Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74700
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor白奇峰(Chi-Feng Pai)
dc.contributor.authorHsin-I Chanen
dc.contributor.author詹昕頤zh_TW
dc.date.accessioned2021-06-17T09:06:12Z-
dc.date.available2020-02-04
dc.date.copyright2020-02-04
dc.date.issued2020
dc.date.submitted2020-01-08
dc.identifier.citation[1] Bernard Dieny, Ronald B Goldfarb, and Kyung-Jin Lee. Introduction to magnetic random-access memory. John Wiley & Sons, 2016.
[2] Brajesh Kumar Kaushik, Shivam Verma, Anant Kukarni, and Sanjay Prajapati. Next Generation Spin Torque Memories. 01 2017.
[3] John MD Coey. Magnetism and magnetic materials. Cambridge university press, 2010.
[4] Rajagopalan Ramaswamy, Jong Min Lee, Kaiming Cai, and Hyunsoo Yang. Re- cent advances in spin-orbit torques: Moving towards device applications. Applied Physics Reviews, 5(3):031107, 2018.
[5] Daniel C Ralph and Mark D Stiles. Spin transfer torques. Journal of Magnetism and Magnetic Materials, 320(7):1190–1216, 2008.
[6] Hongming Weng, Xi Dai, and Zhong Fang. From anomalous hall effect to the quan-tum anomalous hall effect. arXiv preprint arXiv:1509.05507, 2015.
[7] Emerson M Pugh and Norman Rostoker. Hall effect in ferromagnetic materials. Reviews of Modern Physics, 25(1):151, 1953.
[8] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, AH MacDonald, and NP Ong. Anomalous hall effect. Reviews of modern physics, 82(2):1539, 2010.
[9] LuqiaoLiu,OJLee,TJGudmundsen,DCRalph,andRABuhrman. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin hall effect. Physical review letters, 109(9):096602, 2012.
[10] OJ Lee, LQ Liu, CF Pai, Y Li, HW Tseng, PG Gowtham, JP Park, DC Ralph, and Robert A Buhrman. Central role of domain wall depinning for perpendicular mag- netization switching driven by spin torque from the spin hall effect. Physical Review B, 89(2):024418, 2014.
[11] Tsung-Yu Tsai, Tian-Yue Chen, Chun-Ting Wu, Hsin-I Chan, and Chi-Feng Pai. Spin-orbittorquemagnetometrybywide-fieldmagneto-opticalkerreffect. Scientific reports, 8(1):5613, 2018.
[12] Chi-Feng Pai, Maxwell Mann, Aik Jun Tan, and Geoffrey SD Beach. Determi- nation of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Physical Review B, 93(14):144409, 2016.
[13] Tian-Yue Chen, Hsin-I Chan, Wei-Bang Liao, and Chi-Feng Pai. Current-induced spin-orbit torque and field-free switching in mo-based magnetic heterostructures. Physical Review Applied, 10(4):044038, 2018.
[14] S Ikeda, J Hayakawa, Y Ashizawa, YM Lee, K Miura, H Hasegawa, M Tsunoda, F Matsukura, and H Ohno. Tunnel magnetoresistance of 604% at 300 k by suppres- sion of ta diffusion in co fe b/ mg o/ co fe b pseudo-spin-valves annealed at high temperature. Applied Physics Letters, 93(8):082508, 2008.
[15] T Liu, Y Zhang, JW Cai, and HY Pan. Thermally robust mo/cofeb/mgo trilayers with strong perpendicular magnetic anisotropy. Scientific reports, 4:5895, 2014.
[16] Minghua Li, Jinhui Lu, Guoqiang Yu, Xiang Li, Gang Han, Xi Chen, Hui Shi, Guanghua Yu, Pedram Khalili Amiri, and Kang L Wang. Influence of inserted mo layer on the thermal stability of perpendicularly magnetized ta/mo/co20fe60b20/mgo/ta films. AIP Advances, 6(4):045107, 2016.
[17] B Fang, X Zhang, BS Zhang, ZM Zeng, and JW Cai. Tunnel magnetoresistance in thermally robust mo/cofeb/mgo tunnel junction with perpendicular magnetic anisotropy. AIP Advances, 5(6):067116, 2015.
[18] Kyota Watanabe, Shunsuke Fukami, Hideo Sato, Shoji Ikeda, Fumihiro Matsukura, and Hideo Ohno. Annealing temperature dependence of magnetic properties of cofeb/mgo stacks on different buffer layers. Japanese Journal of Applied Physics, 56(8):0802B2, 2017.
[19] Guoqiang Yu, Pramey Upadhyaya, Yabin Fan, Juan G Alzate, Wanjun Jiang, Kin L Wong, So Takei, Scott A Bender, Li-Te Chang, Ying Jiang, et al. Switching of per- pendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature nanotechnology, 9(7):548, 2014.
[20] Guoqiang Yu, Li-Te Chang, Mustafa Akyol, Pramey Upadhyaya, Congli He, Xiang Li, Kin L Wong, Pedram Khalili Amiri, and Kang L Wang. Current-driven per- pendicular magnetization switching in ta/cofeb/[taox or mgo/taox] films with lateral structural asymmetry. Applied Physics Letters, 105(10):102411, 2014.
[21] LongYou,OukJaeLee,DebanjanBhowmik,DominicLabanowski,JeongminHong, JeffreyBokor, andSayeefSalahuddin. Switchingofperpendicularlypolarizednano- magnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy. Proceedings of the National Academy of Sciences, 112(33):10310– 10315, 2015.
[22] CKSafeer,EmilieJué,AlexandreLopez,LilianaBuda-Prejbeanu,StéphaneAuffret, Stefania Pizzini, Olivier Boulle, Ioan Mihai Miron, and Gilles Gaudin. Spin–orbit torque magnetization switching controlled by geometry. Nature nanotechnology, 11(2):143, 2016.

[23] T.C. Chuang, C.F. Pai, and S.Y. Huang. Cr-induced perpendicular mag-netic anisotropy and field-free spin-orbit-torque switching. Phys. Rev. Applied, 11:061005, Jun 2019.
[24] Young-Wan Oh, Seung-heon Chris Baek, YM Kim, Hae Yeon Lee, Kyeong-Dong Lee,Chang-GeunYang,Eun-SangPark,Ki-SeungLee,Kyoung-WhanKim,Gyung- choon Go, et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nature nanotechnol- ogy, 11(10):878, 2016.
[25] Shunsuke Fukami, Chaoliang Zhang, Samik DuttaGupta, Aleksandr Kurenkov, and Hideo Ohno. Magnetization switching by spin–orbit torque in an antiferromagnet– ferromagnet bilayer system. Nature materials, 15(5):535, 2016.
[26] Arno van den Brink, Guus Vermijs, Aurélie Solignac, Jungwoo Koo, Jurgen T Kohlhepp, Henk JM Swagten, and Bert Koopmans. Field-free magnetization rever- sal by spin-hall effect and exchange bias. Nature communications, 7:10854, 2016.
[27] C Baek Seung-heon, Vivek P Amin, Young-Wan Oh, Gyungchoon Go, Seung-Jae Lee, Geun-Hee Lee, Kab-Jin Kim, Mark D Stiles, Byong-Guk Park, and Kyung- Jin Lee. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nature materials, 17(6):509, 2018.
[28] D MacNeill, GM Stiehl, MHD Guimaraes, RA Buhrman, J Park, and DC Ralph. Control of spin–orbit torques through crystal symmetry in wte 2/ferromagnet bilay- ers. Nature Physics, 13(3):300, 2017.
[29] Jong Min Lee, Kaiming Cai, Guang Yang, Yang Liu, Rajagopalan Ramaswamy, Pan He, and Hyunsoo Yang. Field-free spin–orbit torque switching from geometrical domain-wall pinning. Nano letters, 18(8):4669–4674, 2018.
[30] HX Yang, M Chshiev, B Dieny, JH Lee, Aurelien Manchon, and KH Shin. First- principles investigation of the very large perpendicular magnetic anisotropy at fe| mgo and co| mgo interfaces. Physical Review B, 84(5):054401, 2011.
[31] C OHandley Robert and O Handley. Modern magnetic materials: principles and
applications. John Wiley & Sons, 2000.
[32] Pietro Gambardella and Ioan Mihai Miron. Current-induced spin–orbit torques. Philosophical Transactions of the Royal Society A: Mathematical, Physical and En- gineering Sciences, 369(1948):3175–3197, 2011.
[33] Roland Winkler. Spin-orbit coupling effects in two-dimensional electron and hole systems. Springer Tracts in Modern Physics, 191:1–8, 2003.
[34] E. H. Hall. On a new action of the magnet on electric currents. American Journal of Mathematics, 2(3):287–292, 1879.
[35] Edwin Herbert Hall. Xviii. on the“rotational coefficient'in nickel and cobalt. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 12(74):157–172, 1881.
[36] Robert Karplus and JM Luttinger. Hall effect in ferromagnetics. Physical Review, 95(5):1154, 1954.
[37] L. Berger. Side-jump mechanism for the hall effect of ferromagnets. Phys. Rev. B,2:4559–4566, Dec 1970.
[38] J Smit. The spontaneous hall effect in ferromagnetics i. Physica, 21(6-10):877–887,1955.
[39] Jan Smit. The spontaneous hall effect in ferromagnetics ii. Physica, 24(1-5):39–51, 1958.
[40] MI D’yakonov and VI Perel. Possibility of orienting electron spins with current. Soviet Journal of Experimental and Theoretical Physics Letters, 13:467, 1971.
[41] MI Dyakonov and VI Perel. Current-induced spin orientation of electrons in semi-conductors. Physics Letters A, 35(6):459–460, 1971.
[42] Luqiao Liu, Takahiro Moriyama, DC Ralph, and RA Buhrman. Spin-torque ferromagnetic resonance induced by the spin hall effect. Physical review letters, 106(3):036601, 2011.
[43] E Saitoh, M Ueda, H Miyajima, and G Tatara. Conversion of spin current into charge current at room temperature: Inverse spin-hall effect. Applied physics let- ters, 88(18):182509, 2006.
[44] JunyeonKim,JaivardhanSinha,MasamitsuHayashi,MichihikoYamanouchi,Shun- suke Fukami, Tetsuhiro Suzuki, Seiji Mitani, and Hideo Ohno. Layer thickness de- pendence of the current-induced effective field vector in ta| cofeb| mgo. Nature materials, 12(3):240, 2013.
[45] Yan Liu, Liang Hao, and Jiangwei Cao. Effect of annealing conditions on the perpendicular magnetic anisotropy of ta/cofeb/mgo multilayers. AIP Advances, 6(4):045008, 2016.
[46] M Kowalewski, WH Butler, N Moghadam, GM Stocks, TC Schulthess, KJ Song, JR Thompson, AS Arrott, T Zhu, J Drewes, et al. The effect of ta on the magnetic thickness of permalloy (ni 81 fe 19) films. Journal of Applied Physics, 87(9):5732– 5734, 2000.
[47] S Pinitsoontorn, A Cerezo, AK Petford-Long, D Mauri, L Folks, and MJ Carey. Three-dimensional atom probe investigation of boron distribution in co fe b/ mg o/ co fe b magnetic tunnel junctions. Applied Physics Letters, 93(7):071901, 2008.
[48] CY You, T Ohkubo, YK Takahashi, and K Hono. Boron segregation in crystal- lized mgo/amorphous-co 40 fe 40 b 20 thin films. Journal of Applied Physics, 104(3):033517, 2008.
[49] TG Knorr and RW Hoffman. Dependence of geometric magnetic anisotropy in thin iron films. Physical Review, 113(4):1039, 1959.
[50] Angel Barranco, Ana Borras, Agustin R Gonzalez-Elipe, and Alberto Palmero. Per- spectives on oblique angle deposition of thin films: from fundamentals to devices. Progress in Materials Science, 76:59–153, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74700-
dc.description.abstract隨著大數據的發展,對於資料的儲存也有更上一層的需求,因此,屬於次世代記憶體中的,磁性隨機存取記憶體的發展,也漸漸受到大家的關注。磁性記憶體主要由兩層鐵磁層及一層鐵磁絕緣層所構成,當兩層鐵磁層的相對方向有變化時,所產生之電阻值亦會產生變化,也可以因此定義邏輯電路的0與1。其中一層鐵磁層的磁化方向為固定的,而另一鐵磁層,可以利用外加電流,產生自旋極化電流(Spin-polarized current)或是淨自旋電流(Net spin current),來進一步控制此層之磁化方向。 產生淨自旋電流的方式,通常是來自於金屬材料本身的自旋霍爾效應,亦即,當電流通入材料時,由於材料本身的自旋軌道耦合矩,在垂直電流的方向上,會產生自旋電流,此自旋電流再進一步影響鐵磁層之磁化方向。然而,在鐵磁層翻轉的過程中,由於自旋軌道矩的特性,需再加入一平行電流之外加磁場,才可以完成磁矩翻轉的過程,而這樣子的特性也在未來的應用上造成阻礙。
在我的研究中,主要是針對鉬(Molybdenum)及鈷鐵硼(CoFeB)的異質接面進行探討,鉬為產生自旋電流的材料,可以利用材料本身之自旋軌道耦合矩來產生自旋電流,而產生之自旋電流將可以進一步影響鈷鐵硼的磁化方向,並達到磁矩翻轉的效果。除了鉬金屬本身的自旋軌道耦合矩的強度測量之外,我們也在此異質接面中,測量到磁矩翻轉的現象,並進一步的,利用產生非平整表面的方式,達到無場磁矩翻轉的現象,而對於我們所產生的非平整表面,也進一步的進行分析。
zh_TW
dc.description.abstractAs the development of big data is thriving, the demand for a better way of storing information also arises. Magnetoresistive Random Access Memory (MRAM), which is one of the next-generation memory, has grabbed great attention. MRAMs are composed of two ferromagnetic layers with one magnetic-insulating layer sandwiched between them. When the relative magnetization direction of those two ferromagnetic layers is different, the resistance will be different. The magnetization of one of the ferromagnetic layers is fixed and called the reference layer. In contrast, the magnetization in the other ferromagnetic layer can be manipulated by spin-polarized current or net spin current, which can be generated by the current. To generate net spin current, the spin Hall effect of the metal is utilized. When current passes through metal, the spin current will be generated in the direction perpendicular to the current due to the spin-orbit torque of that metal. The generated spin current can further switch the magnetization of the free ferromagnetic layer. However, during the switching process, an external field is required to achieve deterministic switching due to the nature of the spin-orbit torque, which hinders the potential of the application.
In this thesis, the Molybdenum (Mo)/CoFeB heterostructure is studied. The spin current could be generated in the Mo layer and further affect the magnetization in CoFeB and thus enable magnetization switching. The strength of spin-orbit torque is characterized, the field-free magnetization switching is achieved by thin-film deposition at an angle. How such a way of deposition affecting the thin-film structure is also investigated.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:06:12Z (GMT). No. of bitstreams: 1
ntu-109-R06527024-1.pdf: 7467582 bytes, checksum: f7fc7fac043a06ac5c16bd4dc1e6d226 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書iii
摘要v
Abstract vii
1 Introduction 1
2 Background theories 7
2.1 Fundamentals of magnetism . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Types of magnetism . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Magnetic anisotropy . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Domain and domain wall . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Hysteresis loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Fundamentals of spintronics . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Current-induced Spin-torques . . . . . . . . . . . . . . . . . . . 12
2.2.2 Magnetization dynamics . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Anomalous Hall effect . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Spin Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Electrical manipulation of magnetization . . . . . . . . . . . . . 18
3 Experiment method 21
3.1 Hall-bar fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1 Magnetron sputtering system . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Photo-lithography. . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Etching system . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Magnetic properties characterization . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Magneto-optical Kerr effect(MOKE) . . . . . . . . . . . . . . . 27
3.3 Electrical transport measurement . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Current-induced DL-SOT loop shift measurement . . . . . . . . . 29
3.3.2 Current-induced DL-SOT switching measurement . . . . . . . . . . . 30
4 Results and discussion 33
4.1 Magnetic and electrical transport properties characterization of uniformly-deposited samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.1 Results of MOKE measurement . . . . . . . . . . . . . . . . . . 34
4.1.2 Results of current-induced loopshift measurement . . . . . . . . 34
4.2 Magnetic and electrical transport properties characterization of wedge samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Current-induced loopshift measurement . . . . . . . . . . . . . 37
4.2.2 Current-induced spin-orbit torque switching . . . . . . . . . . . . 38
4.3 Effect of deposition direction . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Effect of wedge deposition on thin-film structure . . . . . . . . . . . . . 43
4.4.1 Thickness difference across Hallbars. . . . . . . . . . . . . . . 43
4.4.2 Microstructure of wedge samples . . . . . . . . . . . . . . . . . 45
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Bibliography 49
dc.language.isozh-TW
dc.subject自旋霍爾效應zh_TW
dc.subject自旋軌道耦合矩zh_TW
dc.subjectSpin-orbit torqueen
dc.subjectSpin Hall effecten
dc.title鉬基磁性異質介面之電流誘發自旋軌道耦合矩及無場翻轉zh_TW
dc.titleCurrent-Induced Spin-Orbit Torque and Field-Free Switching in Mo-Based Magnetic Heterostructuresen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃斯衍(Ssu-Yen Huang),林昭吟
dc.subject.keyword自旋軌道耦合矩,自旋霍爾效應,zh_TW
dc.subject.keywordSpin-orbit torque,Spin Hall effect,en
dc.relation.page54
dc.identifier.doi10.6342/NTU202000045
dc.rights.note有償授權
dc.date.accepted2020-01-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
7.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved