Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74764
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳保中
dc.contributor.authorMing-Shun Hsiehen
dc.contributor.author謝明順zh_TW
dc.date.accessioned2021-06-17T09:07:10Z-
dc.date.available2021-03-13
dc.date.copyright2020-03-13
dc.date.issued2019
dc.date.submitted2019-12-10
dc.identifier.citation1. Vincent JL, Marshall JC, Namendys-Silva SA, Francois B, Martin-Loeches I, Lipman J, Reinhart K, Antonelli M, Pickkers P, Njimi H et al: Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. The Lancet Respiratory medicine 2014, 2(5):380-386.
2. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, Angus DC, Reinhart K: Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. American journal of respiratory and critical care medicine 2016, 193(3):259-272.
3. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM et al: The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama 2016, 315(8):801-810.
4. Ou SM, Chu H, Chao PW, Lee YJ, Kuo SC, Chen TJ, Tseng CM, Shih CJ, Chen YT: Long-Term Mortality and Major Adverse Cardiovascular Events in Sepsis Survivors. A Nationwide Population-based Study. American journal of respiratory and critical care medicine 2016, 194(2):209-217.
5. Iwashyna TJ, Netzer G, Langa KM, Cigolle C: Spurious inferences about long-term outcomes: the case of severe sepsis and geriatric conditions. American journal of respiratory and critical care medicine 2012, 185(8):835-841.
6. Donnelly JP, Nair S, Griffin R, Baddley JW, Safford MM, Wang HE, Shapiro NI: Association of Diabetes and Insulin Therapy With Risk of Hospitalization for Infection and 28-Day Mortality Risk. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2017, 64(4):435-442.
7. Falguera M, Pifarre R, Martin A, Sheikh A, Moreno A: Etiology and outcome of community-acquired pneumonia in patients with diabetes mellitus. Chest 2005, 128(5):3233-3239.
8. Shah BR, Hux JE: Quantifying the risk of infectious diseases for people with diabetes. Diabetes care 2003, 26(2):510-513.
9. Thomsen RW, Hundborg HH, Lervang HH, Johnsen SP, Schonheyder HC, Sorensen HT: Diabetes mellitus as a risk and prognostic factor for community-acquired bacteremia due to enterobacteria: a 10-year, population-based study among adults. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2005, 40(4):628-631.
10. Benfield T, Jensen JS, Nordestgaard BG: Influence of diabetes and hyperglycaemia on infectious disease hospitalisation and outcome. Diabetologia 2007, 50(3):549-554.
11. Kornum JB, Thomsen RW, Riis A, Lervang HH, Schonheyder HC, Sorensen HT: Type 2 diabetes and pneumonia outcomes: a population-based cohort study. Diabetes care 2007, 30(9):2251-2257.
12. Thomsen RW, Hundborg HH, Lervang HH, Johnsen SP, Schonheyder HC, Sorensen HT: Risk of community-acquired pneumococcal bacteremia in patients with diabetes: a population-based case-control study. Diabetes care 2004, 27(5):1143-1147.
13. Kaplan V, Angus DC, Griffin MF, Clermont G, Scott Watson R, Linde-Zwirble WT: Hospitalized community-acquired pneumonia in the elderly: age- and sex-related patterns of care and outcome in the United States. American journal of respiratory and critical care medicine 2002, 165(6):766-772.
14. McAlister FA, Majumdar SR, Blitz S, Rowe BH, Romney J, Marrie TJ: The relation between hyperglycemia and outcomes in 2,471 patients admitted to the hospital with community-acquired pneumonia. Diabetes care 2005, 28(4):810-815.
15. Tsai CL, Lee CC, Ma MH, Fang CC, Chen SY, Chen WJ, Chang SC, Mehta SH: Impact of diabetes on mortality among patients with community-acquired bacteremia. The Journal of infection 2007, 55(1):27-33.
16. Vincent JL, Preiser JC, Sprung CL, Moreno R, Sakr Y: Insulin-treated diabetes is not associated with increased mortality in critically ill patients. Critical care (London, England) 2010, 14(1):R12.
17. Esper AM, Moss M, Martin GS: The effect of diabetes mellitus on organ dysfunction with sepsis: an epidemiological study. Critical care (London, England) 2009, 13(1):R18.
18. Moss M, Guidot DM, Steinberg KP, Duhon GF, Treece P, Wolken R, Hudson LD, Parsons PE: Diabetic patients have a decreased incidence of acute respiratory distress syndrome. Critical care medicine 2000, 28(7):2187-2192.
19. Thomsen RW, Hundborg HH, Lervang HH, Johnsen SP, Sorensen HT, Schonheyder HC: Diabetes and outcome of community-acquired pneumococcal bacteremia: a 10-year population-based cohort study. Diabetes care 2004, 27(1):70-76.
20. Graham BB, Keniston A, Gajic O, Trillo Alvarez CA, Medvedev S, Douglas IS: Diabetes mellitus does not adversely affect outcomes from a critical illness. Critical care medicine 2010, 38(1):16-24.
21. Gornik I, Gornik O, Gasparovic V: HbA1c is outcome predictor in diabetic patients with sepsis. Diabetes research and clinical practice 2007, 77(1):120-125.
22. Schuetz P, Jones AE, Howell MD, Trzeciak S, Ngo L, Younger JG, Aird W, Shapiro NI: Diabetes is not associated with increased mortality in emergency department patients with sepsis. Annals of emergency medicine 2011, 58(5):438-444.
23. Wiener RS, Wiener DC, Larson RJ: Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. Jama 2008, 300(8):933-944.
24. Yamada T, Shojima N, Noma H, Yamauchi T, Kadowaki T: Glycemic control, mortality, and hypoglycemia in critically ill patients: a systematic review and network meta-analysis of randomized controlled trials. Intensive care medicine 2017, 43(1):1-15.
25. Mansur A, Mulwande E, Steinau M, Bergmann I, Popov AF, Ghadimi M, Beissbarth T, Bauer M, Hinz J: Chronic kidney disease is associated with a higher 90-day mortality than other chronic medical conditions in patients with sepsis. Scientific reports 2015, 5:10539.
26. Bomberg H, Kubulus C, List F, Albert N, Schmitt K, Graber S, Kessler P, Steinfeldt T, Standl T, Gottschalk A et al: Diabetes: a risk factor for catheter-associated infections. Regional anesthesia and pain medicine 2015, 40(1):16-21.
27. Dial S, Nessim SJ, Kezouh A, Benisty J, Suissa S: Antihypertensive agents acting on the renin-angiotensin system and the risk of sepsis. British journal of clinical pharmacology 2014, 78(5):1151-1158.
28. Laesser M, Oi Y, Ewert S, Fandriks L, Aneman A: The angiotensin II receptor blocker candesartan improves survival and mesenteric perfusion in an acute porcine endotoxin model. Acta anaesthesiologica Scandinavica 2004, 48(2):198-204.
29. Mortensen EM, Restrepo MI, Copeland LA, Pugh JA, Anzueto A, Cornell JE, Pugh MJ: Impact of previous statin and angiotensin II receptor blocker use on mortality in patients hospitalized with sepsis. Pharmacotherapy 2007, 27(12):1619-1626.
30. Lund DD, Brooks RM, Faraci FM, Heistad DD: Role of angiotensin II in endothelial dysfunction induced by lipopolysaccharide in mice. American journal of physiology Heart and circulatory physiology 2007, 293(6):H3726-3731.
31. Doerschug KC, Delsing AS, Schmidt GA, Ashare A: Renin-angiotensin system activation correlates with microvascular dysfunction in a prospective cohort study of clinical sepsis. Critical care (London, England) 2010, 14(1):R24.
32. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR: Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Critical care medicine 2001, 29(7):1303-1310.
33. Lin CC, Lai MS, Syu CY, Chang SC, Tseng FY: Accuracy of diabetes diagnosis in health insurance claims data in Taiwan. Journal of the Formosan Medical Association = Taiwan yi zhi 2005, 104(3):157-163.
34. Young BA, Lin E, Von Korff M, Simon G, Ciechanowski P, Ludman EJ, Everson-Stewart S, Kinder L, Oliver M, Boyko EJ et al: Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. The American journal of managed care 2008, 14(1):15-23.
35. Chang HY, Weiner JP, Richards TM, Bleich SN, Segal JB: Validating the adapted Diabetes Complications Severity Index in claims data. The American journal of managed care 2012, 18(11):721-726.
36. Chen HL, Hsiao FY: Risk of hospitalization and healthcare cost associated with Diabetes Complication Severity Index in Taiwan's National Health Insurance Research Database. Journal of diabetes and its complications 2014, 28(5):612-616.
37. Cheng CL, Chien HC, Lee CH, Lin SJ, Yang YH: Validity of in-hospital mortality data among patients with acute myocardial infarction or stroke in National Health Insurance Research Database in Taiwan. International journal of cardiology 2015, 201:96-101.
38. Chao PW, Shih CJ, Lee YJ, Tseng CM, Kuo SC, Shih YN, Chou KT, Tarng DC, Li SY, Ou SM et al: Association of postdischarge rehabilitation with mortality in intensive care unit survivors of sepsis. American journal of respiratory and critical care medicine 2014, 190(9):1003-1011.
39. Donnelly JP, Nair S, Griffin R, Baddley JW, Safford MM, Wang HE, Shapiro NI: Diabetes and Insulin Therapy are associated with Increased Risk of Hospitalization for Infection but not Mortality: A Longitudinal Cohort Study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2016.
40. Magliano DJ, Harding JL, Cohen K, Huxley RR, Davis WA, Shaw JE: Excess Risk of Dying From Infectious Causes in Those With Type 1 and Type 2 Diabetes. Diabetes care 2015, 38(7):1274-1280.
41. Wu CY, Chen YJ, Ho HJ, Hsu YC, Kuo KN, Wu MS, Lin JT: Association between nucleoside analogues and risk of hepatitis B virus-related hepatocellular carcinoma recurrence following liver resection. Jama 2012, 308(18):1906-1914.
42. Chang SL, Huang YL, Lee MC, Hu S, Hsiao YC, Chang SW, Chang CJ, Chen PC: Association of Varicose Veins With Incident Venous Thromboembolism and Peripheral Artery Disease. Jama 2018, 319(8):807-817.
43. Chang SH, Wen MS, Kuo CF: Drug Interactions With Non-Vitamin K Oral Anticoagulants-Reply. Jama 2018, 319(8):830-831.
44. Lin LY, Warren-Gash C, Smeeth L, Chen PC: Data resource profile: the National Health Insurance Research Database (NHIRD). Epidemiology and health 2018, 40:e2018062.
45. Shen HN, Lu CL, Yang HH: Epidemiologic trend of severe sepsis in Taiwan from 1997 through 2006. Chest 2010, 138(2):298-304.
46. Lee CC, Lee MG, Lee WC, Lai CC, Chao CC, Hsu WH, Chang SS, Lee M: Preadmission Use of Calcium Channel Blocking Agents Is Associated With Improved Outcomes in Patients With Sepsis: A Population-Based Propensity Score-Matched Cohort Study. Critical care medicine 2017, 45(9):1500-1508.
47. Lee CC, Lee MG, Hsu TC, Porta L, Chang SS, Yo CH, Tsai KC, Lee M: A Population-Based Cohort Study on the Drug-Specific Effect of Statins on Sepsis Outcome. Chest 2017.
48. Ou SY, Chu H, Chao PW, Ou SM, Lee YJ, Kuo SC, Li SY, Shih CJ, Chen YT: Effect of the use of low and high potency statins and sepsis outcomes. Intensive care medicine 2014, 40(10):1509-1517.
49. Shrank WH, Patrick AR, Brookhart MA: Healthy user and related biases in observational studies of preventive interventions: a primer for physicians. Journal of general internal medicine 2011, 26(5):546-550.
50. Brookhart MA, Patrick AR, Dormuth C, Avorn J, Shrank W, Cadarette SM, Solomon DH: Adherence to lipid-lowering therapy and the use of preventive health services: an investigation of the healthy user effect. American journal of epidemiology 2007, 166(3):348-354.
51. Humphrey LL, Chan BK, Sox HC: Postmenopausal hormone replacement therapy and the primary prevention of cardiovascular disease. Annals of internal medicine 2002, 137(4):273-284.
52. Kinjo M, Chia-Cheng Lai E, Korhonen MJ, McGill RL, Setoguchi S: Potential contribution of lifestyle and socioeconomic factors to healthy user bias in antihypertensives and lipid-lowering drugs. Open heart 2017, 4(1):e000417.
53. Stampfer MJ, Willett WC, Colditz GA, Rosner B, Speizer FE, Hennekens CH: A prospective study of postmenopausal estrogen therapy and coronary heart disease. The New England journal of medicine 1985, 313(17):1044-1049.
54. Wiewel MA, van Vught LA, Scicluna BP, Hoogendijk AJ, Frencken JF, Zwinderman AH, Horn J, Cremer OL, Bonten MJ, Schultz MJ et al: Prior Use of Calcium Channel Blockers Is Associated With Decreased Mortality in Critically Ill Patients With Sepsis: A Prospective Observational Study. Critical care medicine 2017, 45(3):454-463.
55. Zheng L, Hunter K, Gaughan J, Poddar S: Preadmission Use of Calcium Channel Blockers and Outcomes After Hospitalization With Pneumonia: A Retrospective Propensity-Matched Cohort Study. American journal of therapeutics 2017, 24(1):e30-e38.
56. Li G, Qi XP, Wu XY, Liu FK, Xu Z, Chen C, Yang XD, Sun Z, Li JS: Verapamil modulates LPS-induced cytokine production via inhibition of NF-kappa B activation in the liver. Inflammation research : official journal of the European Histamine Research Society [et al] 2006, 55(3):108-113.
57. Sirmagul B, Kilic FS, Tunc O, Yildirim E, Erol K: Effects of verapamil and nifedipine on different parameters in lipopolysaccharide-induced septic shock. Heart and vessels 2006, 21(3):162-168.
58. Li XQ, Cao W, Li T, Zeng AG, Hao LL, Zhang XN, Mei QB: Amlodipine inhibits TNF-alpha production and attenuates cardiac dysfunction induced by lipopolysaccharide involving PI3K/Akt pathway. International immunopharmacology 2009, 9(9):1032-1041.
59. Wyska E: Pretreatment with R(+)-verapamil significantly reduces mortality and cytokine expression in murine model of septic shock. International immunopharmacology 2009, 9(4):478-490.
60. Xu H, Garver H, Fernandes R, Galligan JJ, Fink GD: Altered L-type Ca2+ channel activity contributes to exacerbated hypoperfusion and mortality in smooth muscle cell BK channel-deficient septic mice. American journal of physiology Regulatory, integrative and comparative physiology 2014, 307(2):R138-148.
61. Wakefield BJ, Sacha GL, Khanna AK: Vasodilatory shock in the ICU and the role of angiotensin II. Current opinion in critical care 2018.
62. Bauer SR, Sacha GL, Lam SW: Safe Use of Vasopressin and Angiotensin II for Patients with Circulatory Shock. Pharmacotherapy 2018, 38(8):851-861.
63. Khanna A, English SW, Wang XS, Ham K, Tumlin J, Szerlip H, Busse LW, Altaweel L, Albertson TE, Mackey C et al: Angiotensin II for the Treatment of Vasodilatory Shock. The New England journal of medicine 2017, 377(5):419-430.
64. Chawla LS, Russell JA, Bagshaw SM, Shaw AD, Goldstein SL, Fink MP, Tidmarsh GF: Angiotensin II for the Treatment of High-Output Shock 3 (ATHOS-3): protocol for a phase III, double-blind, randomised controlled trial. Critical care and resuscitation : journal of the Australasian Academy of Critical Care Medicine 2017, 19(1):43-49.
65. Ray WA, Daugherty JR, Griffin MR: Lipid-lowering agents and the risk of hip fracture in a Medicaid population. Injury prevention : journal of the International Society for Child and Adolescent Injury Prevention 2002, 8(4):276-279.
66. Esposito K, Capuano A, Sportiello L, Giustina A, Giugliano D: Should we abandon statins in the prevention of bone fractures? Endocrine 2013, 44(2):326-333.
67. Haley RW, Dietschy JM: Is there a connection between the concentration of cholesterol circulating in plasma and the rate of neuritic plaque formation in Alzheimer disease? Archives of neurology 2000, 57(10):1410-1412.
68. Majumdar SR, McAlister FA, Eurich DT, Padwal RS, Marrie TJ: Statins and outcomes in patients admitted to hospital with community acquired pneumonia: population based prospective cohort study. BMJ (Clinical research ed) 2006, 333(7576):999.
69. Psaty BM, Smith NL, Siscovick DS, Koepsell TD, Weiss NS, Heckbert SR, Lemaitre RN, Wagner EH, Furberg CD: Health outcomes associated with antihypertensive therapies used as first-line agents. A systematic review and meta-analysis. Jama 1997, 277(9):739-745.
70. Psaty BM, Lumley T, Furberg CD, Schellenbaum G, Pahor M, Alderman MH, Weiss NS: Health outcomes associated with various antihypertensive therapies used as first-line agents: a network meta-analysis. Jama 2003, 289(19):2534-2544.
71. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S et al: 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Journal of hypertension 2007, 25(6):1105-1187.
72. Grossman E, Verdecchia P, Shamiss A, Angeli F, Reboldi G: Diuretic treatment of hypertension. Diabetes care 2011, 34 Suppl 2(Suppl 2):S313-319.
73. Hsieh MS, How CK, Hsieh VC, Chen PC: Preadmission Antihypertensive Drug Use and Sepsis Outcome: Impact of Angiotensin-Converting Enzyme Inhibitors (ACEIs) and Angiotensin Receptor Blockers (ARBs). Shock (Augusta, Ga) 2019.
74. Kaplan JM, Zingarelli B, Krallman K, Tang Girdwood S, Lagory D, Mizuno T, Fei L, Wong HR, Vinks AA: Phase 1 safety and pharmacokinetic study on the use of pioglitazone in critically ill patients with sepsis: a randomized clinical trial. Intensive care medicine 2018, 44(11):2006-2008.
75. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE: Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. Jama 2007, 298(10):1180-1188.
76. Clark RB: The role of PPARs in inflammation and immunity. Journal of leukocyte biology 2002, 71(3):388-400.
77. Dubuquoy L, Rousseaux C, Thuru X, Peyrin-Biroulet L, Romano O, Chavatte P, Chamaillard M, Desreumaux P: PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut 2006, 55(9):1341-1349.
78. Gao M, Jiang Y, Xiao X, Peng Y, Xiao X, Yang M: Protective effect of pioglitazone on sepsis-induced intestinal injury in a rodent model. The Journal of surgical research 2015, 195(2):550-558.
79. Kaplan J, Nowell M, Chima R, Zingarelli B: Pioglitazone reduces inflammation through inhibition of NF-kappaB in polymicrobial sepsis. Innate immunity 2014, 20(5):519-528.
80. Clark JA, Coopersmith CM: Intestinal crosstalk: a new paradigm for understanding the gut as the 'motor' of critical illness. Shock (Augusta, Ga) 2007, 28(4):384-393.
81. Hassoun HT, Kone BC, Mercer DW, Moody FG, Weisbrodt NW, Moore FA: Post-injury multiple organ failure: the role of the gut. Shock (Augusta, Ga) 2001, 15(1):1-10.
82. Fink MP, Delude RL: Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Critical care clinics 2005, 21(2):177-196.
83. Gatt M, Reddy BS, MacFie J: Review article: bacterial translocation in the critically ill--evidence and methods of prevention. Alimentary pharmacology & therapeutics 2007, 25(7):741-757.
84. Alverdy JC, Chang EB: The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. Journal of leukocyte biology 2008, 83(3):461-466.
85. Deitch EA: Gut-origin sepsis: evolution of a concept. The surgeon : journal of the Royal Colleges of Surgeons of Edinburgh and Ireland 2012, 10(6):350-356.
86. Tsujimura Y, Matsutani T, Matsuda A, Kutsukake M, Uchida E, Sasajima K, Tamura K: Effects of pioglitazone on survival and omental adipocyte function in mice with sepsis induced by cecal ligation and puncture. The Journal of surgical research 2011, 171(2):e215-221.
87. Deitch EA: Role of the gut lymphatic system in multiple organ failure. Current opinion in critical care 2001, 7(2):92-98.
88. Linard C, Gremy O, Benderitter M: Reduction of peroxisome proliferation-activated receptor gamma expression by gamma-irradiation as a mechanism contributing to inflammatory response in rat colon: modulation by the 5-aminosalicylic acid agonist. The Journal of pharmacology and experimental therapeutics 2008, 324(3):911-920.
89. Adachi M, Kurotani R, Morimura K, Shah Y, Sanford M, Madison BB, Gumucio DL, Marin HE, Peters JM, Young HA et al: Peroxisome proliferator activated receptor gamma in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut 2006, 55(8):1104-1113.
90. Shah YM, Morimura K, Gonzalez FJ: Expression of peroxisome proliferator-activated receptor-gamma in macrophage suppresses experimentally induced colitis. American journal of physiology Gastrointestinal and liver physiology 2007, 292(2):G657-666.
91. Arita M, Yoshida M, Hong S, Tjonahen E, Glickman JN, Petasis NA, Blumberg RS, Serhan CN: Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(21):7671-7676.
92. Ten Hove T, Corbaz A, Amitai H, Aloni S, Belzer I, Graber P, Drillenburg P, van Deventer SJ, Chvatchko Y, Te Velde AA: Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-alpha production in mice. Gastroenterology 2001, 121(6):1372-1379.
93. Nakai M, Sudo K, Yamada Y, Kojima Y, Kato T, Saito K, Moriwaki H, Seishima M: The role of the tumor necrosis factor receptor in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Digestive diseases and sciences 2005, 50(9):1669-1676.
94. Hollenbach E, Vieth M, Roessner A, Neumann M, Malfertheiner P, Naumann M: Inhibition of RICK/nuclear factor-kappaB and p38 signaling attenuates the inflammatory response in a murine model of Crohn disease. The Journal of biological chemistry 2005, 280(15):14981-14988.
95. Nakajima A, Wada K, Miki H, Kubota N, Nakajima N, Terauchi Y, Ohnishi S, Saubermann LJ, Kadowaki T, Blumberg RS et al: Endogenous PPAR gamma mediates anti-inflammatory activity in murine ischemia-reperfusion injury. Gastroenterology 2001, 120(2):460-469.
96. Baregamian N, Mourot JM, Ballard AR, Evers BM, Chung DH: PPAR-gamma agonist protects against intestinal injury during necrotizing enterocolitis. Biochemical and biophysical research communications 2009, 379(2):423-427.
97. Kaplan JM, Cook JA, Hake PW, O'Connor M, Burroughs TJ, Zingarelli B: 15-Deoxy-delta(12,14)-prostaglandin J(2) (15D-PGJ(2)), a peroxisome proliferator activated receptor gamma ligand, reduces tissue leukosequestration and mortality in endotoxic shock. Shock (Augusta, Ga) 2005, 24(1):59-65.
98. Haraguchi G, Kosuge H, Maejima Y, Suzuki J, Imai T, Yoshida M, Isobe M: Pioglitazone reduces systematic inflammation and improves mortality in apolipoprotein E knockout mice with sepsis. Intensive care medicine 2008, 34(7):1304-1312.
99. Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, Shimomura I: Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 2003, 52(7):1655-1663.
100. Tsuchihashi H, Yamamoto H, Maeda K, Ugi S, Mori T, Shimizu T, Endo Y, Hanasawa K, Tani T: Circulating concentrations of adiponectin, an endogenous lipopolysaccharide neutralizing protein, decrease in rats with polymicrobial sepsis. The Journal of surgical research 2006, 134(2):348-353.
101. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N et al: PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001, 50(9):2094-2099.
102. Combs TP, Wagner JA, Berger J, Doebber T, Wang WJ, Zhang BB, Tanen M, Berg AH, O'Rahilly S, Savage DB et al: Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists: a potential mechanism of insulin sensitization. Endocrinology 2002, 143(3):998-1007.
103. Yu JG, Javorschi S, Hevener AL, Kruszynska YT, Norman RA, Sinha M, Olefsky JM: The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 2002, 51(10):2968-2974.
104. Cortes-Puch I, Hartog CS: Opening the Debate on the New Sepsis Definition Change Is Not Necessarily Progress: Revision of the Sepsis Definition Should Be Based on New Scientific Insights. American journal of respiratory and critical care medicine 2016, 194(1):16-18.
105. Drosatos K, Khan RS, Trent CM, Jiang H, Son NH, Blaner WS, Homma S, Schulze PC, Goldberg IJ: Peroxisome proliferator-activated receptor-gamma activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circulation Heart failure 2013, 6(3):550-562.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74764-
dc.description.abstract中文摘要
研究背景:
敗血症'Sepsis'具有極高的死亡率,身體免疫系統因為嚴重的感染進入失控狀態,並引發多重器官衰竭。一旦患者進入敗血性休克'Septic shock'狀態時,死亡率更是大幅提升,並產生許多住院中及出院後的長短期併發症。
第二型糖尿病敗血症患者的住院預後一直存在著爭議,甚至有人提出第二型糖尿病對肺臟有保護的作用等論點。主要的原因在於第二型糖尿病所衍生出的併發症嚴重程度多未被納入考量。再者,由於治療第二型糖尿病及其相關共存慢性病(如高血壓)等藥物的進展,亦可能改變了原本敗血症的預後。在此研究中,我們將這個主題分成三個主要部分作探討。
研究設計與方法:
第一部分:
第二型糖尿病病患併發症嚴重程度與敗血症預後的關聯性分析:一個世代研究,合併使用健保資料庫跟醫院資料庫
在我們團隊過去的健保資料庫研究中發現,健保署多年來推動的糖尿病共照計畫(Diabetes Shared Care Program, DSCP) 可以有效地降低第二型糖尿病患者在敗血症發生時的死亡率,尤其在低社經地位及老年族群上,且亦可有效降低整體醫療成本。但直至今日,仍未有完整的世代研究(cohort study)針對第二型糖尿病患者發生敗血症時的病程做詳細的探討。
在第一部分的研究中,我們合併使用健保資料庫及多醫學中心資料庫 (取自榮總及長庚醫療體系),完整探討第二型糖尿病病程的發展,從入院時的糖尿病併發症嚴重程度,入院前三個月內的糖化血色素值(HbA1c)到入院時於急診的第一次抽血血糖值(blood glucose),做串聯整合。同時利用兩個資料庫對第二型糖尿病敗血症患者做全面的評析,包含糖尿病用藥,感染菌種,是否具抗藥性,呼吸衰竭、洗腎及死亡率等。
第二部分:
入院前高血壓藥物使用與敗血症預後的關聯性分析:血管張力素第I型轉化酶抑制劑(ACEIs)及血管張力素第II型受體拮抗劑(ARB)的影響(兼及敗血性休克的資料庫驗證:能否以敗血症診斷碼加上升壓劑藥物的藥物申報碼來代表患者有敗血性休克'septic shock'的產生)
本研究針對健保資料庫中,從未曾被驗證過(Validate)的'敗血性休克''Septic shock'定義做臨床上的驗證。初始假設為:在申報資料庫(Administrative database)中,如健保資料庫(NHIRD)中 ICD-9-CM 038的診斷碼加上升壓劑(inotropic agents)藥物的申報碼可以代表病患曾經進入敗血性休克'Septic shock'的病程中。目前國際上及國內皆無相關的驗證研究(validation study),主要是因為驗證過程耗時且耗費人力。但這個驗證研究將大幅提申健保(申報)資料庫在急重症領域的應用,並造福之後眾多國、內外學者。
此外更探討病患入院前高血壓藥物的使用,如血管張力素第I型轉化酶抑制劑(ACEI)、血管張力素第II型受體拮抗劑(ARB)是否能對第二型糖尿病敗血症的患者的住院死亡率產生助益,分析過程中亦將敗血症病患依上述驗證後的結果,將其分類為敗血性休克'Septic shock'及非敗血性休克'Non-septic shock'去做後續的各項分析。

第三部分:
入院前Pioglitazone的使用與第二型糖尿病敗血症患者預後的關聯性分析
第三部分的研究將利用健保資料庫探索可能的敗血症輔助治療藥物,而此藥物必須要先有合理的藥理作用解釋及動物實驗上的佐證。本研究探討住院前Pioglitazone的使用對敗血症住院預後的關聯性分析。

結果:
第一部分:
本研究第一部分採用健保資料庫中'全糖尿病檔(LHDB)'及'百萬歸人檔(LHID2000)',共收集19,719名第二型糖尿病敗血症患者和等同數量的非糖尿病敗血症患者。第二型糖尿病會增加敗血症患者的住院死亡,其勝算比(OR)為1.14 (95%信區間為1.10-1.19)。死亡率的勝算比隨'糖尿病併發症的嚴重程度分數' '(aDCSI score)增加'。當aDCSI score分別為0、1、2、3、4和 ≥5分時,死亡率的勝算比分別為0.91、0.87、1.14、1.25、1.56和1.77 (P值皆< 0.001)。
第二部分則採用多醫學中心的臨床資料庫(臺北榮總、臺中榮總及林口長庚醫院)。共收集1,054名糖尿病敗血症患者,存活和死亡的糖尿病敗血症患者,其初始血糖平均值並沒有顯著差異:273.9 ± 180.3 mg/dl對比266.1 ± 200.2 mg/dl (P值= 0.095)。此外,存活的糖尿病敗血症患者,其糖化血色素(HbA1c; %)值並沒有比死亡者低:8.4 ± 2.6%對比8.0 ± 2.5% (P值= 0.078)。
第二部分:
本研究總共收集了33,213名敗血症合併高血壓藥物的使用患者(研究組)作為研究對象,並以頻率配對的方式(性別、年紀),在資料庫中選取同樣人數的未使用降血壓藥的敗血症患者(對照組)做為對比。與比較組相比,研究組的患者發生敗血性休克的機率較高 (4.36% 對比2.31%,P值 <0.001),且總死亡率亦較高(38.42%對比24.57%,P值 <0.001)。在敗血症性休克狀態下,入院前有使用降血壓藥物相比於未使用降血壓藥物的患者,其校正後的勝算比為0.66 (95%信賴區間為0.55-0.80),然而這個現象並未在'非'敗血性休克的狀況下被觀察到。
與未使用降血壓藥物的人相比,在敗血症的狀況下,ACEI和ARB的使用者其住院死亡率的校正後勝算比分別為:ACEI校正後勝算比 = 0.93,95%信賴區間,0.88-0.98,ARB校正後勝算比 = 0.85,95%信賴區間,0.81-0.90)
但是,在鈣離子阻斷劑,β受體阻斷劑和利尿劑的使用者上並沒有觀察到上述現象。然而在敗血症性休克的狀態下,ACEI,ARB,鈣離子阻斷劑,β受體阻斷劑使用者的住院死亡率勝算比均下降。
聯合療效分析(Joint effect analysis)顯示,除與利尿劑聯合使用外,ACEI與其它降血壓藥物的共同使用對敗血症住院死亡率的校正後勝算比皆明顯降低。在ARB的使用者身上也觀察到了相似的結果。
為了驗證敗血症休克定義的正確性與否,我們從醫院臨床資料庫中任意挑選出100名患者,由一位重症醫師,一位急診專科醫師共同審閱病歷,依定義有97人可明確診斷為敗血性休克,另外3人則無共識 (敏感度sensitivity為97%)評分者間信度(Inter-observer agreement)為優良(κ值為0.887)
第三部分:
本研究從全糖尿病檔(LHDB)資料庫共收集了9,310名敗血症合併Pioglitazone使用的患者和46,550名依傾向分數'Propensity score'配對後擷取而來的敗血症非Pioglitazone使用患者(採1:5的比例)分別作為研究組和對照組。敗血症合併Pioglitazone使用患者其總住院和28天住院死亡率的校正後勝算比分別為0.95 (95%信賴區間為0.89-1.03)和0.98 (95%信賴區間為0.92-1.06)。
但如果使用較嚴謹的定義去規範Pioglitazone的使用(敗血症入院當日前30天內的累積使用劑量需≥7天),則總住院和28天住院死亡率的校正後勝算比顯著降低至0.80 (95%信賴區間為0.72-0.89)和0.79 (95%信賴區間為0.70-0.88)。
然而值得一提的是,不管採用較寬鬆或嚴格的Pioglitazone使用定義,Pioglitazone使用者皆比非Pioglitazone使用者更容易發生敗血性休克。在採用寬鬆及嚴謹的Pioglitzone使用定義時,產生敗血性休克的校正後勝算比分別為1.16 (95%信賴區間為1.05-1.29)和1.19 (95%信賴區間為1.01-1.39)。

結論與建議:
第一部分:
對於第二型糖尿病敗血症患者,與糖尿病相關的併發症嚴重程度才是決定敗血症死亡率的關鍵因素,而非糖尿病本身。HbA1c或初始血糖值亦非第二型糖尿病敗血症患者預後的關鍵因子。
第二部分:
入院前的ACEI及ARB使用均可明顯降低住院死亡率的風險(不論是否在住院過程中產生敗血性休克)。另外亦驗證了使用敗血症的出(住)院診斷碼加上升壓劑的藥物申報碼,可以明確的定義'敗血性休克'的發生。
第三部分:
在這項研究中,Pioglitazone的使用對於敗血症的總住院死亡率和28天住院死亡率並沒有出現顯著的保護作用,除非在敗血症住院之前有高劑量的使用。但值得一提的是,Pioglitazone在本研究中發現會明顯引致患者併發敗血性休克,此機制仍有待進一步的研究。

總結:
本研究的對科學及人類主要的貢獻:
其一、同時併用'醫院資料庫'及'健保資料庫',完整剖析了多年來一直爭論不休的議題:第二型糖尿病與敗血症預後的關聯性。說明真正的決定因子在於病人因糖尿病所引致的併發症嚴重程度,而非僅僅糖尿病本身。
其二、跨越十數年來一直無人的能由申報資料庫(administrative database)中作出敗血性休克'septic shock'定義的鴻溝,由兩位醫師的作了三個多月的苦功,逐本翻閱醫師及護理紀錄,用健保資料庫制定了全新敗血性休克的定義。將廣泛嘉惠未來國、內外的相關學者。
其三、先行測試各項高血壓藥物,如ACEI、ARB及糖尿病藥物Pioglitazone對敗血症預後的修飾作用。
zh_TW
dc.description.abstractBackground:
Sepsis prognosis in type II diabetic patients remains controversial when severity of diabetes is not taken into consideration. Furthermore, the preadmission anti-diabetic and ant-hypertensive drugs may also change the sepsis trajectory. In this current study, we divided into three parts to discuss the above topics.
Aims: There are three studies as follows:
1. Hospital Outcomes and Cumulative Burden from Complications in Type 2 Diabetic Sepsis Patients: A Cohort Study Using Administrative and Hospital-based Databases.
Materials and Methods:
The first part of this study was mainly conducted using a nationwide database, which included 1.6 million type 2 diabetic patients. The diabetic complication burden was evaluated using the adapted Diabetes Complications Severity Index score (aDCSI score). In the second part, we used laboratory data from a distinct hospital-based database to make comparisons using regression analyses.
Results:
The nationwide study included 19,719 type 2 diabetic sepsis patients and an equal number of nondiabetic sepsis patients. The diabetic sepsis patients had an increased odds ratio (OR) of 1.14 (95% confidence interval 1.1–1.19) for hospital mortality. The OR for mortality increased as the complication burden increased [aDCSI scores of 0, 1, 2, 3, 4, and ≥5 with ORs of 0.91, 0.87, 1.14, 1.25, 1.56, and 1.77 for mortality, respectively (all P < 0.001)]. The hospital-based database included 1054 diabetic sepsis patients. Initial blood glucose levels did not differ significantly between the surviving and deceased diabetic sepsis patients: 273.9 ± 180.3 versus 266.1 ± 200.2 mg/dl (P = 0.095). Moreover, the surviving diabetic sepsis patients did not have lower glycated hemoglobin (HbA1c; %) values than the deceased patients: 8.4 ± 2.6 versus 8.0 ± 2.5 (P = 0.078).
Conclusions:
For type 2 diabetic sepsis patients, the diabetes-related complication burden was the major determinant of hospital mortality rather than diabetes per se, HbA1c level, or initial blood glucose level.
2. Preadmission Antihypertensive Drug Use and Sepsis Outcome: Impact of Angiotensin-Converting Enzyme Inhibitors (ACEIs) and Angiotensin Receptor Blockers (ARBs). (Validation of septic shock)
Materials and Methods:
This study was conducted using the unique database of a sepsis cohort from the National Health Insurance Research Database in Taiwan. Frequency matching for age and sex between preadmission antihypertensive drug users (study cohort) and nonusers (comparison cohort) was conducted. The primary outcome was total hospital mortality. Logistic regression analyses were performed to calculate the odds ratios (ORs) of important variables. Further joint effect analyses were carried out to examine the impacts of different combinations of antihypertensive drugs.
Results:
A total of 33,213 sepsis antihypertensive drug use patients were retrieved as the study cohort, and an equal number of matched sepsis patients who did not use antihypertensive drugs were identified as the comparison cohort. The study cohort had a higher incidence rate of being diagnosed with septic shock compared with the comparison cohort (4.36%–2.31%, P < 0.001) and a higher rate of total hospital mortality (38.42%–24.57%, P < 0.001). In the septic shock condition, preadmission antihypertensive drug use was associated with a decreased adjusted OR (OR = 0.66, 95% confidence interval [CI], 0.55–0.80) for total hospital mortality, which was not observed for the nonseptic shock condition. Compared with antihypertensive drug nonusers, both ACEI and ARB users had decreased adjusted ORs for total hospital mortality in sepsis (adjusted OR = 0.93, 95% CI, 0.88–0.98 and adjusted OR = 0.85, 95% CI, 0.81–0.90); however, CCB, beta-blocker, and diuretic users did not. In the septic shock condition, ACEI, ARB, CCB, and beta-blocker users all had decreased ORs for total hospital mortality. Joint effect analysis showed ACEI use, except in combination with diuretics, to be associated with a decreased adjusted OR for total hospital mortality in sepsis. Similar results were observed for ARB users. (For validation, among the chosen 100 patients, the diagnosis of septic shock was confirmed for 97 and unconfirmed for 3 (sensitivity, 97.0%). Interobserver agreement was excellent (κ=0.887).)
Conclusions:
Preadmission ACEI or ARB use is associated with a decreased risk of total hospital mortality, regardless of a nonshock or septic shock condition.

3. Pioglitazone Use and Sepsis Outcomes in Type 2 Diabetic Patients: a Nationwide, Propensity Score-Matched Study.
Materials and Methods:
This study was conducted using a unique diabetes database including 1.6 million diabetic patients. From 1999 to 2013, a total of 145,327 type 2 diabetic patients, first admitted for sepsis, were enrolled. Propensity score matching was conducted to avoid selection bias between the pioglitazone users and nonusers. The main outcomes were 28-day and total hospital mortality. Multivariate logistic regression analyses were conducted to calculate the odds ratios (ORs) of pioglitazone use in sepsis.
Results:
A total of 9,310 sepsis pioglitazone users and 46,550 propensity score-matched nonusers (1:5) were retrieved as the study and comparison cohort, respectively. Pioglitazone use was associated with an adjusted OR (aOR) of 0.95 (95% confidence interval, CI, 0.89-1.03) and 0.98 (95% CI, 0.92-1.06) for total and 28-day hospital mortality, respectively. However, if pioglitazone use was redefined using a narrower criterion (cumulative use ≥7 days within 30 days prior to the index date of admission), the aOR significantly decreased to 0.80 (95% CI, 0.72-0.89) and 0.79 (95% CI, 0.70-0.88) for total and 28-day hospital mortality, respectively. However, septic shock was more frequently found in pioglitazone users than nonusers using either the wider (aOR = 1.16; 95% CI, 1.05-1.29) or narrower (aOR = 1.19; 95% CI, 1.01-1.39) definition.
Conclusions:
In this study, pioglitazone use demonstrated a nonsignificant protective effect against total and 28-day hospital mortality in sepsis, except under the condition of recent, intensive use prior to sepsis. However, care should be taken to avoid septic shock development with pioglitazone use, and the mechanism remains to be further investigated.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:07:10Z (GMT). No. of bitstreams: 1
ntu-108-D05841001-1.pdf: 4081014 bytes, checksum: 7c14fb29a362eca25c2d479bf419650a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目 錄 Table of Contents
Acknowledgement誌謝 i
Chinese Abstract中文摘要 ii
English Abstract 英文摘要 iii
Chapter I Introduction (1)
1.1 Sepsis and Type II Diabetes (1)
1.2 ACEI, ARB, and Septic Shock (2)
1.3 Pioglitazone and Sepsis Outcome (3)
Chapter II Study I (Sepsis and Type II Diabetes) (5)
2.1 Study design (5)
2.2 Results (8)
2.3 Discussion (11)
Chapter III Study II (ACEI, ARB, and Septic Shock) (15)
3.1 Study design (15)
3.2 Results (20)
3.3 Discussion (22)
Chapter IV Study III (Pioglitazone and Sepsis Outcome) (27)
4.1 Study design (27)
4.2 Results (29)
4.3 Discussion (31)
Chapter V Conclusions and Suggestions (35)
5.1 Sepsis and Type II Diabetes (35)
5.2 ACEI, ARB, and Septic Shock (35)
5.3 Pioglitazone and Sepsis Outcome (35)
Reference (37)
List of Tables (48)
Table 1-1 Nationwide database: demographic characteristics, comorbidities, and medications in type 2 diabetic and non-diabetic sepsis patients before and after propensity score matching (49)
Table 1-2 Nationwide database: odds ratio of mortality related to type 2 diabetes and its complication severity in different adjusted models (54)
Table 1-3 Stratification analysis according to the infection sites (56)
Table 1-4 Demographic characteristics, comorbidities, laboratory data, hospital course, and outcomes of matched type 2 diabetic and non-diabetic sepsis patients (57)
Table 1-5 Hospital-based database: demographic characteristics, laboratory data, and hospital course of survived and dead type 2 diabetic sepsis patients (59)
Table 1-6 Odds ratio of mortality related to type 2 diabetes and its complication severity in different adjusted models (61)
Table 2-1 Classification of sepsis origins by ICD-9-CM codes (62)
Table 2-2 Demographic characteristics and baseline comorbidities of sepsis patients with and without antihypertensive drug use (66)
Table 2-3 Logistic regression model with odds ratios and 95% confidence interval of total hospital mortality among sepsis antihypertensive drug users and nonusers (68)
Table 2-4 Odds ratios for total hospital mortality associated with the use of different antihypertensive drugs under sepsis conditions with and without shock (70)
Table 3-1 Demographic characteristics of sepsis patients with and without preadmission pioglitazone use after propensity score matching (71)
Table 3-2 Logistic regression model to estimate the OR and 95% CI of total and 28-day hospital mortality in pioglitazone users and nonusers (73)
Table 3-3 Logistic regression model to estimate the OR and 95% CI of total and 28-day hospital mortality in pioglitazone users and nonusers with a narrower criterion for pioglitazone use (74)
List of Figures (76)
Figure 1-1 The selection process of participants from the nationwide and hospital-based databases. (76)
Figure 1-2 The type 2 diabetic sepsis patients with aDCSI scores of 0-2 and ≥3 had varied adjusted ORs for mortality in every age subgroup analysis (per 10 years). (77)
Figure 1-3 Figure 1-3A The Kaplan-Meier analysis with log-rank test showed the difference in the hospital course of mortality between the type 2 diabetic and nondiabetic sepsis patients. Figure 1-3B Scatter plot of initial blood glucose levels in the surviving and deceased type 2 diabetic sepsis patients. (78)
Figure 1-4 Figure 1-4A The Kaplan-Meier analysis with log-rank test for the hospital course of mortality among type 2 diabetic sepsis patients with different initial blood glucose levels at admission. Figure 1-4B The Kaplan-Meier analysis with log-rank test for the hospital course of mortality between type 2 diabetic sepsis patients with HbA1c levels > 7 and ≤ 7. (79)
Figure 2-1 The selection algorithm between antihypertensive drug users and nonusers by frequency matching by age, sex, and the index year. (80)
Figure 2-2 The stratification analysis of adjusted odds ratio for total hospital mortality between preadmission antihypertensive drug users and nonusers with different age, sex, and septic shock status subgroups. (81)
Figure 2-3 The joint effect analysis to evaluate the effects of different combinations of antihypertensive drugs on the hospital outcome of total hospital mortality in sepsis patients. (82)
Figure 3-1 The participant selection process in the study and comparison cohorts. (83)
Figure 3-2 Logistic regression model to estimate the odds ratio with 95% confidence intervals of development of septic shock in pioglitazone users of two criteria. (84)
Figure 3-3 Kaplan-Meier analysis with Log-Rank test of 28-day hospital mortality in pioglitazone users (at least one tab or dose of drug use within a 6-month period prior to the index date) and nonusers. (85)
Figure 3-4 Kaplan-Meier analysis with Log-Rank test of 28-day hospital mortality in pioglitazone users (cumulative drug use ≥7 days within a 3 month-period prior to the index date) and nonusers. (86)
List of Publications (87)
Publication 1 Hospital Outcomes and Cumulative Burden from Complications in Type 2 Diabetic Sepsis Patients: A Cohort Study Using Administrative and Hospital-based Databases. (Published in Therapeutic Advances in Endocrinology and Metabolism; IF = 3.54)) (S1)
Publication 2 Preadmission Antihypertensive Drug Use and Sepsis Outcome: Impact of Angiotensin-Converting Enzyme Inhibitors (ACEIs) and Angiotensin Receptor Blockers (ARBs). (Published in Shock; IF = 3.08) (S2)
Under submission Pioglitazone Use and Sepsis Outcomes in Type 2 Diabetic Patients, a Nationwide Real-world Cohort Study (Under review by Therapeutic Advances in Endocrinology and Metabolism) (S3)
dc.language.isoen
dc.title第二型糖尿病及其相關藥物對敗血症預後的關聯性分析zh_TW
dc.titleSepsis Prognosis and Drug Use in Patients with
Type II Diabetes
en
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.oralexamcommittee侯重光,李建璋,許美鈴,謝嘉容
dc.subject.keyword血管張力素第I型轉化?抑制劑(ACEIs),血管張力素第II型受體拮抗劑(ARB),?格列酮(Pioglitazone),降血壓藥物(antihypertensive drug),敗血症(Sepsis),敗血性休克(Septic shock),健保資料庫(NHIRD),第二型糖尿病,過氧化物?體增殖物活化受體-γ (PPARγ),?唑烷二酮(Thiazolidinedione, TZD),糖尿病併發症嚴重程度指數分數(DCSI score),醫院資料庫(HBD),嚴重敗血症(Severe sepsis),驗證(Validation),zh_TW
dc.subject.keywordAngiotensin-converting enzyme inhibitors (ACEIs),Angiotensin II receptor blockers (ARBs),Antihypertensive drug,Diabetes complication severity index score (DCSI score),Diabetes mellitus,Hospital-based database (HBD),National Health Insurance Research Database (NHIRD),Peroxisome proliferator-activated receptor-gamma (PPARγ),Pioglitazone,Sepsis,Severe sepsis,Septic shock,Thiazolidinedione (TZD),Validation,en
dc.relation.page86
dc.identifier.doi10.6342/NTU201904379
dc.rights.note有償授權
dc.date.accepted2019-12-11
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
3.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved