFU). Incidence of DC due to ADR per 100 PYFU were 34.6, 4.2 and 7.0 in EFV-, RPV- and DTG-based regimens, respectively (P=0.0032). The post-hoc analysis showed statistically significant difference between EFV- and DTG-based regimens (P=0.0033). Median time to DC due to ADR was 32 days (IQR 15-194), with no statistically significant difference between three regimens. Hypersensitivity (5.5%) was the most common ADR leading to DC followed by neuropsychiatric disorders (4.9%). They occurred most frequently in EFV-based regimens (13.6% and 11.4% respectively). DC due to ADR occurred in 5 patients (5.7%) with DTG-based regimens. Neuropsychiatric and gastrointestinal ADR accounted for 3.4% (3/88) and 2.3% (2/88), respectively. Drug interactions occurred in 43%, 27% and 16% of EFV-, RPV- and DTG-based regimens, respectively. The most frequent interacting medications were sedatives in 32% of EFV group, polyvalent cation containing agents in 26% of DTG group. Interactions between antacids and RPV group occurred in 3%. Virologic nonresponse, defined as plasma HIV RNA ≥200 copies/mL and ≥50 copies/mL at 7th and 12th month in DTG-treated patients with at least one follow-up virologic data, were 4.7% (4/85) and 10.6% (5/47), respectively. In patients continuing the DTG-based regimens at 7th and 12th month, virologic nonresponse rate were 1% (1/77) and 8% (3/39). During the follow-up period, the most prevalent ADR associated with DTG-based regimens were neuropsychiatric (42%) and gastrointestinal (41%). Conclusions This study demonstrates significantly different tolerability profiles among the three recommended first-line ART in treatment-naïve HIV-positive Taiwanese. Incidence of DC due to ADR was highest in patients on EFV-based regimens. Drug interactions occurred mostly between EFV and sedatives as well as DTG and polyvalent cation containing agents. DTG-based regimens were clinically effective; while the long-term virologic suppression requires regular monitoring and assessment. The most frequently occurring ADR in DTG-based regimens were neuropsychiatric and gastrointestinal ADR such as insomnia, sleep disturbance, nausea and abdominal discomforts; while most of them were tolerable. This is a single-center study with relatively limited numbers of subjects and short follow-up period. Outcomes related to the first-line ART as well as DTG-based regimens warrant a larger study of a longer observation duration. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:44:33Z (GMT). No. of bitstreams: 1 ntu-107-R05451007-1.pdf: 11507373 bytes, checksum: e2ceb2c40413c16e52bae587594a567f (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract vi 目錄 ix 圖目錄 xii 表目錄 xiii 縮寫表 1 第一章 緒論 3 第二章 文獻探討 4 2.1. HIV/AIDS簡介 4 2.1.1. 病毒學 4 2.1.2. 流行病學 7 2.1.3. 臨床表徵 8 2.1.4. 藥物治療 10 2.2 Dolutegravir簡介 17 2.2.1 藥理機轉與藥效作用 17 2.2.2 藥品動態學特性 17 2.2.3 樞紐臨床試驗 20 2.2.4 禁忌與注意事項 28 2.2.5 耐受性與不良反應 29 第三章 研究目的 34 第四章 研究方法 35 4.1 研究架構 35 4.2 研究時間、對象與地點 37 4.2.1 納入條件 37 4.2.2 排除條件 37 4.3 資料收集 37 4.3.1 病人基本資料 37 4.3.2 HIV/AIDS感染情形與潛在疾病 38 4.3.3. 首次第一線推薦處方使用與併用藥間交互作用情形 38 4.3.4. 含DTG處方之療效與安全性 38 4.4. 耐受性評估 39 4.5. 含DTG處方療效評估 40 4.5.1. 病毒抑制成功(Virologic response) 40 4.5.2. 病毒抑制失敗(Virologic nonresponse) 40 4.5.3. 無法評估(No virologic data) 40 4.6. 含DTG處方安全性評估 41 4.6.1. 不良反應定義與紀錄 41 4.6.2. 藥物相關不良反應 41 4.7. 統計方法 42 第五章 研究結果 43 5.1. 收案流程 43 5.2. 病人基本特性 45 5.3. 藥品使用情形 49 5.3.1. 首次第一線推薦處方耐受性追蹤 49 5.3.2. 導致停藥之藥物不良反應 57 5.3.3. 藥物交互作用 58 5.4. 含Dolutegravir處方療效 61 5.5. 含Dolutegravir處方安全性 64 5.5.1. DTG相關不良反應 64 5.5.2. 導致停藥之DTG相關不良反應 67 第六章 討論 69 6.1. 病人族群 69 6.2. 第一線推薦處方耐受性 69 6.3. 第一線推薦處方與併用藥交互作用 72 6.4. 含Dolutegravir處方療效 73 6.5. 含Dolutegravir處方安全性 74 6.6. 研究限制 75 第七章 結論 76 參考文獻 77 附錄 95 藥物交互作用 95 個案報告表(Case report form) 108 | - |
dc.language.iso | zh_TW | - |
dc.title | 臺灣首次接受愛滋病毒感染治療者使用第一線推薦處方結果分析:著重dolutegravir使用結果 | zh_TW |
dc.title | Outcome analysis of recommended first-line antiretroviral regimens in treatment-naïve HIV-positive Taiwanese patients: focus on dolutegravir use | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 林淑文 | zh_TW |
dc.contributor.coadvisor | ; | en |
dc.contributor.oralexamcommittee | 洪健清;盛望徽;張峰義 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | 抗反轉錄病毒藥物,efavirenz,rilpivirine,dolutegravir,藥物不良反應,藥物交互作用,治療結果, | zh_TW |
dc.subject.keyword | Antiretroviral therapy,efavirenz,rilpivirine,dolutegravir,adverse drug reaction,drug interaction,treatment outcome, | en |
dc.relation.page | 110 | - |
dc.identifier.doi | 10.6342/NTU201802894 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-08-13 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 臨床藥學研究所 | - |
dc.date.embargo-lift | 2023-08-14 | - |
顯示於系所單位: | 臨床藥學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-2.pdf 目前未授權公開取用 | 11.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。