Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74786
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃定洧(Ding-Wei Huang)
dc.contributor.authorChen-Yu Chaoen
dc.contributor.author趙振宇zh_TW
dc.date.accessioned2021-06-17T09:07:34Z-
dc.date.available2029-12-31
dc.date.copyright2019-12-02
dc.date.issued2019
dc.date.submitted2019-11-29
dc.identifier.citationCheng, Q., Bahadori, M., et al., “Recent advances in optical technologies for data centers,” Optica 5(11): pp.1354 – 1370 (2018).
Zhou, X., Hong, L., et al., “Datacenter optics: requirements, technologies, and trends,” Chinese Optics Letters 15(5): pp.120008 (2017).
Orcutt, J.S., Ram, R.J., et al., “Photonic Device Layout Within the Foundry CMOS Design Environment,” IEEE Photonics Technology Letters 22(8): pp.544 – 546 (2010).
Gatdula, R., Abbaslou, S., et al., “Guiding light in bent waveguide superlattices with low crosstalk,” Optica 6(5): pp.585 – 591 (2019).
Koehl, S., Liu, A., et al., “Integrated Silicon Photonics: Harnessing the Data Explosion,” Optics and Photonics News 22(3): pp.24 – 29 (2011).
Soref, R., “The past, present, and the future of silicon photonics,” IEEE Journal of Selected Topics in Quantum Electronics 12(6): pp.1678 – 1687 (2006).
Jalali, B., Fathpour, S., et al., “Silicon Photonics,” Journal of Lightwave Technology 14(12): pp.4600 – 4615 (2006).
Brimont, A., Hu, X., et al., “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technology Letters 28(3): pp.299 – 302 (2015).
Novack, A., Liu, Y., et al., “A 30 GHz silicon photonic platform,” 10th International Conference on Group IV Photonics (2013).
Horikawa, T., Shimura, D., et al., “A 300-mm Silicon Photonics Platform for Large-Scale Device Integration,” IEEE Journal of Selected Topics in Quantum Electronics 24(4): pp.8200415 (2018).
Bojko, R.J., Li, J., et al., “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” Journal of Vacuum Science & Technology B. (2011).
Naydenkov, M., Jalali, B., “Advances in Silicon-on-Insulator Photonic Integrated Circuit (SOIPIC) Technology,” International SOI conference (1999).
Soref, R., Larenzo, J., “All–Silicon Active and Passive Guided-Wave Components for 'λ' = 1.3 and 1.6 'μm' ,” IEEE Journal of Quantum Electronics 22(6): pp.873 –879 (1986).
Cherchi, M., Ylinen, S., et al., “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Optics Express 21(15): pp.17814 – 17823 (2013).
Oton, C.J., Lemonnier, O., et al., “Adiabatic bends in silicon multimode waveguides,” IEEE 13th International Conference on Group IV Photonics (GFP) (2016).
Navalakhe, R.K., Dasgupta, N., et al., “Design of Low-Loss Compact 90° Bend Optical Waveguide for Photonic Circuit Applications in SOI Platform,” 2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems (2008).
Manolatou, C., Haus, H.A., “High-density integrated optics,” Journal of Lightwave Technology 17(9): pp.1682 – 1692 (1999).
Vlasov, Y.A., McNab, S.J., “Losses in single–mode silicon-on-insulator strip waveguides and bends,” Optics Express 12(8): pp.1622 – 1631 (2004).
Bahadori, M., Nikdast, M., et al., “Universal Design of Waveguide Bends in Silicon-on-Insulator Photonics Platform,” Journal of Lightwave Technology 37(13): pp.3044 – 3054 (2019).
Qian, Y., Kim, S., et al., “Compact and low loss silicon-on-insulator rib waveguide 90° bend,” Optics Express 14(13): pp.6020 – 6028 (2006).
Solehmainen, K., Aalto, T., et al., “Development of multi-step processing in silicon–on–insulator for optical waveguide applications,” Journal of Optics A: Pure and Applied Optics 8(7): pp.455 – 460 (2006).
Jing, L., Jing, B., et al., “Transmission performance of 90°-bend optical waveguides fabricated in fused silica by femtosecond laser inscription,” Optics Letters 42(17): pp.3470 – 3473 (2017).
Wong, H.M.K., Lin, C., et al., “Broadband Compact Silicon Wire to Silicon Slot Waveguide Orthogonal Bend,” Journal of Lightwave Technology 32(7): pp.1399 –1405 (2014).
Jiang, X., Wu, H., et al., “Low-loss and low-crosstalk multimode waveguide bend on silicon,” Optics Express 26(13): pp.17680 – 17689 (2018).
Teng, M., Noman, A.A., et al., “A 3-Micron-Radius Bend for SOI TE0/TE1 Multiplexing,” Conference on Lasers and Electro-Optics (2018).
Hucas, H., Liu, D., et al., “On-chip transformation optics for multimode waveguide bends,” Nature Communications volume. 3:1217 (2012).
Chen, T., Lee, H., et al., “A general design algorithm for low optical loss adiabatic connections in waveguides,” Optics Express 20(20): pp.22819 – 22829 (2012).
Claudia, M., Hugo, E., et al., “Novel Bending Loss Reduction Technique for the TM Mode in SOI–Based Waveguides,” IEEE Photonics Technology Letters 28(8): pp.872 – 875 (2016).
Bogaerts, W., Selvaraja, S.K., et al., “Compact Single-Mode Silicon Hybrid Rib/Strip Waveguide With Adiabatic Bends,” IEEE Photonics Journal 3(3): pp.422 – 432 (2011).
Anderson, P.A., Schmidt, B.S., et al., “High confinement in silicon slot waveguides with sharp bends,” Optics Express 14(20): pp.9197 – 9202 (2006).
Xin, T., Ming, L., et al., “Compact low-loss adiabatic bends in silicon shallow-etched waveguides.” IEEE 13th International Conference on Group IV Photonics (GFP) (2016).
Fujisawa, T., Makino, S., et al., “Low-loss, compact, and fabrication-tolerant Si-wire 90° waveguide bend using clothoid and normal curves for large scale photonic integrated circuits,” Optics Express 25(8): pp.9150 – 9159 (2017).
Roa, N.N., Element of engineering electromagnetics (Prentice Hall India, 2006).
Hunsperger, R., Integrated Optics-Theory and Technology (Springer, 2009).
Graham T. Reed, A.P.K., Silicon Photonics: An Introduction (John Wiley &Sons, Ltd, 2004).
Yee, K.S., “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation 14(3): pp.302 – 307 (1966).
Sullivan, D.M., Electromagnetic Simulation Using the FDTD Method (Wiley-IEEE Press. 2000).
Taflove, A., Computational Electromagnetics: The Finite-Difference Time-Domain method (Artech House, 2005).
Gedney, S.D., Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics (Morgan & Claypool, 2005).
Yee, K.S., Chen, J.S., et al., “Conformal finite-different time-domain (FDTD) with overlapping grids,” IEEE Transactions on Antennas and Propagation 40(9): pp.1068 – 1075(1992).
Eberhart, R.C., Shi, Y., et al., “Particle swarm optimization: developments, applications and resources,” Proceedings of the 2001 Congress on Evolutionary Computation (2002).
Robinson, J., Rahmat-Samii, Y., “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation 52(2): pp.397 – 407 (2004).
Parsopoulo, K.E., Vrahatis, M.N., Particle Swarm Optimization and Intelligence: Advances and Applications (Information Science Reference, 2010).
Shi, Y., Eberhart, R.C., “Empirical study of particle swarm optimization,” Proceedings of the 1999 Congress on Evolutionary Computation-CEC99. (1999).
Poli, R., Kennedy, J., et al., “Particle swarm optimization,” Swarm Intelligence 1(1): pp.33 – 57 (2007).
Dai, D., Shi, Y., “Deeply Etched SiO2 Ridge Waveguide for Sharp Bends,” Journal of Lightwave Technology 24(12): pp.5019 – 5024 (2006).
Smit, M.K., Pennings, E.C.M., et al., “A normalized approach to the design of low-loss optical waveguide bends,” Journal of Lightwave Technology 11(11): pp.1737 – 1742 (1993).
Shen, H., Fan, L., et al., “A Taper to Reduce the Straight-to-Bend Transition Loss in Compact Silicon Waveguides,” IEEE Photonics Technology Letters 22(15): pp.1174 – 1176 (2010).
Chulhun, S., Chen, J.C., et al., “Low transition losses in bent rib waveguides,” Journal of Lightwave Technology 14(10): pp.2255 – 2259 (1996).
Nakai, M., Nomura, T., et al., “Geometric Loss Reduction in Tight Bent Waveguides for Silicon Photonics,” Conference on Lasers and Electro-Optics (2018).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74786-
dc.description.abstract隨著近年來物聯網、大數據、及雲端計算的蓬勃發展,人們對於數據傳輸的速度需求驟增,如何提升數據中心與其相關的傳輸能力變得格外重要。而擁有較大傳輸容量及較長傳輸距離的矽光子光互聯在數據中心內及數據中心間的連結上有非常大的優勢,因為可以使用成熟的CMOS製程技術來達到低成本與大量生產。而現今的矽光子晶片當中,已有眾多的主動元件與被動元件被研發出來,如何設計出更有效率的波導結構讓晶片上各元件可相互連結會是一個重要議題,此類型設計如交錯(crossings)結構與彎曲(bends)結構,他們會佔整個晶片面積一定分量的比例,而為了節省空間以提升晶片的效能,上述提及之元件尺寸勢必也要微縮,然而彎曲損耗會隨著彎曲半徑縮小成指數大幅上升,這將是未來元件微縮必須克服的難題。本篇論文主要探討超小尺寸波導彎曲結構的設計,雖然本論文尚未實際製作,但為了將本論文之設計可以在製程代工廠實際製作出,因此在考慮元件結構參數時皆以 IMEC 的 iSiPP50G 矽光子元件代工製程技術及規範為根據。為能精確模擬真實元件效能,本論文使用的模擬軟體為Lumerical的三維時域有限差分法求解器,模擬的光源使用波長1.55 μm 的準TE極化之基礎模態。結構設計方面,本研究將45度的路徑等分成5小段曲線,含頭尾共6組分段點處的半徑與其寬度來定義此曲線,再用內插法與對稱的觀念建立路徑平順的90度波導彎曲結構之模型,最後利用粒子群優化演算法計算這6個點的參數來達到最高效能。本論文分別優化等效半徑為2 – 5 μm 之元件設計,整體結果來看本論文設計的效能與相同尺寸之固定半徑的波導彎曲結構相比都可以提升80% 以上,其中等效半徑2 μm 與3 μm 優化後的90度波導彎曲結構元件損耗可達0.011 dB/turn與0.005 dB/turn。製程容忍度方面,等效半徑2 μm 與3 μm 之設計的波導寬度變化在正負10 nm的範圍內,其效能誤差約在10% 左右,此結果對比現有之文獻有相當明顯的突破。zh_TW
dc.description.abstractWith the development of the internet of things, big data, and cloud computing in recent years, people need increasingly higher data transmission capacity. And to upgrade the transmission capacity of the datacenters becomes more important. Silicon photonic interconnect with large transmission capacity and long transmission distance, has great advantages for the data exchange within a datacenter or between data centers, because the mature CMOS fabrication technology can be used to achieve low cost and mass production. Nowadays, many active and passive components have been developed on the photonics integrated circuits. To connect these components, the design of high-performance silicon waveguide connecting structures, for example, crossings and bends, which connect the components on the photonic integrated circuits, become an important issue. They will account for a certain percentage of the entire real estate on the chip. In order to put more components on the photonic integrated circuits, each component, including the waveguide bends, should be designed more compact. However, for the waveguide bends, the bending loss become exponentially larger as the curvature increases. In this thesis, the designs of small size waveguide bends based on numerical simulations are investigated. Although the designs are not yet fabricated, the CMOS fabrication technology and the mask rule for the iSiPP50G technology provided by IMEC are considered in the thesis so that the design can be manufacturable in the future. To precisely determine the performance of the design, the 3-D FDTD solver developed by Lumerical is used for the simulations in this thesis. The simulation source is quasi-TE fundamental mode and the wavelength is 1.55 μm. To define the structure of the waveguide bend, a 45-degree curved waveguide is divided into 5 smaller curved sections, so that 6 sets of radii of curvature and widths at the joints between smaller curved sections are sufficient to define the entire 45-degree curved waveguide. And then we use interpolation and symmetrical concept to set up the model in to a 90-degree waveguide bend. To achieve a higher performance, we optimize the parameters by using the particle swarm algorithm. Four cases with footprints from 2×2 μm^2 to 5×5 μm^2 are designed and optimized. The results show that the performances of all the designs are improved by at least 80% compared to the conventional waveguide bends with the same radii of curvature. Especially, the loss of the optimally designed 90-degree waveguide bends are 0.011dB/turn and 0.005dB/turn for R _eff= 2 μm and for R_eff = 3 μm , respectively. The performance variation due to the fabrication error of ±10 nanometers is approximately 10% for the designed waveguide bends with R_eff = 2 and 3 μm. The results in this thesis are outstanding compared with previous literature studies.en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:07:34Z (GMT). No. of bitstreams: 1
ntu-108-R06941079-1.pdf: 4435797 bytes, checksum: e6397feaee7ae23792d99b2abcb1f7a2 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 I
中文摘要 II
英文摘要 III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章導論 1
1.1 研究背景 1
1.2 矽光子(Silicon Photonics) 2
1.3 波導彎曲結構(Waveguide Bends) 3
1.4 研究動機 4
1.5 論文架構 5
第二章 背景理論及模擬方法 6
2.1 基礎理論 6
2.1.1 光波導的傳輸原理 6
2.1.2 馬克斯威爾方程式 7
2.1.3 波動方程式 8
2.1.4 模態場(Mode Field)、等效折射率(Effective Refractive Index) 9
2.2 三維時域有限差分法 13
2.3粒子群優化演算法 16
第三章 文獻回顧 17
3.1 入彎橫截面位移的文獻探討 17
3.2 曲率對路徑變化的文獻探討 19
3.2.1 尤拉曲線 19
3.2.2 尤拉曲線與固定半徑弧混合曲線 21
3.3 波導寬度隨路徑變化的探討 23
第四章 準TE基礎模態在極小等效半徑下90度波導彎曲結構中傳輸的分析與優化 25
4.1 設計背景考量 25
4.2 設計結構與波導寬度分析 26
4.2.1 元件結構介紹 26
4.2.2 波導寬度變動對應之損耗討論 29
4.3 模擬結果與討論 31
4.3.1 利用粒子群優化演算法計算之結果 31
4.3.2 操作頻寬的探討 40
4.3.3 製程容忍度的分析 43
4.4 改善結果之討論 48
第五章 結語及未來展望 50
參考文獻 51
dc.language.isozh-TW
dc.title極小半徑矽光子90度波導彎曲結構之設計zh_TW
dc.titleDesign of Ultra-compact Si-wire 90° Waveguide Bendsen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee魏培坤(Pei-Kuen Wei),張書維(Shu-Wei Chang)
dc.subject.keyword矽光子,輻射損耗,光場型不匹配損耗,曲率半徑,粒子群優化演算法,波導彎曲結構,zh_TW
dc.subject.keywordSilicon Photonic,Radiation Loss,Mode Mismatch Loss,Radius of curvature,Particle Swarm Optimization,Waveguide Bends,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201904338
dc.rights.note有償授權
dc.date.accepted2019-11-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
4.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved