Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74729
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳希立
dc.contributor.authorSu-Sheng Maen
dc.contributor.author馬述聖zh_TW
dc.date.accessioned2021-06-17T09:06:37Z-
dc.date.available2029-12-30
dc.date.copyright2020-01-15
dc.date.issued2019
dc.date.submitted2019-12-30
dc.identifier.citation1. R.E. Simons, R.C. Chu, Application of thermoelectric cooling to electronic equipment: a review and analysis, sixteenth IEEE SEMI – THERM Symposium, pp. 1-9, 2000.
2. G.S. Nolas, G.A. Slack, J.L. Cohn, and S.B. Schujman, The Next Generation of Thermoelectric Materials, Proceeding of the 17th International Conference on Thermoelectrics, pp. 294-297, 1998.
3. J-P. Fleurial, A. Borshchevsky, T. Caillat, and R. Ewell, New Materials and Devices for Thermoelectric Application, Applied Thermal Engineering, Vol. 22, pp. 407-422, 2002.
4. S.B. Rifft, S.A. Omer, X. Ma, A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation, Renewable Energy, Vol. 23, pp. 313-323, 2001.
5. 盧宜忠,「熱電除濕器的性能改善」,碩士論文,成功大學,2002。
6. 陳振城,「熱電除濕器之冷凝端的改善」,碩士論文,成功大學,2002。
7. J.W. Rose, Dropwise condensation theory and experiment: a review, Proc. Inst. Mech. Eng. A, 216 (A2), pp. 115-128, 2002.
8. R.F. Wen, Z. Lan, B.L. Peng, W. Xu, X.H. Ma, Y.Q.Cheng, Droplet departure characteristic and dropwise condensation heat transfer at low steam pressure,
J. Heat Transfer, 138(7), p. 071501, 2016.
9. X. Liu, P. Cheng, Dropwise condensation theory revisited: Part I. droplet nucleation radius Int. J. Heat Mass Transf., 83, pp. 833-841, 2015.
10. H.J. Cho, D.J. Preston, Y. Zhu, E.N. Wang , Nanoengineered materials for liquid–vapour phase-change heat transfer ,Nat. Rev. Mater., 2 (2), p. 16092, 2016.
11. J.W. Rose, Dropwise condensation theory and experiment: a review,
Proc. Inst. Mech. Eng. A, 216 (A2), pp. 115-128, 2002.
12. N. Miljkovic, E.N. Wang, Condensation heat transfer on superhydrophobic surfaces, MRS Bull., 38 (5), pp. 397-406, 2013.
13. B.L. Peng, S.F. Wang, Z. Lan, W. Xu, R.F. Wen, X.H. Ma, Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence
Appl. Phys. Lett., 102 (15), p. 151601, 2013.
14. R.F. Wen, Z. Lan, B.L. Peng, W. Xu, R.G. Yang, X.H. Ma, Wetting transition of condensed droplets on nanostructured superhydrophobic surfaces: coordination of surface properties and condensing conditions,ACS Appl. Mater. Interf., 9 (15), pp. 13770-13777, 2017.
15. J.B. Boreyko, C.H. Chen, Self-propelled dropwise condensate on superhydrophobic surfaces,Phys. Rev. Lett., 103 (18), p. 184501, 2009.
16. R. Wen, S. Xu, D. Zhao, L. Yang, X. Ma, W. Liu, Y.-C. Lee, R. Yang, Sustaining enhanced condensation on hierarchical mesh-covered surfaces Natil. Sci. Rev., 5 (6), pp. 878-887, 2018.
17. N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, E.N. Wang, Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces Nano Lett., 13 (1), pp. 179-187,2013.
18. R.F. Wen, Q. Li, J. F. Wu, G.S. Wu, W. Wang, Y.F. Chen, X.H. Ma, D.L. Zhao, R.G. Yang, Hydrophobic copper nanowires for enhancing condensation heat transfer,
Nano Energy, 33, pp. 177-183,2017.
19. Y. M. Hou, M. Yu, X. M. Chen, Z. K. Wang, S.H. Yao, Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano, 9 (1), pp. 71-81, 2015.
20. R.F. Wen, S.S. Xu, D.L. Zhao, Y.C. Lee, X.H. Ma, R.G. Yang, Hierarchical superhydrophobic surfaces with micropatterned nanowire arrays for high-efficiency jumping droplet condensation, ACS Appl. Mater. Interf., 9 (51), pp. 44911-44921, 2017.
21. R.F. Wen, S.S. Xu, X.H. Ma, Y.C. Lee, R.G. Yang, Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer
Joule, 2 (2), pp. 269-279, 2018.
22. X. MA, J. W. Rose, D Xu, J. Lin, B. Wang, Advances in dropwise condensation heat transfer:Chinese research, Chemical Engineering Journal, Vol.78, pp.87-93,2000.
23. W. Nusselt, The surface condensation of water, Zetrschr. Ver. Deutch. Ing., 60, pp. 541-546, 1916.
24. D.F. Othmer, The condensation of steam,Ind. Eng. Chem., 21 (6), pp. 576-583, 1929.
25. H. Uchida, A. Oyama, Y. Togo, Evaluation of post-incident cooling systems of light-water power reactors 3rd Int. Conf. On the Peaceful Uses of Atomic Energy, vol. 13, pp. 93-103, Geneva, 1964.
26. S. Oh, S. T. Revankar, Experimental and theoretical investigation of film condensation with noncondensable gas, International Journal of Heat and Mass Vol.49, pp.2523-2534, 2006.
27. B. Ren, L. Zhang, J. Cao, H. Xu, Z. Tao,
Experimental and theoretical investigation on condensation inside a horizontal tube with noncondensable gas, Int. J. Heat Mass Transf., 82, pp. 588-603, 2015.
28. Y. Liao, K. Vierow, A generalized diffusion layer model for condensation of vapor with non-condensable gases.J. Heat Transf., 129 (8), pp. 988-994, 2007.
29. N.K. Maheshwari, D. Saha, R.K. Sinha, M. Aritomi, Investigation on condensation in presence of a noncondensable gas for a wide range of Reynolds number.Nucl. Eng. Des., 227 (2), pp. 219-238, 2004.
30. W.H. McAdams Heat Transmission (third ed.), McGraw-Hill, New York, 1954.
31. F. Blangetti, R. Krebs, E.U. Schlunder, Condensation in vertical tubes experimental results and modeling.Chem. Eng. Fundam., 1 (1), pp. 20-63, 1982.
32. L.F. Moody, Friction factors for pipe flow.Trans. ASME, 66 (8), pp. 671-684, 1944.
33. G.B. Wallis, One-dimensional Two Phase Flow, vol. 1, McGrawHill, New York, 1969.
34. K.Y. Lee, M.H. Kim.Amimul Ahsan (Ed.), Steam Condensation in the Presence of a Noncondensable Gas in a Horizontal Tube, Evaporation, Condensation and Heat Transfer, InTech, pp. 153-168,2011.
35. A. Dehbi, S. Guentay, A model for the performance of a vertical tube condenser in the presence of non-condensable gases.Nucl. Eng. Des., 177 (1–3), pp. 41-52, 1997.
36. G. Caruso, F. Giannetti, A. Naviglio.Experimental investigation on pure steam and steam–air mixture condensation inside tubes,Int. J. Heat Technol., 30 (2), pp. 77-84, 2012.
37. K. J. Kim, A. M. Lefsaker, A. Razani, A. Stone, The effective use of heat transfer additives for steam condensation, Applied Thermal Engineering, Vol.21, pp.1867-1874, 2001.
38. S. Vemuri, K. J. Kim, Y. T. Kang, A study on effective use of heat transfer additives in the process of steam condensation, International Journal of Refrigeration Vol.29, pp.724-734, 2006.
39. R. Yun, J. Heo, Y. Kim, Effects of surface roughness and tube materials on the filmwise condensation heat transfer coefficient at low heat transfer rates, International Communications in Heat and Mass Transfer Vol.33, pp.445-450, 2006.
40. G. Koch, K. Kraft, A. Leipertz, Parameter study on the performance of dropwise condensation, Rev. Gen. Therm, Vol. 37, (1998), pp. 539-548.
41. Y. Hou, M. Yu, X. Chen, Z. Wang, S. Yao, Recurrent filmwise and dropwise condensation on a beetle mimetic surface, Am. Chem. Soc., 9 (1), pp. 71-81, 2015.
42. A. Bar-Cohen and W. M. Rohsenow, Thermally optimum spacing of vertical natural convection cooled parallel plates, International Journal of Heat and Mass Transfer, Vol.106, pp.116-123, 1984.
43. A. Bejan, G. Tsatsaronis, M. Moran, Thermal design & optimization, Wiley, New York, pp.241-256, 1996.
44. G. Ledezma and A. Bejan, Heat sinks with sloped plate fins in natural and forced convection, Int. J. Heat Mass Transfer, Vol. 39, pp.1773-1783, 1996.
45. V. Srinivasan, R. K. Shah, Fin efficiency of extended surfaces in two-phase flow, International Journal of Heat and Fluid Flow, Vol.18, pp.419-429, 1997.
46. R.K. Al-Dadah, T.G. Karayiannis, Passive enhancement of condensation heat transfer, Applied Thermal Engineering, Vol 18, pp. 895~909, 1998.
47. A. Vollaro, S. Grignaffini, F. Gugliermetti, Optimum design of vertical rectangular fin arrays, Int. J. Therm. Sci, Vol 38, pp. 525-529, 1999.
48. D. Astrain, J.G. Vian, M. Dominguez, Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation, Applied Thermal Engineering Vol.23, pp.2183–2200, 2003.
49. Z.X. Yuan, L.H. Zhao, B.D. Zhang, Fin angle effect on turbulent heat transfer in parallel-plate channel with flow-inclining fins, International Journal of Numerical Methods for Heat and Fluid Flow, Vol.17,pp. 5-19, 2007.
50. S. Inada, T. Taguchi, W.J. Yang, Effects of vertical fins on local heat transfer performance in a horizontal fluid layer, International Journal of Heat and Mass Transfer , Vol.42,pp.2897-2903, 1999.
51. G. Mittelman, A. Dayan, K. D. Turjeman, A. Ullmann, Laminar free convection underneath a downward facing inclined hot fin array, International Journal of Heat and Mass Transfer, Vol.50, pp.2582-2589, 2007.
52. E. Arquis, M. Rady, Study of natural convection heat transfer in a finned horizontal fluid layer, International Journal of Thermal Sciences, Vol.44, pp.43-52, 2005.
53. S.A. Nada, Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate, International Journal of Heat and Mass Transfer, Vol.50, pp.667-679, 2007.
54. U.S. Department of Energy, Energy Information Administration Annual Energy Outlook 2017, 2017.
55. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Clothes Dryers and Room Air Conditioners, Washington, DC, 2011.
56. P. Pescatore, P. Carbone, High Efficiency, High Performance Clothes Dryer, TIAX D0040, 2005.
57. D. Hekmat, W.J. Fisk, Improving the energy efficiency of residential clothes dryers, Lawrence Berkeley Laboratory, University of California, 1983.
58. A.J.D. Lambert, F.P.M. Spruit and J.Claus, Modeling as a tool for evaluating the effects of energy saving measures, Applied Energy, 38, pp.33-47, 1991.
59. M.R. Conde, Energy conservation with tumbler drying in laundries, Applied Thermal Engineering Vol 17. No.12, pp.1163-1172., 1997.
60. A.M. Bassily, G.M. Colver , Performance analysis of an electric clothes dryer , Dry. Technol., 3 (3), pp. 499-524, 2003.
61. A. Ameen, S. Bari , Investigation into the effectiveness of heat pump assisted clothes dryer for humid tropics , Energy Convers. Manage., 45 (9–10), pp. 1397-1405, 2004.
62. P. K. Bansal, J. E. Braun, E. A. Groll, Improving the energy efficiency of conventional tumbler clothes drying systems, Int. J. Energy Res. ; 25:1315-1332, 2001.
63. Y. Do, An experimental study on the performance of a condensing tumbler dryer with an air-to-air heat exchanger. Korean J Chem Eng, 30:119–200, 2013.
64. J. Deans, The modeling of a domestic tumbler dryer, Applied Thermal Engineering 21, pp.977-990, 2001.
65. A. M. Bassily and G. M. Colver, Performance analysis of an electric clothes dryer, Drying Technology Vol. 21, No.3, pp.499-524, 2003.
66. L. Stawreberg, L. Nilsson, Modelling of specific moisture extraction rate and leakage ratio in a condensing tumble dryer, Applied Thermal Engineering 30 2173-2179, 2010.
67. L. Stawreberg, J. Berghel, R. Renström, Energy losses by air leakage in condensing tumble dryers, Applied Thermal Engineering, 37, 373-379, 2012.
68. J. Zhao, Q. Jian, N. Zhang, L. Luo, B. Huang, S. Cao, The improvement on drying performance and energy efficiency of a tumbler clothes dryer with a novel electric heating element, Applied Thermal Engineering, Volume 128, 5 January, Pages 531-538, 2018.
69. H. Ambarita, Performance of a clothes drying cabinet by utilizing waste heat from a split-type residential air conditioner, Case Stud Therm Eng, 8:105–14, 2016.
70. C.M Yang, Energy-efficient air conditioning system with combination of radiant-cooling and periodic total heat exchanger, Energy, 59:467–77, 2013.
71. C.X Jia, Y.J Dai, J.Y Wu, R.Z Wang, Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material, Energy Convers Manag , 47:2523–34, 2006.
72. V. Minea, Review: drying heat pumps–Part I: system integration. Int J Refrig, 36:643–58, 2013.
73. J. W. Rose, Further aspects of dropwise condensation theory, Int. J. Heat Mass Transf, 19: 1363–1370, 1976.
74. V.P. Carey, Liquid-vapor phase-change phenomena(second ed.), USA: Hemisphere Publishing Corporation, pp. 413–472, 1992.
75. B. B. Mikic, On the mechanism of dropwise condensation, Int. J. Heat Mass Transf, 12:1311–1315, 1969.
76. B.S Sikarwar, S. Khandekar, S. Agrawal, S. Kumar, K. Muralidhar, Dropwise condensation studies on multiple scales, Heat Transf. Eng.33, (4–5): 301–341,2012.
77. R.N Leach, F. Stevens, S.C Langford, J.T Dickinson, Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling System.Langmuir22: 8864–8872, 2006.
78. C. Baoling, L. Zhe, Z. Zuchao, W. Huijie, M. Guangfei, Influence of opening and closing process of ball valve on external performance and internal flow characteristics, Experimental Thermal and Fluid Science, 80:193-202, 2017.
79. I. Mudawar, Assessment of high-heat-flux thermal management schemes
IEEE Trans. Compon. Packag. Technol, 24 (2), pp. 122-141, 2001.
80. A. Blinov, D. Vinnikov, T. Lehtla, Cooling methods for high-power electronic systems, Scientific journal of riga technical university, Power Electr. Eng., 29 (1), pp. 79-86, 2011.
81. S.C Lin, The Residential Sector Electricity Use Research in Taiwan, Journal of Taiwan Energy, 4: 285-302, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74729-
dc.description.abstract本研究利用熱電冷凝冷回收式除濕和熱交換器除濕與熱回收的方法,分別對於家用高耗電量的電器設備進行節能效益研究。
對於熱電冷凝冷回收除濕實驗,首先探討除濕系統於自然對流式除濕系統與強制進氣式冷回收除濕系統進行性能比較,透過本研究冷回收通道的設計,以強制進風的方式,將通過冷端鰭片之低溫空氣回收利用,並透過風扇將低溫空氣全部導入熱端鰭片對其進行輔助散熱,此方法不但能提高熱端的散熱能力,使冷端鰭片冷凝能力提升,亦能降低除濕機出口排放溫度,減少室內因需長期除濕而使空間溫度升高,又得開啟空調降溫至人體舒適溫度所額外消耗過量的電力。而針對冷凝面下方的滴狀冷凝研究,本研究提出冷凝面傾斜特殊的角度與除濕效率之間的相關性,實驗當中分別透過非垂直的四種不同的鰭片傾斜角度(〖38〗^o 、〖52〗^o 〖、66〗^o 〖、80〗^o)進行冷凝液滴形成現象進行分析與其除濕量之比較。最後為熱回收技術實驗,本研究使用熱交換器與熱回收裝置,針對高耗能與排放廢熱量高的烘乾機進行實驗,實驗方法為將烘乾機排出的高溫高濕氣體,利用熱交換器將排出的氣體進行除濕,同時引進外氣進行預熱,最後將兩種氣體搭配熱回收控制系統進行混合與最佳比例的調配,並利用國際對於烘乾機認證的性能指標-單位能耗除濕量(Specific Moisture Extraction Rate)進行計算,進行性能比較。
由實驗結果可知,強制進風冷回收式除濕系統,比自然對流無冷回收式系統提升48.8%的除濕量。而傾斜式冷凝方面,在冷端鰭片傾斜角度在〖52〗^o時有最佳的除濕量,又與強制進風垂直式除濕系統相比,能更提升7.5% 的除濕量與減少11%的出風口溫度,且一天總耗電量僅為1.3度,非常具有節能特色。而對於熱回收除濕技術方面,加裝熱交換器的烘乾性能SMER值比未加裝前還低19%。實驗再將其結合熱回收裝置進行實驗,結果顯示,當除濕後的排氣與預熱後的外氣回收混合比例為6:4的時候,系統呈現出最佳及最低的烘乾性能指標SMER值 (1.086),其節約電量百分比亦高達最佳的18%。
zh_TW
dc.description.abstractThis study investigated the energy efficiency of high energy-consuming appliances by examining thermoelectric cooling, cold-recovery condensation dehumidification as well as a heat exchanger’s dehumidification and heat recovery.
To conduct an experiment for the thermoelectric, cold-recovery condensation dehumidification, this study first compared the performance of a dehumidifier based on natural convection and a cold-recovery dehumidifier based on forced air intake. In the study’s cold-recovery channel, forced air intake was employed to recover and reuse the low-temperature air passing the evaporator; then, a fan was used to transfer the low-temperature air into the condenser to remove the heat in the condenser. This method improved the heat removal, enhanced the condensation by the evaporator, and reduced the temperature of outlet air from the dehumidifier, thereby eliminating the problem of excessive electricity used by air-conditioning system. This mitigate the problem of additional electricity used by air-conditioning systems for reducing the increased indoor temperature, which is caused by continuous dehumidification for a long time, to a comfortable range for human body. Investigating on the condensed drips below the evaporator, this study proposed a correlation between the tilt angle of the evaporator and the dehumidification efficiency. An experiment was conducted by analyzing the drip condensation and comparing the dehumidification performance of the dehumidifier when its evaporator was positioned in four different angles, namely 38°, 52°, 66°, and 80°.
In terms of heat recovery, this study used a heat exchanger and heat-recovery device in an experiment on appliances exhibiting high energy consumption and waste heat. In the experiment, a heat exchanger was used to dehumidify the high-temperature and humid air exhausted from a dryer; concurrently, ambient air was drawn to the heat exchanger and preheated. Then, the two types of air were mixed in various ratios by using a heat-recovery device to identify the optimal amount of heat recovery. The specific moisture extraction rate (SMER), an international performance indicator for dryers, of the dryer was calculated to analyze its performance.
According to the experimental results, the forced-air-intake cold-recovery dehumidifier achieved a higher amount of dehumidification than the natural-convection dehumidifier without cold recovery by 48.8%. Regarding the tilt angle of evaporator, the dehumidifier with an evaporator tilt angle of 52° achieved optimal dehumidification efficiency and, compared with the forced-air-intake dehumidifier whose evaporator was positioned vertically, exhibited a higher amount of dehumidification and a lower temperature of outlet air by 7.5% and 11%, respectively. Additionally, the dehumidifier with an evaporator tilt angle of 52° was highly capable of energy saving, consuming only 1.3 kWh a day. With regards to the heat recovery method, the dryer’s SMER was reduced by 19% after it was installed with a heat exchanger. The experimental results also revealed that, in the dryer installed with a heat-recovery device, the optimal SMER (1.086) and percentage of electricity saved (18%) were achieved when the mixing ratio of the dehumidified air exhausted by the dryer to the preheated air collected from the ambient air was 6:4.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:06:37Z (GMT). No. of bitstreams: 1
ntu-108-D03522004-1.pdf: 4972852 bytes, checksum: 8c500e234744807957109796853ae9e3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi
符號說明 xii
第一章 緒論 1
1.1前言 1
1.2文獻回顧 4
1.2.1熱電除濕機之研究 4
1.2.2蒸氣凝結相關文獻與冷凝熱傳研究 5
1.2.3 冷熱端鰭片幾何尺寸與熱傳間之影響 8
1.2.4 滾筒式家用烘乾機節能技術 10
第二章 相關基本理論分析 13
2.1 濕空氣性質 13
2.2 熱電晶片製冷原理 15
2.2.1 熱電效應原理 16
2.2.2 製冷除濕原理與製冷量 19
2.3 冷凝傳熱原理與類型 21
2.4 液滴與基材表面之接觸角介紹 24
2.4.1表面接觸角(Contact Angle) 24
2.4.2前進角(Advancing Angle)及後退角(Receding Angle) 25
2.4.3 遲滯角(Hysteresis angle) 25
2.5 冷凝表面下之滴狀冷凝理論分析與數學模型 27
2.5.1冷凝面下方之滴狀冷凝模式探討 27
2.5.2初始液滴成核 28
2.5.3非潤濕冷壁面之冷凝液滴熱傳分析 28
2.5.4水平面下與傾斜水平面下之接觸角關係 32
2.5.5液滴的不穩定性與最大脫落半徑 34
2.5.6傾斜冷凝面下的液滴受力與相關熱傳計算 37
2.6 熱回收系統於家電設備實驗之相關計算 40
第三章 傾斜式冷凝除濕與冷回收系統性能測試 44
3.1 前言 44
3.1.1傾斜式冷凝冷回收除濕系統之建立 46
3.2 實驗系統與實驗設備介紹 48
3.2.1 實體系統介紹與實驗架設 48
3.2.2 實驗設備與量測儀器介紹 52
3.3 實驗方法與步驟 58
3.3.1自然對流除濕與強制進風除濕之鰭片冷凝現象 58
3.3.2 垂直式除濕系統與傾斜式除濕系統之性能測試 59
3.3.3冷凝鰭片於不同傾斜角度之液滴形成現象與冷凝性能分析 60
3.4 實驗結果與討論 62
3.4.1自然對流式除濕與強制進風冷回收除濕之冷凝實驗結果 62
3.4.2垂直式除濕系統與傾斜式除濕系統之實驗結果 69
第四章 熱交換器廢熱除濕及熱回收之節能研究 88
4.1 前言 88
4.2 實驗系統與實驗設備介紹 89
4.2.1 實驗系統介紹 89
4.2.1 實驗設備與量測儀器介紹 92
4.3 實驗方法與步驟 93
4.3.1一般烘乾機與烘乾機結合熱交換器除濕之節能效益實驗 93
4.3.2熱交換器結合熱回收裝置對於烘乾機節能效益實驗 94
4.4 實驗結果與討論 95
4.4.1一般烘乾機與烘乾機結合熱交換器除濕之實驗結果 95
4.4.2熱交換器結合熱回收裝置之實驗結果 96
4.4.3烘乾機節能效益觀點 98
第五章 結論與建議 99
5.1 結論 99
5.2 建議 102
文獻回顧 104
dc.language.isozh-TW
dc.title利用熱電晶片除濕與熱回收技術應用於家用烘乾機之節能效益研究zh_TW
dc.titleEnergy saving investigations of utilizing thermal-electric dehumidification and heat recovery technology applied to domestic dryeren
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.oralexamcommittee卓清松,李文興,吳文方,江沅晉,陳輝俊
dc.subject.keyword傾斜式冷卻鰭片,冷凝除濕,冷能回收,熱能回收,節能技術,zh_TW
dc.subject.keywordInclined-cooling fin,Cooling dehumidification,Cold energy recovery,heat recovery,Energy saving technology,en
dc.relation.page111
dc.identifier.doi10.6342/NTU201904451
dc.rights.note有償授權
dc.date.accepted2019-12-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
4.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved