請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74720
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳希立 | |
dc.contributor.author | Jyun-De Liang | en |
dc.contributor.author | 梁俊德 | zh_TW |
dc.date.accessioned | 2021-06-17T09:06:29Z | - |
dc.date.available | 2020-01-15 | |
dc.date.copyright | 2020-01-15 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-01-03 | |
dc.identifier.citation | [1] Energy Information Administration, International Energy Outlook 2019, U.S. Department of Energy, September 2019.
[2] X. Cao, X. Dai, J. Liu, Building energy-consumption status worldwide and the state-of-the-art technologies for zero-carbon buildings during the past decade, Energy and Buildings, Vol. 128, pp. 198-213, 2016 [3] L. Pe´rez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy and Buildings, Vol. 40, pp. 394-398, 2008. [4] 廖慧燕,建築物耗能評估軟體驗證之研究既有建築節能改善之效益評估,內政部建築研究所協同研究報告,2012。 [5] G. Fekadu, S. Subudhi, Renewable energy for liquid desiccant air conditioning system: A review, Renewable and Sustainable Energy Reviews, Vol. 93, pp. 364-379, 2018. [6] 經濟部能源局,能源管理法,檢自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0130002 (Oct. 22, 2019 )。 [7] 行政院環境保護署,室內空氣品質標準,檢自https://iaq.epa.gov.tw/indoorair/page/News_12_1.aspx (Oct. 22, 2019)。 [8] J. W. Lund, T. L. Boyd, Direct utilization of geothermal energy 2015 worldwide review, Geothermics, Vol. 60, pp. 66-93, 2016. [9] J. W. Lund, D. H. Freeston, T. L. Boyd, Direct utilization of geothermal energy 2010 worldwide review, Geothermics, Vol. 40, pp. 159-180, 2011. [10] 中央氣象局,中華民國107年氣候資料年報,2018。 [11] A. Speerforck, G. Schmitz, Experimental investigation of a ground-coupled desiccant assisted air conditioning system, Applied Energy, Vol. 181, pp. 575-585, 2016. [12] A. Speerforck, J. Ling, V. Aute, R. Radermacher, G. Schmitz, Modeling and simulation of a desiccant assisted solar and geothermal air conditioning system, Energy, Vol. 141, pp. 2321-2336, 2017. [13] P. Niemann, G. Schmitz, Experimental investigation of a ground-coupled air conditioning system with desiccant assisted enthalpy recovery during winter mode, Applied Thermal Engineering, Vol. 160, page 114017, 2019. [14] P. Niemann, F. Richter, A. Speerforck, G. Schmitz, Desiccant-Assisted Air Conditioning System Relying on Solar and Geothermal Energy during Summer and Winter, Energies, Vol. 12, page 3175, 2019. [15] N. Enteria, H. Yoshino, R. Takaki, A. Mochida, A. Satake, S. Bada, H. Ishihara, R. Yoshie, Case analysis of utilizing alternative energy sources and technologies for the single family detached house, Solar Energy, Vol. 105, pp. 243-263, 2014. [16] K.F. Fong, C.K. Lee, T.F. Zhao, Effective design and operation strategy of renewable cooling and heating system for building application in hot-humid climate, Solar Energy, Vol. 143, pp. 1-9, 2017. [17] S. Rosiek, F.J. Batlles, Shallow geothermal energy applied to a solar-assisted air-conditioning system in southern Spain: Two-year experience, Applied Energy, Vol. 100, pp. 267–276, 2012 [18] S. Rosiek, F. J. Batlles, Integration of the solar thermal energy in the construction: analysis of the solar-assisted air-conditioning system installed in Ciesol building, Renewable Energy, Vol. 34, pp. 1423-1431, 2009. [19] S. Rosiek, F. J. Batlles, Performance evaluation of the solar-assisted air conditioning system with chilled water storage (Ciesol building), Energy Conversion and Management, Vol. 55, pp.81-92, 2011. [20] P. Bayer, G. Attard, P. Blum, K. Menberg, The geothermal potential of cities, Renewable and Sustainable Energy Reviews, Vol. 106, pp. 17-30, 2019. [21] ASHRAE, ANSI/ASHRAE Standard 55-2010, “Thermal Environment Conditions for Human Occupancy,” Atlanta, American Society of Heating, Refrigerating and Air-conditioning Engineer Inc, 2010. [22] 陳冠文,依據熱舒適模型之空調節能控制技術,107年度低耗能住商節能減碳技術整合與示範應用計畫報告,2018。 [23] S. Kumar, M. K. Singh, Field investigation on occupant's thermal comfort and preferences in naturally ventilated multi-storey hostel buildings over two seasons in India, Building and Environment, Vol. 163, Page. 106309, 2019. [24] Q. J. Kwong, N. M. Adam, B. B. Sahari, Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: A review, Energy and Buildings, Vol. 68, pp. 547-557, 2014. [25] R. L. Hwang, T. P. Lin, N. J Kuo, Field experiments on thermal comfort in campus classrooms in Taiwan, Energy and Buildings, Vol. 38, pp. 53-62, 2006. [26] R. Aynsley, P. Hope, A look-up table for ET*, Proceedings of the 34th Conference of the Australia and New Zealand Architectural Science Association, Adelaide, Australia, December 1-3. [27] S. Shen, W. Cai, X. Wang, Q. Wu, H. Yon, Hybrid model for heat recovery heat pipe system in Liquid Desiccant Dehumidification System. Applied Energy, Vol. 182, pp. 383-393, 2016. [28] B. Su, W. Han, J. Sui, H. Jin, A two-stage liquid desiccant dehumidification system by the cascade utilization of low-temperature heat for industrial applications. Applied Energy, Vol. 207, pp. 634-653, 2017. [29] K. S. Rambhad, P. V. Walke, D. J. Tidke, Solid desiccant dehumidification and regeneration methods—A review, Renewable and Sustainable Energy Reviews, Vol. 59, pp. 73-83, 2016. [30] A. Ali, K. Ishaque, A. Lashin, N. A. Arifi, Modeling of a liquid desiccant dehumidification system for close type greenhouse cultivation, Energy, Vol. 118, pp. 578-589, 2017. [31] R. Tariq, N. A. Sheikh, J. Xamán, A. Bassam, An innovative air saturator for humidification-dehumidification desalination application, Applied Energy, Vol. 228, pp. 789-807, 2018. [32] D.B. Jani, M. Mishra, P.K. Sahoo, Experimental investigation on solid desiccant-vapor compression hybrid air-conditioning system in hot and humid weather, Building Services Engineering Research and Technology, Vol. 37(5), pp. 523-538, 2016. [33] D.B. Jani, M. Mishra, P.K. Sahoo, Experimental investigation on solid desiccant-vapor compression hybrid air-conditioning system in hot and humid weather, Applied Thermal Engineering, Vol. 104, pp. 556-564, 2016. [34] S. A. El-Agouz, A. E. Kabeel, Performance of desiccant air conditioning system with geothermal energy under different climatic conditions, Energy Conversion and Management, Vol. 88, pp. 464-475, 2014. [35] G. Heidarinejad, S. Rayegan, H. Pasdarshahri, Dynamic simulation of a solar desiccant cooling system combined with a ground source heat exchanger in humid climates, Journal of Building Engineering, Vol. 28, Page. 101048, 2020. [36] L. Chen, S.H. Chen, L. Liu, B. Zhang, Experimental investigation of precooling desiccant-wheel air-conditioning system in a high-temperature and high-humidity environment, International Journal of Refrigeration, Vol. 95, pp. 83-92, 2018. [37] ] L. Chen, Y. Tan, The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source, Renewable Energy, Vol. 146, pp. 2142-2157, 2020. [38] W.-B. Hwang, S. Choi, D.-Y. Lee, In-depth analysis of the performance of hybrid desiccant cooling system incorporated with an electric heat pump, Energy, Vol. 118, pp. 324-332, 2019. [39] C.-H. Chen, C.-Y. Hsu, C.-C. Chen, Y.-C. Chiang, S.-L, Chen, Silica gel/ polymer composite desiccant wheel combined with heat pump for air-conditioning systems, Energy, Vol. 94, pp. 87-99, 2016 [40] R. Parsons, “ASHRAE handbook: fundamentals,” American Society of Heating Refrigerating and Air-Conditioning, pp. 6.2-6.10, 2001. [41] 楊禮豪,結合建築設施之淺層溫能熱交換器應用於溫度控制系統性能研究,博士論文,國立台灣大學,2019. [42] L. -H. Yang, B. -H. Huang, C. -Y. Hsu, S.-H. Chen, Performance analysis of an earth-air heat exchanger integrated into an agricultural irrigation system for a greenhouse environmental temperature-control system, Energy and Buildings, Vol. 202, Page. 109381, 2019. [43] C. X Jia, Y. J. Dai, J. Y. Wu, R. Z. Wang, Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material, Energy Conversion and Management, Vol. 47, pp. 2523-2534, 2006. [44] H. Huang, T. Oike, F. Watanabe, Y. Osaka, N. Kobayashi, M. Hasatani, Development research on composite adsorbents applied in adsorption heat pump, Applied Thermal Engineering, Vol. 30, pp. 1193-1198, 2010. [45] C. S. Tretiak, N. B. Abdallah, Sorption and desorption characteristics of a packed bed of clay/CaCl2 desiccant particles, Solar Energy, Vol. 83, pp. 1861-1870, 2009. [46] Z. Knez, Z. Novak, Adsorption of water vapor on silica, alumina, and their mixed oxide aerogels. Journal of Chemical and Engineering, Vol. 46, pp.858-860, 2001. [47] X. Zheng, T.S. Ge, Y. Jiang, R.Z. Wang, Experimental study on silica gel-LiCl composite desiccants for desiccant coated heat exchanger, International Journal of Refrigeration, Vo. 51, pp. 24-32, 2015. [48] J. Xu, C. Zhang, T. Ge, Y. Dai, R. Wang, Performance study of sodium alginate-nonwoven fabric composite membranes for dehumidification, Applied Thermal Engineering, Vol. 128, pp. 214-224, 2018. [49] 陳志豪,複合除溼材料結合熱泵應用於空調系統之性能研究,博士論文,國立台灣大學,2015. [50] C.-H. Chen, C.-Y. Hsu, C.-C. Chen, S.-L Chen, Silica gel polymer composite desiccants for air conditioning systems, Energy and Buildings, Vol. 101, pp. 122-132, 2015. [51] C.-H. Chen, C.-Y. Hsu, C.-C. Chen, Y.-C. Chiang, S.-L Chen, Silica gel/polymer composite desiccant wheel combined with heat pump for air conditioning systems, Energy, Vol. 94, pp. 87-99, 2016. [52] 蔡律寬,複合除溼材料性能研究與分析,碩士論文,國立台灣大學,2019. [53] H. Abou-Ziyan, D. Abd El-Raheim, O. Mahmoud, M. Fatouh, Performance characteristics of thin-multilayer activated alumina bed, Applied Energy, Vol. 190, pp. 29-42, 2017. [54] 中央氣象局,觀測資料查詢系統日報表,檢自https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp (Dec. 22, 2019)。 [55] 大同股份有限公司,水冷渦卷式冰水機TCW-5NAK1D規格表,檢自http://www.tatung.com.tw/Product/Consumer/174 (Nov. 12, 2019)。 [56] 經濟部能源局,能源產品單位熱值表,檢自https://www.moeaboe.gov.tw/ECW/populace/web_book/Webreports.aspx?book=B_CH&menu_id=145#D (Dec. 22, 2019)。 [57] 台灣中油股份有限公司,天然氣牌價表,檢自https://web.cpc.com.tw/division/lngb/product-more.aspx?PID=2 (Dec. 22, 2019)。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74720 | - |
dc.description.abstract | 本研究依據台灣濕熱氣候條件,發展出一套結合再生能源之複合空調系統,並以達成零碳或淨零碳空調系統為目標,本論文分為吸附除溼轉輪冷卻系統開發測試及淨零碳空調系統研究與節能分析兩大部分。首先,本研究開發一套結合淺層溫能及太陽熱能之吸附除溼轉輪冷卻系統來處理外氣負荷,可避免傳統空調系統因冷凝除濕及再熱過程中造成的能源浪費,並提高除溼性能及改善傳統除溼轉輪系統供風溫度過高之問題。此套系統採用20~22oC淺層溫能預冷外氣及處理空氣吸附除溼後的降溫,可提高系統冷卻能力及除溼性能,太陽熱能用於再生除溼材料。量測結果表明,於夏季外氣乾球溫度33.3oC及露點溫度28.0oC情況下,傳統除溼轉輪系統與本研究所開發之系統的能源因數值(Energy Factor, E.F)分別為0.99 kg kW-1hr-1及3.73 kg kW-1hr-1,節能效益可達73%。此外,本研究分別採用淺層地下水溫能及淺層地埋熱交換器兩種不同形式系統進行測試,結果顯示系統皆具可行性,可依系統安裝場域選擇適當的淺層溫能系統。
第二部分為淨零碳空調系統研究與節能分析,系統的組成包含一結合太陽熱能及淺層溫能吸附除溼轉輪冷卻系統、雙效地源熱泵系統、淺層溫能系統及太陽熱能系統,並以宜蘭一面積22.1 m2及高度5.5 m大小之房間作為測試場域,進行實驗量測與性能分析。本系統將外氣負荷及室內負荷分開處理,使用結合太陽熱能及淺層溫能吸附除溼轉輪冷卻系統處理外氣,並設計出四種不同操作模式,可依外氣條件選擇最節能之操作模式;室內負荷由一風機盤管組處理,可依室內負荷需求選擇通入冰水、20~22oC淺層溫能水或熱水,風機盤管組所使用之熱水及冰水分別由雙效地源熱泵製熱模式及製冷模式提供,因外氣潛熱負荷已由除溼轉輪系統處理,風機盤管組僅需處理室內負荷,冰水溫度可設定為14~17oC,較傳統空調冰水設定溫度7~12oC高,故有較佳的製冷COP,可有效降低壓縮機耗能。於外氣乾球及露點溫度分別為28.0oC及24.5oC時,使用此套系統可使室內乾球及露點溫度維持在24.0oC及20.0oC的熱舒適範圍內,且二氧化碳濃度保持在1000ppm以下,系統持續運轉7小時的耗電量,可較傳統空調系統節能63.7%。本論文亦針對宜蘭氣候進行整年運轉分析,當系統每日運轉時間為8:00至20:00的情況下,整年有41.3%的時間不需啟動地源熱泵;於4~11月冷卻負荷較大期間,有19.0%的時間不需啟動地源熱泵。本研究所開發之空調系統,已將耗電需求大幅降低,提高零碳空調系統的可行性,未來可搭配創能及儲能系統,朝零碳空調之目標邁進。 | zh_TW |
dc.description.abstract | This study developed a hybrid air conditioning system integrated with renewable energy according to the hot and humid climate in Taiwan, so that it can achieve the goal of zero-carbon or net zero-carbon air conditioning systems. This study contains two parts, including the development of a desiccant wheel cooling system and the investigation of a net zero-carbon air conditioning system. First, a desiccant wheel cooling system combined with shallow geothermal energy and solar thermal energy was developed, which was used to handle the outdoor air. It can rule out the energy waste of low dew point temperature of evaporator cooling coil and subsequent reheating. Shallow geothermal energy water, at about 20~22oC, can precool outdoor air and cool the processed air after adsorption dehumidification. Solar thermal energy is used to provide heating source for the regeneration of desiccant wheel system. The cooling capacity and dehumidification performance can enhance. Results show that the energy factor (E.F) of the conventional desiccant wheel system and the developed system under the condition of 33.0oC dry bulb temperature and 28.0oC dew point temperature is 0.99 kg kW-1hr-1 and 3.73kg kW-1hr-1, respectively. The energy savings is up to 73%. Moreover, this study applied two different shallow geothermal energy systems, which are shallow geothermal groundwater system and shallow geothermal earth-to-air heat exchanger system, to conduct the experiments. Results present that the all different shallow geothermal systems are feasible, and it can choose suitable shallow geothermal systems based on the environmental condition of installation sites.
The second part is the experimental investigation and energy-saving analysis of a net zero-carbon air conditioning system, which consists of a desiccant wheel cooling system combined with shallow geothermal energy and solar thermal energy, a ground source heat pump system, a shallow geothermal energy system, and a solar thermal energy system. Experimental investigation and performance analysis were conducted in a room with an area of 22.1 m2 and a height of 5.5 m. This net zero-carbon air conditioning system handles the outdoor air load and indoor load, respectively. The outdoor air load is processed by a desiccant wheel cooling system combined with shallow geothermal energy and solar thermal energy. Four outdoor air operation modes were designed, and the system could work with the most energy-saving mode on the basis of the outdoor air condition. A fan coil was utilized to control the indoor load. The fan coil could use chilled water, 20~22oC shallow geothermal energy water, or hot water in accordance with the indoor load. The chilled water and the hot water were provided by the cooling mode and heating mode of a ground source heat pump, respectively. Because the outdoor air latent load was processed by a desiccant wheel, the fan coil merely controls the indoor load. Thus, the design chilled water temperature could be higher than conventionally used. In this system, the design chilled water temperature is at about 14 ~17oC. Compared to 7~12oC design chilled water temperature conventional air conditioning systems used, this system has a higher coefficient of performance and a lower required power consumption. When the outdoor condition is 28.0oC dry bulb temperature and 24.5oC dew point temperature, this system could provide satisfactory thermal comfort for indoor environment and maintain indoor at about 24.0oC dry bulb temperature and at about 20.0 oC dew point temperature. Moreover, the concentration of indoor carbon dioxide can keep below 1000 ppm. For a continuous operation for seven hours, this system can save 63.7% power consumption compared with conventional air conditioning systems. This study also performed a full-year operation analysis of the developed net zero-carbon air conditioning system based on the climate in Yilan County, Taiwan. The daily operating time of the system is from 8:00 a.m. to 20:00 p.m. Result shows that the ground source heat pump system was not needed in 41.3% of a full-year operating times. For the cooling period from April to September, the ground source heat pump was stopped in 19.0 % operating times. The developed net zero-carbon air conditioning system in this study has decreased effectively the system power consumption and has enhanced the feasibility of zero-carbon air conditioning system. The future work will combine the developed system with power generation systems and energy storage systems to achieve the goal of zero-carbon air conditioning systems. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T09:06:29Z (GMT). No. of bitstreams: 1 ntu-109-D04522022-1.pdf: 4989433 bytes, checksum: 6383d48a127f904974a7b48b83fd6458 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 ii
摘要 iii Abstract iv 目錄 vi 圖目錄 viii 表目錄 xii 符號表 xiv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 6 1.3 研究動機與論文大綱 12 第二章 結合太陽熱能及淺層溫能除溼轉輪冷卻系統 15 2.1 台灣夏季室內熱舒適區域範圍 15 2.2 吸附除溼系統文獻回顧 16 2.3 除溼轉輪冷卻系統與量測設備介紹 21 2.4 除溼轉輪冷卻系統操作模式性能探討 28 2.4.1 結合熱泵除溼轉輪系統實驗測試與比較 28 2.4.2 結合淺層溫能及太陽熱能除溼轉輪之實驗測試與比較 30 2.4.3 結合熱泵除溼轉輪系統與結合淺層溫能及太陽熱能除溼轉輪系統之比較 31 2.4.4 結合熱泵及淺層溫能除溼轉輪系統實驗測試與比較 33 2.5 除溼轉輪冷卻系統結合不同形式淺層溫能系統 37 2.6 複合除溼材料 41 2.6.1 複合除溼材料介紹與開發 41 2.6.2 複合除溼材料性能測試 44 2.7 小結 47 第三章 結合太陽能及淺層溫能之淨零碳空調系統 49 3.1 淨零碳空調系統設備介紹 49 3.2 實驗場域及氣候 51 3.3 操作模式建立 55 3.4 冰水降溫吸附除溼模式測試 60 3.5 淺層溫能水升溫直接引進外氣模式測試 69 3.6 淨零碳空調系統長期分析 73 3.7 淨零碳空調系統回收年限分析 78 3.8 小結 83 第四章 結論與建議 85 4.1 結論 85 4.2 建議與未來工作 86 參考文獻 87 | |
dc.language.iso | zh-TW | |
dc.title | 結合再生能源之淨零碳空調系統實驗分析與研究 | zh_TW |
dc.title | Experimental Investigation of a Net Zero-Carbon Air Conditioning System Integrated with Renewable Energy | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 吳文方,卓清松,李文興,江沅晉,王榮昌 | |
dc.subject.keyword | 淨零碳空調系統,吸附除溼冷卻系統,淺層溫能,太陽能, | zh_TW |
dc.subject.keyword | net zero-carbon air conditioning system,desiccant wheel cooling system,shallow geothermal energy,solar energy, | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU201904450 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-01-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 4.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。