請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74714
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許麗(Li Xu) | |
dc.contributor.author | Wei-Chia Weng | en |
dc.contributor.author | 翁偉嘉 | zh_TW |
dc.date.accessioned | 2021-06-17T09:06:23Z | - |
dc.date.available | 2025-01-15 | |
dc.date.copyright | 2020-01-15 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2020-01-06 | |
dc.identifier.citation | [1] J. Lee, P. Lee, H. B. Lee, S. Hong, I. Lee, J. Yeo, S. S. Lee, T. S. Kim, D. Lee, and S. H. Ko, “Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application,” Adv. Funct. Mater., vol. 23, no. 34, pp. 4171–4176, 2013.
[2] J. H. Koo, D. C. Kim, H. J. Shim, T. Kim, and D. Kim, “Flexible and Stretchable Smart Display: Materials, Fabrication , Device Design, and System Integration,” Adv. Funct. Mater., vol. 28, no. 35, pp. 1–23, 2018. [3] S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y. D. Suh, H. Cho, J. Shin, J. Yeo, and S. H. Ko, “Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications,” Adv. Mater., vol. 27, no. 32, pp. 4744–4751, 2015. [4] G. Haacke, “TRANSPARENT CONDUCTING COATINGS,” Annu. Rev. Mater. Sci., vol. 7, pp. 73–93, 1977. [5] A. M. Gheidari, E. A. Soleimani, M. Mansorhoseini, S. Mohajerzadeh, N. Madani, and W. Shams-Kolahi, “Structural properties of indium tin oxide thin films prepared for application in solar cells,” Mater. Res. Bull., vol. 40, no. 8, pp. 1303–1307, 2005. [6] M. Li, C. Kuo, S. Peng, S. Chen, and C. Lee, “Influence of hydrogen on the properties of Al and Ga-doped ZnO films at room temperature,” Appl. Opt., vol. 50, no. 9, pp. 197–200, 2011. [7] D. Zhu, K. Li, F. Luo, and W. Zhou, “Preparation and infrared emissivity of ZnO: Al (AZO) thin film,” Appl. Surf. Sci., vol. 255, no. 12, pp. 6145–6148, 2009. [8] B. Du, S. Hoon, D. Ung, D. Hyuk, A. Moujoud, and H. Jae, “Transparent Ga-doped zinc oxide-based window heaters fabricated by pulsed laser deposition,” J. Cryst. Growth J., vol. 310, no. 14, pp. 3303–3307, 2008. [9] S. S. Shinde, P. S. Shinde, Y. W. Oh, D. Haranath, C. H. Bhosale, and K. Y. Rajpure, “Structural, optoelectronic, luminescence and thermal properties of Ga- doped zinc oxide thin film,” Appl. Surf. Sci., vol. 258, no. 24, pp. 9969–9976, 2012. [10] P. M. Ratheesh Kumar, C. Sudha Kartha, K. P. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh, and D. K. Avasthi, “On the properties of indium doped ZnO thin film,” Semicond. Sci. Technol., vol. 20, pp. 120–126, 2005. [11] A. Maldonado, A. Escobedo-morales, M. Avendan, M. D. L.Olvera, and H. Go, “Indium doped zinc oxide thin films deposited by ultrasonic spray pyrolysis technique: Effect of the substrate temperature on the physical properties,” Mater. Sci. Semicond. Process., vol. 14, no. 2, pp. 114–119, 2011. [12] 王奕翔, 何旭川, 蕭健男, 陳宏彬, “金屬薄膜之光學與機械性質研究,” 科學與工程技術期刊, 第四卷, 第一期, pp. 81–88, 2008. [13] G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol., vol. 3, no. 5, pp. 270–274, 2008. [14] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, pp. 706–710, 2009. [15] M. Kaempgen, G. S. Duesberg, and S. Roth, “Transparent carbon nanotube coatings,” Appl. Surf. Sci., vol. 252, no. 2, pp. 425–429, 2005. [16] L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano, vol. 4, no. 5, pp. 2955–2963, 2010. [17] J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee, andS. H. Ko,“Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel,” Nanoscale, vol. 4, no. 20, pp. 6408–6414, 2012. [18] B. Hwang, Y. An, H. Lee, E. Lee, S. Becker, Y. H. Kim, and H. Kim, “Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities,” Sci. Rep., vol. 7, 2017. [19] K. L. Chopra, S. Major, and D. K. Pandya, “TRANSPARENT CONDUCTORS--A STATUS REVIEW,” Thin Solid Films, vol. 102, no. 1, pp. 1–46, 1983. [20] Q. Xu, W. Shen, Q. Huang, Y. Yang, R. Tan, and K. Zhu,“Flexible transparent conductive films on PET substrates with an AZO/AgNW/AZO sandwich structure,” J. Mater. Chem. C, vol. 2, no. 19, pp. 3750–3755, 2014. [21] I. Lee, and J. Lee, “Transparent electrode of nanoscale metal film for optoelectronic devices,” J. Photonics Energy, vol. 5, no. 1, p. 057609, 2015. [22] T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, and K. Suganuma, “Fabrication of silver nanowire transparent electrodes at room temperature,” Nano Res., vol. 4, no. 12, pp. 1215–1222, 2011. [23] J. W. Lim, D. Y. Cho, Jihoon-Kim, S. I. Na, and H. K. Kim, “Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells,” Sol. Energy Mater. Sol. Cells, vol. 107, pp. 348–354, 2012. [24] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller‐Meskamp, and K. Leo, “Combined alternative electrodes for semi-transparent and ITO-free small molecule organic solar cells,” Org. Electron., vol. 13, no. 11, pp. 2422–2428, 2012. [25] C. Sachse, L. Muller-Meskamp, L. Bormann, Y. H. Kim, F. Lehnert, A. Philipp, B. Beyer, and K. Leo, “Transparent, dip-coated silver nanowire electrodes for small molecule organic solar cells,” Org. Electron., vol. 14, no. 1, pp. 143–148, 2013. [26] J. Krantz, M. Richter, S. Spallek, E. Spiecker, and C. J. Brabec, “Solution-Processed Metallic Nanowire Electrodes as Indium Tin Oxide Replacement for Thin-Film Solar Cells,” Adv. Funct. Mater., vol. 21, no. 24, pp. 4784–4787, 2011. [27] D. S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. Bradley, and J. C. de Mello, “Efficient Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes,” Adv. Funct. Mater., vol. 23, no. 38, pp. 4371–4375, 2011. [28] H. Wang, Y. Wang, and X. Chen, “Synthesis of uniform silver nanowires from AgCl seeds for transparent conductive films via spin-coating at variable spin-speed,” Colloids Surfaces A, vol. 565, no. 20, pp. 154–161, 2019. [29] V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray Deposition of Highly Transparent, Low-Resistance Networks of Silver Nanowires over Large Areas,” Small, vol. 7, no. 18, pp. 2621–2628, 2011. [30] L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, “Solution-Processed Flexible Polymer Solar Cells with Silver Nanowire Electrodes,” ACS Appl. Mater., vol. 3, no. 10, pp. 4075–4084, 2011. [31] S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, M. Y. Yang, and S. H. Ko, “Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater., vol. 26, no. 33, pp. 5808–5814, 2014. [32] J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett., vol. 8, no. 2, pp. 689–692, 2008. [33] E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater., vol. 11, pp. 241–249, 2012. [34] P. Lee, J. Kwon, J. Lee, H. Lee, Y. Suh, S. Hong, and J. Yeo, “Rapid and effective electrical conductivity improvement of the Ag NW-based conductor by using the laser-induced nano-welding process,” Micromachines, vol. 8, no. 5, p. 164, 2017. [35] A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique,” Nano Res., vol. 3, no. 8, pp. 564–573, 2010. [36] 杨晓冬, 邵建新, 廖生鸿, 谭锦业, 周 杰, 蒋跃文, “刀口法测量高斯光束光斑半径研究,” 激光與紅外, 第39卷, 第8期, pp. 829–832, 2009. [37] X. He, F. Duan, J. Liu, Q. Lan, J. Wu, C. Yang, W. Yang, Q. Zeng, and H. Wang, “Transparent electrode based on silver nanowires and polyimide for film heater and flexible solar cell,” Materials (Basel)., vol. 10, no. 12, pp. 3–5, 2017. [38] M. A. deAraújo, R. Silva, E. deLima, D. P. Pereira, and P. C. deOliveira, “Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Opt., vol. 48, no. 2, pp. 393–396, 2009. [39] Y. Huang, D. Xiangfeng, W. Qingqiao, and C. Lieber, “Directed Assembly of One-Dimensional Nanostructures into Functional Networks,” Science, vol. 291, no.5504, pp. 630–633, 2013. [40] Q. Nian, M. Saei, Y. Xu, G. Sabyasachi, B. Deng, Y. P. Chen, and G. J. Cheng, “Crystalline Nanojoining Silver Nanowire Percolated Networks on Flexible Substrate,” ACS Nano, vol. 9, no. 10, pp. 10018–10031, 2015. [41] K. M. Rickey, Q. Nian, G. Zhang, L. Chen, S. Suslov, S. V. Bhat, Y. Wu, G. J. Cheng, and X. Ruan, “Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating,” Sci. Rep., vol. 5, pp. 16052, 2015. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74714 | - |
dc.description.abstract | 柔性光電元件是目前光電元件的發展趨勢,由於傳統的透明導電氧化物(TCO)無法承受彎曲和拉伸,因此需要發展新型的可撓式透明導電膜。奈米銀線膜是其中表現良好的一種,但是其性能距離商業化應用仍有差距。本研究中我們在保證柔性基底不被損壞的前提下,利用雷射奈米焊接技術提高奈米銀線膜的導電性和機械性質。在雷射光照下奈米銀線交疊處因其微小的間隙產生了局部的強光場,其能量足以焊接奈米銀線,使散亂的銀線形成了一張聯結緊固的網狀結構,其導電性和耐拉伸耐撓曲的特性都得到了提高。
奈米銀線膜是在基材上均勻塗佈一層奈米銀線而形成的,因其良好的透光性,和銀線導電性可應用於光電元件的透明導電膜,根據文獻得知奈米銀線膜之導電性及穿透率兩者關係相互限制,而加強奈米銀線間的連接可以有效的提升導電率。故在本研究中,我們將奈米銀線透過抽氣過濾法(Vacuum Filtration)轉移到可撓式基材(PET)上,並利用雷射奈米焊接技術在以不影響穿透率的情形下,提高導電性,相較於利用脈衝雷射進行加工,本研究所使用的連續雷射提供一個更為穩定的方法來達到焊接效果,其成本更為便宜,成效高於脈衝雷射,且又可以避免奈米銀線被高能的脈衝雷射直接熔化變成銀點,破壞了奈米銀線膜之結構。 雷射奈米焊接技術主要透過調整三個參數進行探討,分別為雷射功率、掃描速率及掃描次數,在調整雷射功率的部分,發現雷射功率的提升,有助於片電阻的下降,而調整掃描速率的快慢,直接影響了雷射光斑的滯留時間,不僅造成可撓式基材的損毀,也影響了奈米銀線所接收到的總能量,最後,隨著掃描次數的增加,片電阻值隨之下降,奈米銀線膜在第一次掃描時片電阻大幅降低,但繼續掃描後,片電阻降低的幅度變平緩了,達到一個臨界點。本實驗有系統地對於雷射功率、掃描速率及掃描次數等參數進行調整,找到最佳條件來提升奈米銀線之導電性能,透過雷射焊接技術成功將初始片電阻約為30 Ω/□的可撓式奈米銀線膜降到12 Ω/□,且穿透率維持在92%(λ= 550nm)。通過掃描式電子顯微鏡觀察了奈米銀線重疊處有焊接的現象,並通過拉伸及彎曲試驗來顯示了可撓式奈米銀線膜的機械性能。最後,我們以 COMSOL 5.3a 進行模擬驗證,於奈米銀線上方施加一電場,證實奈米銀線交疊處會產生局部強電場,表示在銀線交疊處有焊接的可能性。 | zh_TW |
dc.description.abstract | Silver nanowire networks has promising potential to substitute ITO. Currently, it has been widely applied for flexible transparent conducting electrodes because of its excellent electrical conductivity. However, electrical conductivity and transmittance are constrained by each other. In this work, we transfer silver nanowire onto flexible substrate, and process it by continuous wave laser (λ = 532nm) scanning system to improve the conductivity, and get less change of the transmittance. The laser-welding process is expected to be the fastest and the most efficient way to fabricate flexible transparent conducting electrodes. We adjust the laser power, scanning speed, and scanning number to attain the best benefits.
Our results present Ag NWs/PET film having a sheet resistance of 12 Ω/□ and a transmittance (λ= 550nm) of 92 %. We observe a phenomenon of the silver nanowire melted at the junction by scanning electron microscope, and show the mechanical properties of the silver nanowire network by bending and stretching test. Finally, we perform electromagnetic simulation to verify the strong electrical field focused on the junction. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T09:06:23Z (GMT). No. of bitstreams: 1 ntu-108-R04522309-1.pdf: 8622141 bytes, checksum: 5b770e6875be83803d0cc29a4ec356d9 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 論文口試委員審定書
誌謝 i 中文摘要 ii Abstract iv 目錄 v 圖目錄 viii 表目錄 xv 符號說明 xvi Chapter 1 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 1-3 本文內容與架構 6 Chapter 2 文獻回顧 7 2-1 奈米銀線膜之製備 7 2-2 奈米銀線膜之後處理 13 3-1 實驗方法 22 3-2 奈米銀線膜之製備 24 3-3 連續波雷射掃描系統 26 3-4 薄膜檢測設備 32 3-5 奈米材料分析設備 36 Chapter 4 結果與討論 38 4-1 奈米銀線表面質量密度 38 4-2 雷射焊接加工系統架設 45 4-3 雷射功率及掃瞄速率對於片電阻之影響 58 4-4 掃描次數對於片電阻變化之影響 62 4-5 雷射功率與掃描次數對於穿透率之影響 75 4-6 不同初始片電阻對於雷射焊接加工的影響 80 4-7 SEM 觀察驗證 81 4-8 機械性質測試 85 4-9 COMSOL 模擬驗證 92 Chapter 5 結論與未來展望 94 參考文獻 96 | |
dc.language.iso | zh-TW | |
dc.title | 透過雷射奈米焊接技術改善奈米銀線膜之導電性質 | zh_TW |
dc.title | Electrical Conductance Improvement of Ag nanowires Film by Laser Nano-welding Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 莊嘉揚(Jia-Yang Juang),李明蒼(Ming-Tsang Lee) | |
dc.subject.keyword | 奈米銀線膜,雷射奈米焊接技術,可撓式透明導電電極,片電阻,穿透率, | zh_TW |
dc.subject.keyword | Ag NWs film,Laser nanowelding,Flexible transparent conducting electrode,Sheet resistance,Transmittance, | en |
dc.relation.page | 100 | |
dc.identifier.doi | 10.6342/NTU201904242 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-01-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 8.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。