Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74797
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王培育
dc.contributor.authorYu-Wen Weien
dc.contributor.author魏郁雯zh_TW
dc.date.accessioned2021-06-17T09:07:46Z-
dc.date.available2025-03-13
dc.date.copyright2020-03-13
dc.date.issued2019
dc.date.submitted2019-11-27
dc.identifier.citationBirkenfeld, A. L., Lee, H. Y., Guebre-Egziabher, F., Alves, T. C., Jurczak, M. J., Jornayvaz, F. R., . . . Shulman, G. I. (2011). Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metab, 14(2), 184-195. doi:10.1016/j.cmet.2011.06.009
Bruce, C. R., Hoy, A. J., Turner, N., Watt, M. J., Allen, T. L., Carpenter, K., . . . Kraegen, E. W. (2009). Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes, 58(3), 550-558. doi:10.2337/db08-1078
Bruss, M. D., Khambatta, C. F., Ruby, M. A., Aggarwal, I., & Hellerstein, M. K. (2010). Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab, 298(1), E108-116. doi:10.1152/ajpendo.00524.2009
Carling, D., Mayer, F. V., Sanders, M. J., & Gamblin, S. J. (2011). AMP-activated protein kinase: nature's energy sensor. Nat Chem Biol, 7(8), 512-518. doi:10.1038/nchembio.610
Chesney, J. (2006). 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Curr Opin Clin Nutr Metab Care, 9(5), 535-539. doi:10.1097/01.mco.0000241661.15514.fb
Chin, R. M., Fu, X., Pai, M. Y., Vergnes, L., Hwang, H., Deng, G., . . . Huang, J. (2014). The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature, 510(7505), 397-401. doi:10.1038/nature13264
Civitarese, A. E., Carling, S., Heilbronn, L. K., Hulver, M. H., Ukropcova, B., Deutsch, W. A., . . . Team, C. P. (2007). Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med, 4(3), e76. doi:10.1371/journal.pmed.0040076
Costello, L. C., & Franklin, R. B. (2016). Plasma Citrate Homeostasis: How It Is Regulated; And Its Physiological and Clinical Implications. An Important, But Neglected, Relationship in Medicine. HSOA J Hum Endocrinol, 1(1).
Cunningham, J. T., Rodgers, J. T., Arlow, D. H., Vazquez, F., Mootha, V. K., & Puigserver, P. (2007). mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature, 450(7170), 736-740. doi:10.1038/nature06322
Diop, S. B., Bisharat-Kernizan, J., Birse, R. T., Oldham, S., Ocorr, K., & Bodmer, R. (2015). PGC-1/Spargel Counteracts High-Fat-Diet-Induced Obesity and Cardiac Lipotoxicity Downstream of TOR and Brummer ATGL Lipase. Cell Rep, 10(9), 1572-1584. doi:10.1016/j.celrep.2015.02.022
Edwards, C., Canfield, J., Copes, N., Rehan, M., Lipps, D., & Bradshaw, P. C. (2014). D-beta-hydroxybutyrate extends lifespan in C. elegans. Aging (Albany NY), 6(8), 621-644. doi:10.18632/aging.100683
Edwards, C., Copes, N., & Bradshaw, P. C. (2015). D-ss-hydroxybutyrate: an anti-aging ketone body. Oncotarget, 6(6), 3477-3478. doi:10.18632/oncotarget.3423
Fei, Y. J., Inoue, K., & Ganapathy, V. (2003). Structural and functional characteristics of two sodium-coupled dicarboxylate transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and their relevance to life span. J Biol Chem, 278(8), 6136-6144. doi:10.1074/jbc.M208763200
Finck, B. N., & Kelly, D. P. (2007). Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation, 115(19), 2540-2548. doi:10.1161/CIRCULATIONAHA.107.670588
Fontana, L., Partridge, L., & Longo, V. D. (2010). Extending healthy life span--from yeast to humans. Science, 328(5976), 321-326. doi:10.1126/science.1172539
Fukao, T., Lopaschuk, G. D., & Mitchell, G. A. (2004). Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids, 70(3), 243-251. doi:10.1016/j.plefa.2003.11.001
Fukao, T., Mitchell, G., Sass, J. O., Hori, T., Orii, K., & Aoyama, Y. (2014). Ketone body metabolism and its defects. J Inherit Metab Dis, 37(4), 541-551. doi:10.1007/s10545-014-9704-9
Grabacka, M., Pierzchalska, M., Dean, M., & Reiss, K. (2016). Regulation of Ketone Body Metabolism and the Role of PPARalpha. Int J Mol Sci, 17(12). doi:10.3390/ijms17122093
Guarente, L. (2008). Mitochondria--a nexus for aging, calorie restriction, and sirtuins? Cell, 132(2), 171-176. doi:10.1016/j.cell.2008.01.007
Hegardt, F. G. (1999). Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis. Biochem J, 338 ( Pt 3), 569-582.
Houtkooper, R. H., Williams, R. W., & Auwerx, J. (2010). Metabolic networks of longevity. Cell, 142(1), 9-14. doi:10.1016/j.cell.2010.06.029
Howard, B. V., Howard, W. J., & Bailey, J. M. (1974). Acetyl coenzyme A synthetase and the regulation of lipid synthesis from acetate in cultured cells. J Biol Chem, 249(24), 7912-7921.
Iacobazzi, V., & Infantino, V. (2014). Citrate--new functions for an old metabolite. Biol Chem, 395(4), 387-399. doi:10.1515/hsz-2013-0271
Ingraham, L., Li, M., Renfro, J. L., Parker, S., Vapurcuyan, A., Hanna, I., & Pelis, R. M. (2014). A plasma concentration of alpha-ketoglutarate influences the kinetic interaction of ligands with organic anion transporter 1. Mol Pharmacol, 86(1), 86-95. doi:10.1124/mol.114.091777
Inoki, K., Zhu, T., & Guan, K. L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115(5), 577-590. doi:10.1016/s0092-8674(03)00929-2
Jiang, Y. (2010). mTOR goes to the nucleus. Cell Cycle, 9(5), 868.
Kapahi, P., Zid, B. M., Harper, T., Koslover, D., Sapin, V., & Benzer, S. (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol, 14(10), 885-890. doi:10.1016/j.cub.2004.03.059
Knauf, F., Rogina, B., Jiang, Z., Aronson, P. S., & Helfand, S. L. (2002). Functional characterization and immunolocalization of the transporter encoded by the life-extending gene Indy. Proc Natl Acad Sci U S A, 99(22), 14315-14319. doi:10.1073/pnas.222531899
Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. J Cell Sci, 122(Pt 20), 3589-3594. doi:10.1242/jcs.051011
Lee, S., Park, C., & Yim, J. (1997). Characterization of citrate synthase purified from Drosophila melanogaster. Mol Cells, 7(5), 599-604.
Libert, S., Zwiener, J., Chu, X., Vanvoorhies, W., Roman, G., & Pletcher, S. D. (2007). Regulation of Drosophila life span by olfaction and food-derived odors. Science, 315(5815), 1133-1137. doi:10.1126/science.1136610
Lopez-Lluch, G., Hunt, N., Jones, B., Zhu, M., Jamieson, H., Hilmer, S., . . . de Cabo, R. (2006). Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A, 103(6), 1768-1773. doi:10.1073/pnas.0510452103
Luong, N., Davies, C. R., Wessells, R. J., Graham, S. M., King, M. T., Veech, R., . . . Oldham, S. M. (2006). Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab, 4(2), 133-142. doi:10.1016/j.cmet.2006.05.013
Marty-Teysset, C., Lolkema, J. S., Schmitt, P., Divies, C., & Konings, W. N. (1996). The citrate metabolic pathway in Leuconostoc mesenteroides: expression, amino acid synthesis, and alpha-ketocarboxylate transport. J Bacteriol, 178(21), 6209-6215. doi:10.1128/jb.178.21.6209-6215.1996
McGarry, J. D., & Foster, D. W. (1980). Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem, 49, 395-420. doi:10.1146/annurev.bi.49.070180.002143
McGarry, J. D., Leatherman, G. F., & Foster, D. W. (1978). Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J Biol Chem, 253(12), 4128-4136.
Mukherjee, S., Basar, M. A., Davis, C., & Duttaroy, A. (2014). Emerging functional similarities and divergences between Drosophila Spargel/dPGC-1 and mammalian PGC-1 protein. Front Genet, 5, 216. doi:10.3389/fgene.2014.00216
Neretti, N., Wang, P. Y., Brodsky, A. S., Nyguyen, H. H., White, K. P., Rogina, B., & Helfand, S. L. (2009). Long-lived Indy induces reduced mitochondrial reactive oxygen species production and oxidative damage. Proc Natl Acad Sci U S A, 106(7), 2277-2282. doi:10.1073/pnas.0812484106
Nisoli, E., Tonello, C., Cardile, A., Cozzi, V., Bracale, R., Tedesco, L., . . . Carruba, M. O. (2005). Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science, 310(5746), 314-317. doi:10.1126/science.1117728
Paumen, M. B., Ishida, Y., Muramatsu, M., Yamamoto, M., & Honjo, T. (1997). Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem, 272(6), 3324-3329. doi:10.1074/jbc.272.6.3324
Pie, J., Lopez-Vinas, E., Puisac, B., Menao, S., Pie, A., Casale, C., . . . Casals, N. (2007). Molecular genetics of HMG-CoA lyase deficiency. Mol Genet Metab, 92(3), 198-209. doi:10.1016/j.ymgme.2007.06.020
Reed, S. C., & Reed, E. W. (1948). Natural selection in laboratory populations of Drosophila. Genetics, 33(1), 121.
Rhee, J., Inoue, Y., Yoon, J. C., Puigserver, P., Fan, M., Gonzalez, F. J., & Spiegelman, B. M. (2003). Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci U S A, 100(7), 4012-4017. doi:10.1073/pnas.0730870100
Roberts, M. N., Wallace, M. A., Tomilov, A. A., Zhou, Z., Marcotte, G. R., Tran, D., . . . Lopez-Dominguez, J. A. (2017). A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice. Cell Metab, 26(3), 539-546 e535. doi:10.1016/j.cmet.2017.08.005
Robinson, A. M., & Williamson, D. H. (1980). Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev, 60(1), 143-187. doi:10.1152/physrev.1980.60.1.143
Rogers, R. P., & Rogina, B. (2014). Increased mitochondrial biogenesis preserves intestinal stem cell homeostasis and contributes to longevity in Indy mutant flies. Aging (Albany NY), 6(4), 335-350. doi:10.18632/aging.100658
Rogers, R. P., & Rogina, B. (2015). The role of INDY in metabolism, health and longevity. Front Genet, 6, 204. doi:10.3389/fgene.2015.00204
Rogina, B., Reenan, R. A., Nilsen, S. P., & Helfand, S. L. (2000). Extended life-span conferred by cotransporter gene mutations in Drosophila. Science, 290(5499), 2137-2140.
Schwarz, F., Karadeniz, Z., Fischer-Rosinsky, A., Willmes, D. M., Spranger, J., & Birkenfeld, A. L. (2015). Knockdown of Indy/CeNac2 extends Caenorhabditis elegans life span by inducing AMPK/aak-2. Aging (Albany NY), 7(8), 553-567. doi:10.18632/aging.100791
Sengupta, S., Peterson, T. R., Laplante, M., Oh, S., & Sabatini, D. M. (2010). mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature, 468(7327), 1100-1104. doi:10.1038/nature09584
Shafqat, N., Kavanagh, K. L., Sass, J. O., Christensen, E., Fukao, T., Lee, W. H., . . . Yue, W. W. (2013). A structural mapping of mutations causing succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. J Inherit Metab Dis, 36(6), 983-987. doi:10.1007/s10545-013-9589-z
Spindler, S. R. (2010). Caloric restriction: from soup to nuts. Ageing Res Rev, 9(3), 324-353. doi:10.1016/j.arr.2009.10.003
Srere, P. A. (1992). The molecular physiology of citrate. Curr Top Cell Regul, 33, 261-275.
Stenesen, D., Suh, J. M., Seo, J., Yu, K., Lee, K. S., Kim, J. S., . . . Graff, J. M. (2013). Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab, 17(1), 101-112. doi:10.1016/j.cmet.2012.12.006
Svensson, K., Albert, V., Cardel, B., Salatino, S., & Handschin, C. (2016). Skeletal muscle PGC-1alpha modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice. FASEB J, 30(5), 1976-1986. doi:10.1096/fj.201500128
Veech, R. L., Bradshaw, P. C., Clarke, K., Curtis, W., Pawlosky, R., & King, M. T. (2017). Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life, 69(5), 305-314. doi:10.1002/iub.1627
Wang, P. Y., Neretti, N., Whitaker, R., Hosier, S., Chang, C., Lu, D., . . . Helfand, S. L. (2009). Long-lived Indy and calorie restriction interact to extend life span. Proc Natl Acad Sci U S A, 106(23), 9262-9267. doi:10.1073/pnas.0904115106
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74797-
dc.description.abstract三羧酸循環是生物在粒線體進行醣類、脂類及胺基酸代謝與合成,以及製造提供能量的腺苷三磷酸的途徑,而檸檬酸是其中重要的中間代謝物。我們讓 w1118 果蠅攝取加入 0.1% 檸檬酸的高卡路里食物,發現添加檸檬酸具有延長果蠅壽命的效果,同時並不影響果蠅的體重、食量與活動力,因此本研究探討攝取檸檬酸對果蠅生理的影響,以及檸檬酸誘發的長壽機制與原因。利用轉基因果蠅,我們將可能相關的分子之基因表達減少,並測量其壽命是否會因攝取檸檬酸而延長。由於檸檬酸的運輸需要透過細胞膜上的檸檬酸運輸蛋白,我們先測試 Indy 突變果蠅,發現檸檬酸誘發的長壽機制需要 Indy 的參與。過去的研究指出 Indy 突變果蠅的生理表現類似飲食節制,因此我們接著分析飲食節制相關的分子機制AMPK 、 TOR ,以及 PGC-1 ,將這些基因表達缺失的果蠅培養在含有檸檬酸的食物,失去了檸檬酸誘發的長壽效果,說明攝取檸檬酸誘發長壽的機制與飲食節制有關。於是我們接著驗證飲食節制的下游,酮體代謝的相關分子,包含酮生成的 Hmgs 與 Hmgcl ,以及酮分解的 SCOT ,發現降低這些基因表達的果蠅攝取檸檬酸,也沒有長壽的結果。先前的研究指出飲食節制會提升酮體代謝,而透過測量果蠅體內酮體β-羥基丁酸的濃度,發現攝取檸檬酸的 w1118 果蠅有較高的的酮體濃度。綜合以上結果,我們推測檸檬酸誘發的長壽機制與飲食節制一致,需要 Indy,營養和能量感應途徑,以及酮體代謝的參與。zh_TW
dc.description.abstractCitrate plays an essential role in the metabolic pathway. As a critical intermediate in the tricarboxylic acid cycle, citrate mediates energy production and contributes to fatty acid and sterol synthesis. In this study, we aim to investigate the effect of citrate supplementation on Drosophila physiology. Our results showed that 0.1% citrate intake extended the lifespan of Drosophila on a higher yeast diet (15%), without affecting their body weight, food intake, and locomotor activity. Citrate-induced lifespan extension requires Indy encoding citrate transporters, and genetic disruptions of dietary restriction (DR) pathway-related molecules, including AMP-activated protein kinase (AMPK), target of rapamycin (dTOR) and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1/ spargel) in flies diminished citrate-induced lifespan extension. To further elucidate, we analyzed downstream pathways of DR which includes ketogenesis. We observed knockdown in ketogenesis pathway molecules, such as hydroxymethylglutaryl-CoA synthase (Hmgs) and HMG-CoA lyase (Hmgcl), as well as ketolysis molecules succinyl-CoA:3-oxaloacid CoA transferase (SCOT) failed to prolong lifespan with citrate supplementation. Moreover, administration of 0.1% citrate to w1118 flies significantly increased ketone body levels. These data establish the role of INDY transporters, nutrient and energy-sensing pathways, as well as ketone body metabolism under citrate-induction conditions which provides a mechanistic link between citrate supplementation and DR pathways.en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:07:46Z (GMT). No. of bitstreams: 1
ntu-108-R06454008-1.pdf: 2699177 bytes, checksum: 79b0ba002756e8a0115306d627e73484 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
Abbreviations iv
Contents v
Chapter 1 Introduction 1
1.1 Citrate 1
1.2 Citrate transporter 1
1.3 INDY reduction affects metabolic pathway 2
1.4 The metabolism of ketone bodies 3
Chapter 2 Results 6
2.1 Citrate supplementation promoted Drosophila longevity without affecting body weight, food intake and locomotor activity. 6
2.2 Citrate-induced lifespan extension required Indy encoding citrate transporters and was associated with DR pathway. 6
2.3 RU486-activated tubulin- and fat body-GAL4 driven UAS-GFP expression showed lifespan extension under citrate supplementation 7
2.4 Genetic disruptions of AMPK and dTOR diminished citrate-induced lifespan extension. 7
2.5 Spargel might contributed to citrate-induced lifespan extension. 8
2.6 The mechanism of citrate-induced lifespan extension may relate to ketogenesis and ketolysis. 9
2.7 Citrate supplementation increased ketone body production. 10
2.8 βHB extended lifespan in Drosophila. 10
Chapter 3 Discussion 11
Chapter 4 Materials and Methods 15
4.1 Fly strain 15
4.2 Lifespan assays 15
4.3 Body weight and feeding measurements 16
4.4 Locomotor activity in flies 16
4.5 RU486 administration 16
4.6 Quantitative real-time PCR 17
4.7 Western blotting 18
4.8 ATP assay 19
4.9 Ketone bodies measurement 19
4.10 Statistical analysis 20
Chapter 5 Figures 21
Chapter 6 Tables 36
Chapter 7 References 41
dc.language.isoen
dc.subject酮體zh_TW
dc.subject檸檬酸zh_TW
dc.subject果蠅zh_TW
dc.subject長壽zh_TW
dc.subjectcitrateen
dc.subjectβ-hydroxybutyrateen
dc.subjectSCOTen
dc.subjectHmgclen
dc.subjectDrosophila melanogasteren
dc.subjectHmgsen
dc.subjectspargelen
dc.subjectTORen
dc.subjectAMPKen
dc.subjectIndyen
dc.subjectlifespanen
dc.title攝取檸檬酸對果蠅生理的影響與誘發長壽的機制zh_TW
dc.titleThe Influence of Citrate Supplementation on Drosophila Longevityen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee范守仁,汪宏達
dc.subject.keyword果蠅,檸檬酸,長壽,酮體,zh_TW
dc.subject.keywordDrosophila melanogaster,citrate,lifespan,Indy,AMPK,TOR,spargel,Hmgs,Hmgcl,SCOT,β-hydroxybutyrate,en
dc.relation.page44
dc.identifier.doi10.6342/NTU201904325
dc.rights.note有償授權
dc.date.accepted2019-11-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept腦與心智科學研究所zh_TW
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved