Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74790
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許文翰(Wen-Hann Sheu)
dc.contributor.authorShu-Sheng Chouen
dc.contributor.author周書聖zh_TW
dc.date.accessioned2021-06-17T09:07:38Z-
dc.date.available2019-12-02
dc.date.copyright2019-12-02
dc.date.issued2019
dc.date.submitted2019-11-28
dc.identifier.citation[1] M. P. Teter, M. C. Payne and D. C. Allan (1989), “Solution of Schrödinger’s equation for large systems,” Phys. Rev. B 40, pp. 12255-12263
[2] W. Kohn and L. J. Sham (1965), Phys. Rev. 140 A1133
[3] J.J. Mortensen (2016), GPAW, DFT and beyond within the projector-augmented wave method, Web site: https://wiki.fysik.dtu.dk/gpaw/index.html
[4] J. Phys. (2010): Condense. Matter 22, 253202
[5] Schrödinger. E (1926), Phys. Rev. 28
[6] Born, M. and Oppenheimer (1927), R. Annalen der Physik, 84, 457-484
[7] Froese Fischer, Charlotte (1987), “General Hartree-Fock program”. Computer Physics Communications. 43 (3): 355–365
[8] Caffarel, Michel, Claverie, Pierre (1988), “Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman–Kac formula. I. Formalism”. The Journal of Chemical Physics. 88 (2): 1088–1099
[9] W. Kohn and L. J. Sham (1965), “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, pp. A1133-11138
[10] Jouko Lehtomäki, Ilja Makkonen, Miguel A. Caro, Ari Harju, and Olga Lopez-Acevedo (2014), “Orbital-free density functional theory implementation with the projector augmented-wave method,” J. Chem. Phys. 141, 234102
[11] P. Hohenberg and W. Kohn (1964), Phys. Rev. 136 B864
[12] P. Hohenberg and W. Kohn (1964), “Inhomogeneous electron gas,”
Phys. Rev. 136, pp. B864-B871
[13] Parr, Robert G, Yang, Weitao (1994), Density-Functional Theory of
Atoms and Molecules. Oxford: Oxford University Press
[14] D. M. Ceperley and B. J. Alder (1980), Ground State of the Electron Gas
by a Stochastic Method. Phys. Rev. Lett, 45 (7): 566–569
[15] John P, Perdew and Yue Wang (1992), Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B., 45 (23): 13244–13249
[16] Perdew, John P, Kieron Burke, Matthias Ernzerhof (1996), “Generalized Gradient Approximation Made Simple”. Physical Review Letters. 77 (18): 3865–3868.
[17] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen (2005), “Real-space grid implementation of the projector augmented wave method,” Phys. Rev. B 71, 035109
[18] J.J. Mortensen, L. B. Hansen and K. W. Jacobsen (2016), ASE, Atomic Simulation Environment, Web site: https://wiki.fysik.dtu.dk/ase/
[19] J.J. Mortensen, L. B. Hansen and K. W. Jacobsen (2016), Literature, All citing articles, Web site:https://wiki.fysik.dtu.dk/gpaw/documentation/literature.html
[20] J.J. Mortensen, L. B. Hansen and K. W. Jacobsen (2016), Release notes, Git master branch, Web site: https://wiki.fysik.dtu.dk/gpaw/dev/releasenotes.html
[21] T. Oliphant (2006), NumPy, a Python library for large, multi-dimensional arrays and matrices,Web site: https://en.wikipedia.org/wiki/NumPy
[22] T. Oliphant, P. Peteson, E. Jones (2001), SciPy, a Python library used for scientific computing and technical computing, Web site: https://en.wikipedia.org/wiki/SciPy
[23] J. D. Hunter (2003), Matplotlib, a plotting library for Python and its numerical mathematics extension NumPy, Web site: https://en.wikipedia.org/wiki/Matplotlib
[24] S. Hakala, V. Havu, J. Enkovaara, and R. Nieminen. “Parallel Electronic Structure Calculations Using Multiple Graphics Processing Units (GPUs)”
[25] S. Hakala (2013), cuda gpaw,
Web site: https://gitlab.com/gpaw/gpaw/commits/cuda
[26] M. Louhivu (2018), gpaw-cuda-patches,
Web site: https://github.com/mlouhivu/gpaw-cuda-patches
[27] A. N. Krylov, ”On the numerical solution of the equation by which in technical questions frequencies of small oscillations of material systems are determined.”
[28] Parlett, B. N. Taylor, D. R., and Liu, Z. A. (1985), “A Look-Ahead Lanczos Algorithm for Unsymmetric Matrices.” Math. Comput. 44, 105-124
[29] Lanczos, Cornelius (1958), “Linear Systems in Self-Adjoint Form”.
Amer. Math. Monthly. 65: 665–679
[30] Y. Saad (2003), Iterative Methods for Sparse Linear Systems,
2nd edition, Society for Industrial and Applied Mathematics
[31] Sonneveld, P (1989), “CGS: A Fast Lanczos-Type Solver for
Nonsymmetric Linear Systems.” SIAM J. Sci. Statist. Comput. 10, 36-52
[32] Y. Saad and M.H. Schultz (1986), “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput., 7:856–869
[33] W. E. Arnoldi (1951), “The principle of minimized iterations in the solution of the matrix eigenvalue problem,” Quarterly of Applied Mathematics, volume 9, pages 17–29
[34] W.M. Gentleman (1973), “Least squares computations by Givens transformations without square roots” J. Inst. Math, pp. 329-336
[35] Habu, M. and Nodera, T. (2000), GMRES (m) algorithm with changing the restart cycle adaptively. In Proceedings of Algorithmy 2000 Conference on Scientific Computing (pp. 254-263).
[36] Aroyo, Mois I., Müller, Ulrich, Wondratschek, Hans (2006), “Historical Introduction”, International Tables for Crystallography, A1 (1.1): 2–5
[37] E. Wigner, F. Seitz (1933), “On the Constitution of Metallic Sodium”,
Physical Review. 43 (10): 804
[38] L. Brillouin (1926), La mécanique ondulatoire de Schrödinger, une méthode générale de resolution par approximations successives, Comptes rendus (Paris) 183 24–26
[39] Thompson, Nick (2017), “Irreducible Brillouin Zones and Band Structures”. bandgap.io
[40] Felix Bloch (1928), “Über die Quantenmechanik der Elektronen in Kristallgittern”. Z. Phys. 52 (7–8): 555–600
[41] J. Gazalet, S. Dupont, J.C. Kastelik, Q. Rolland and B. Djafari-Rouhani (2013), “A tutorial survey on waves propagating in periodic media: Electronic, photonic and phononic crystals. Perception of the Bloch theorem in both real and Fourier domains”. Wave Motion. 50 (3): 619–654
[42] H. Föll. “Periodic Potentials and Bloch's Theorem – lectures in
“Semiconductors I”“, The University of Kiel
[43] W. A. Harrison (1989), Electronic Structure and the Properties of Solids. Dover Publications
[44] V. Zeghbroeck, B., 2011 (2011), “Section 2.3: Energy Bands”. Principles of Semiconductor Devices. Electrical, Computer, Energy Engineering Dept., Univ. of Colorado at Boulder
[45] QuantumATK, Relativistic effects in bulk gold,
Web site: https://docs.quantumatk.com/tutorials/gold_spin-orbit/gold_spin-orbit.html
[46] S. Kurth, J. P. Perdew, and P. Blaha (1999), Int. J. Quantum Chem. 75, 889
[47] G. Bao, G. Hu, and D. Liu, “Numerical Solution of The Kohn-Sham equation by Finite Element methods with an Adaptive Mesh Redistribution Technique”
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74790-
dc.description.abstract本論文係利用丹麥技術大學團隊開發之自由軟體GPAW,改善用來分析金原子塊材的科恩–沈呂九方程之計算方法。對於一個由金原子所組成的塊材來說,第一原理計算所採用的密度泛函理論包括了兩個計算量相當大的方程,其一為科恩–沈呂九方程的非線性特徵值問題,其二則是哈特里電位勢的帕松方程計算。對於密度泛函方程的離散,在本研究中考慮非週期邊界條件並採用實空間網格的有限差分法。
除了在實空間網格上執行科恩–沈呂九方程的有限差分法外,本文的目標是改進在大尺寸情形下的特徵值方程的計算,進而保存適合的疊代法。由於非週期性邊界條件及材料中原子的不規則分佈,造成所涉及的矩陣方程具不對稱的性質。在此,本文將共軛梯度法逐步發展成雙共軛梯度法與廣義最小殘量法,並比較這兩個新方法的正確性與計算效率。
zh_TW
dc.description.abstractTo this thesis, the open source code GPAW, which had been developing by DTU Physics, is used to analyze the gold bulk system via different numeric methods. Simulations based on first-principle density functional theory for gold atom involves solving two most computationally expensive equations, namely, the nonlinear eigenvalue problem for Kohn-Sham equation and the inhomogeneous calculation of Poisson equation for the indispensable Hartree potential. For the discretization of the density-functional equation, in this study, adopting finite difference mode could implement it in motion real-space grids for the considerations of a reliable treatment of non-periodic boundary conditions and for an efficient parallelization of the eigenvalue and Poisson equations that require most of the computing time.
Besides running the finite difference Kohn-Sham equation on real-space grids, aiming to improve the computation of large-sized eigenvalue equation saving the iterative solvers that are suitable implemented in parallel. Due to the asymmetric nature of the involved matrix equations owing to the non-periodic boundary conditions and the indefinite nature resulting from irregular distribution of atoms in the materials, this thesis develop the conjugate gradient method into biconjugate gradient method and generalized minimal residual method, and investigate for their performance between input materials.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:07:38Z (GMT). No. of bitstreams: 1
ntu-108-R05525107-1.pdf: 2799936 bytes, checksum: c30bbccedbe83ef26df61fedad7520af (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 研究動機及目標 1
1.1 前言 1
1.2 模擬方法 1
1.3 文獻回顧 2
第二章 控制方程及其推導 3
2.1 第一原理計算方法 4
2.2 霍亨貝格–柯恩定理 4
2.3 柯恩–沈呂九控制方程 7
2.4 相關能泛函的簡介 8
2.4.1 局部密度近似 8
2.4.2 廣義梯度密度近似 9
第三章 對於GPAW的簡介 11
3.1 GPAW發展簡史及其功能 11
3.2 GPAW之CUDA版的發展 13
3.3 GPAW所採用的模擬方法 15
3.4 GPAW裡的特徵值解法器 15
3.4.1 共軛梯度法 16
3.4.2 雙共軛梯度法 18
3.4.3 廣義最小殘量法 20
第四章 金原子塊材在計算中的一些基本定理 23
4.1 晶體結構與倒晶格 25
4.2 布里淵區與布洛赫定理 26
4.3 能帶理論計算 28
第五章 定義問題與參數設定 29
5.1 以GPAW實現金原子塊材計算 29
5.1.1 特徵值解法器的正確性 31
5.1.2 倒晶格點的取法與『Gamma centered』 33
5.1.3 倒晶格點的飽和情形 34
5.2 計算四顆金原子所組成的單位晶胞 36
5.3 氫氣的原子化能計算 39
5.3.1 氫氣與氫原子的參數設置 40
5.3.2 廣義最小殘量法與雙共軛梯度法的計算結果 41
第六章 結果與討論 43
6.1 特徵值解法於週期性問題的比較 43
6.2 特徵值解法於非週期性問題的比較 44
第七章 結論 47
參考文獻 48
附錄A 中英詞彙對照表中英對照表 52
附錄B SCCS計算主機的環境設置資料 54
附錄C GPAW計算金原子塊材的設置簡介 55
附錄D GPAW計算金原子塊材的步驟與程式 56
附錄E GPAW計算四顆金原子塊材的程式 58
附錄F GPAW計算氫原子與氫氣分子的設置簡介 59
附錄G GPAW計算氫原子與氫氣分子的步驟與程式 60
dc.language.isozh-TW
dc.title以GPAW全盤探討金原子塊材的數值方法及其特性zh_TW
dc.titleA Comprehensive Numerical Study of Gold Molecular by GPAWen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李佳翰,郭錦龍
dc.subject.keyword密度泛函理論,科恩–沈呂九方程,數值方法,雙共軛梯度法,廣義最小殘量法,電子能帶圖,布里淵區,倒晶格點,zh_TW
dc.subject.keywordDensity functional theory,Kohn-Shame equation,Numerical method,Biconjugate gradient method,Generalized minimal residual method,Electronic band structure,Brillouin zone,K-Point,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201904342
dc.rights.note有償授權
dc.date.accepted2019-11-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
2.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved