Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74697
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李君浩(Jiun-Haw Lee)
dc.contributor.authorChia-Hsun Chenen
dc.contributor.author陳佳勳zh_TW
dc.date.accessioned2021-06-17T09:06:09Z-
dc.date.available2025-01-10
dc.date.copyright2020-01-10
dc.date.issued2020
dc.date.submitted2020-01-08
dc.identifier.citation1. Singh-Rachford, T. N.; Castellano, F. N. Coord. Chem. Rev. 2010, 254, (21-22),2560-2573.
2. Joarder, B.; Yanai, N.; Kimizuka, N. J. Phys. Chem. Lett. 2018, 9, (16), 4613-4624.
3. Yanai, N.; Kimizuka, N. ChemComm 2016, 52, (31), 5354-5370.
4. Yanai, N.; Kimizuka, N. Acc. Chem. Res. 2017, 50, (10), 2487-2495.
5. Laquai, F.; Park, Y. S.; Kim, J. J.; Basché, T. Macromol. Rapid Commun. 2009,30, (14), 1203-1231.
6. Dexter, D. L. J. Chem. Phys. 1953, 21, (5), 836-850.
7. Monguzzi, A.; Tubino, R.; Hoseinkhani, S.; Campione, M.; Meinardi, F. Phys.Chem. Chem. Phys. 2012, 14, (13), 4322-4332.
8. Hoseinkhani, S.; Tubino, R.; Meinardi, F.; Monguzzi, A. Phys. Chem. Chem.Phys. 2015, 17, (6), 4020-4024.
9. Schmidt, T. W.; Castellano, F. N. J. Phys. Chem. Lett. 2014, 5, (22), 4062-4072.
10. Gray, V.; Dzebo, D.; Abrahamsson, M.; Albinsson, B.; Moth-Poulsen, K. Phys.Chem. Chem. Phys. 2014, 16, (22), 10345-10352.
11. Zhao, W.; Castellano, F. N. J. Phys. Chem. A 2006, 110, (40), 11440-11445.
12. Islangulov, R. R.; Kozlov, D. V.; Castellano, F. N. ChemComm 2005, (30),3776-3778.
13. Cheng, Y. Y.; Khoury, T.; Clady, R. G. C. R.; Tayebjee, M. J. Y.; Ekins-Daukes,N. J.; Crossley, M. J.; Schmidt, T. W. Phys. Chem. Chem. Phys. 2010, 12, (1), 66-71.
14. Monguzzi, A.; Mezyk, J.; Scotognella, F.; Tubino, R.; Meinardi, F. Phys. Rev. B2008, 78, (19), 195112.
15. Xiang, C.; Peng, C.; Chen, Y.; So, F. Small 2015, 11, (40), 5439-5443.
16. Pandey, A. K.; Nunzi, J.-M. Adv. Mater. 2007, 19, (21), 3613-3617.
17. Lin, Y. L.; Fusella, M. A.; Kozlov, O. V.; Lin, X.; Kahn, A.; Pshenichnikov, M.S.; Rand, B. P. Adv. Funct. Mater 2016, 6489-6494.
18. Lin, Y. L.; Koch, M.; Brigeman, A. N.; Freeman, D. M. E.; Zhao, L.; Bronstein,H.; Giebink, N. C.; Scholes, G. D.; Rand, B. P. Energy Environ. Sci. 2017, 10, (6), 1465-1475.
19. Schulze, T. F.; Schmidt, T. W. Energy Environ. Sci. 2015, 8, (1), 103-125.
20. Liu, Q.; Yang, T.; Feng, W.; Li, F. J. Am. Chem. Soc. 2012, 134, (11), 5390-5397.
21. Liu, Q.; Yin, B.; Yang, T.; Yang, Y.; Shen, Z.; Yao, P.; Li, F. J. Am. Chem. Soc.2013, 135, (13), 5029-5037.
22. Lee, J.; Jeong, C.; Batagoda, T.; Coburn, C.; Thompson, M. E.; Forrest, S. R.Nat. Commun. 2017, 8, 15566.
23. Giebink, N. C.; D’Andrade, B. W.; Weaver, M. S.; Mackenzie, P. B.; Brown, J.J.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys. 2008, 103, (4), 044509.
24. Wang, Q.; Aziz, H. ACS Appl. Mater. Interfaces 2013, 5, (17), 8733-8739.
25. Schmidbauer, S.; Hohenleutner, A.; König, B. Adv. Mater. 2013, 25, (15), 2114-2129.
26. Parker, C.; Hatchard, C. Proc. Royal Soc. Lond. A 1962, 269, (1339), 574-584.
27. Khnayzer, R. S.; Blumhoff, J.; Harrington, J. A.; Haefele, A.; Deng, F.;Castellano, F. N. ChemComm 2012, 48, (2), 209-211.
28. Aulin, Y. V.; van Sebille, M.; Moes, M.; Grozema, F. C. RSC Advances 2015, 5,(130), 107896-107903.
29. Ogawa, T.; Yanai, N.; Monguzzi, A.; Kimizuka, N. Scientific Reports 2015, 5,10882.
30. Islangulov, R. R.; Lott, J.; Weder, C.; Castellano, F. N. J. Am. Chem. Soc. 2007,129, (42), 12652-12653.
31. Kim, J. H.; Deng, F.; Castellano, F. N.; Kim, J. H. Chem. Mater. 2012, 24, (12),2250-2252.
32. Hosoyamada, M.; Yanai, N.; Ogawa, T.; Kimizuka, N. 2016, 22, (6), 2060-2067.
33. Ogawa, T.; Hosoyamada, M.; Yurash, B.; Nguyen, T.-Q.; Yanai, N.; Kimizuka,N. J. Am. Chem. Soc. 2018, 140, (28), 8788-8796.
34. Salehi, A.; Dong, C.; Shin, D.-H.; Zhu, L.; Papa, C.; Thy Bui, A.; Castellano, F.N.; So, F. Nat. Commun. 2019, 10, (1), 2305.
35. Tsunenori, S.; Yusuke, N.; Takeyoshi, W.; Harue, N.; Satoshi, S.; Satoko, S.;Shunpei, Y. Japanese Journal of Applied Physics 2014, 53, (5), 052102.
36. Hosokawa, C.; Higashi, H.; Nakamura, H.; Kusumoto, T. Appl. Phys. Lett. 1995,67, (26), 3853-3855.
37. Sarma, M.; Wong, K. T. ACS Appl. Mater. Interfaces 2018, 10, (23), 19279-19304.
38. Colella, M.; Pander, P.; Pereira, D. d. S.; Monkman, A. P.; interfaces. ACS Appl.Mater. Interfaces 2018, 10, (46), 40001-40007.
39. Hung, W. Y.; Fang, G. C.; Lin, S. W.; Cheng, S. H.; Wong, K. T.; Kuo, T. Y.;Chou, P. T. Scientific Reports 2014, 4, 5161.
40. Lin, T. C.; Sarma, M.; Chen, Y. T.; Liu, S. H.; Lin, K. T.; Chiang, P. Y.;Chuang, W. T.; Liu, Y. C.; Hsu, H. F.; Hung, W. Y.; Wong, K. T. Nat. Commun.2018, 9, (1), 3111.
41. Liang, W. Y. Physics Education 1970, 5, (4), 226-228.
42. Zhang, T.; Chu, B.; Li, W.; Su, Z.; Peng, Q. M.; Zhao, B.; Luo, Y.; Jin, F.; Yan,X.; Gao, Y. ACS Appl. Mater. Interfaces 2014, 6, (15), 11907-11914.
43. Weller, A. Pure Appl. Chem. 1982, 54, (10), 1885-1888.
44. Werner, H. J.; Schulten, Z.; Schulten, K. J. Chem. Phys. 1977, 67, (2), 646-663.
45. Tanimoto, Y.; Hasegawa, K.; Okada, N.; Itoh, M.; Iwai, K.; Sugioka, K.; Takemura, F.; Nakagaki, R.; Nagakura, S. J. Phys. Chem. A 1989, 93, (9), 3586-3594.
46. Feskov, S. V.; Burshtein, A. I.; Ivanov, A. I. J. Phys. Chem. C 2014, 118, (37),21365-21376.
47. Masuhara, H.; Mataga, N. Acc. Chem. Res. 1981, 14, (10), 312-318.
48. Nath, D. N.; Chowdhury, M. Chem. Phys. Lett. 1984, 109, (1), 13-17.
49. Nakanotani, H.; Furukawa, T.; Morimoto, K.; Adachi, C. Sci. Adv. 2016, 2, (2).50. Schrögel, P.; Langer, N.; Schildknecht, C.; Wagenblast, G.; Lennartz, C.;
Strohriegl, P. ORG ELECTRON 2011, 12, (12), 2047-2055.
51. Yuan, P.; Guo, X.; Qiao, X.; Yan, D.; Ma, D. Adv. Opt. Mater. 2019, 1801648.
52. Baek, J.; Umeyama, T.; Stranius, K.; Yamada, H.; Tkachenko, N. V.; Imahori,H. J. Phys. Chem. C 2017, 121, (25), 13952-13961.
53. Umeyama, T.; Hanaoka, T.; Baek, J.; Higashino, T.; Abou-Chahine, F.;Tkachenko, N. V.; Imahori, H. J. Phys. Chem. C 2016, 120, (49), 28337-28344.
54. Wenger, O. S. Chem. Soc. Rev. 2011, 40, (7), 3538-3550.
55. Gray, H. B.; Winkler, J. R. Proc. Natl. Acad. Sci. 2005, 102, (10), 3534-3539.
56. Schanze, K. S.; Cabana, L. A. J. Phys. Chem. A 1990, 94, (7), 2740-2743.
57. Lin, B. Y.; Easley, C. J.; Chen, C. H.; Tseng, P. C.; Lee, M. Z.; Sher, P. H.;Wang, J. K.; Chiu, T. L.; Lin, C. F.; Bardeen, C. J.; Lee, J. H. ACS Appl. Mater.
Interfaces 2017, 9, (12), 10963-10970.
58. Seidel, W.; Titkov, A.; André, J. P.; Voisin, P.; Voos, M. Phys. Rev. Lett. 1994,73, (17), 2356-2359.
59. Tsang, S. W.; Chen, S.; So, F. Adv. Mater. 2013, 25, (17), 2434-2439.
60. Chen, Q.; Jia, W.; Chen, L.; Yuan, D.; Zou, Y.; Xiong, Z. Scientific Reports2016, 6, 25331.
61. MERRIFIELD, R. E. Book 1971.
62. Engmann, S.; Barito, A. J.; Bittle, E. G.; Giebink, N. C.; Richter, L. J.;Gundlach, D. J. Nat. Commun. 2019, 10, (1), 227.
63. Campbell, I. H.; Crone, B. K. Appl. Phys. Lett. 2012, 101, (2), 023301.
64. Liu, F.; Crone, B. K.; Ruden, P. P.; Smith, D. L. J. Appl. Phys. 2013, 113, (4),044516.
65. He, S. J.; Wang, D. K.; Jiang, N.; Lu, Z. H. J. Phys. Chem. C 2016, 120, (38),21325-21329.
66. Li, S. W.; Yu, C. H.; Ko, C. L.; Chatterjee, T.; Hung, W. Y.; Wong, K. T. ACSAppl. Mater. Interfaces 2018, 10, (15), 12930-12936.
67. Higginbotham, H. F.; Yi, C. L.; Monkman, A. P.; Wong, K. T. J. Phys. Chem. 2018, 122, (14), 7627-7634.
68. Zeng, W.; Lai, H. Y.; Lee, W. K.; Jiao, M.; Shiu, Y. J.; Zhong, C.; Gong, S.;Zhou, T.; Xie, G.; Sarma, M. Adv. Mater. 2018, 30, (5), 1704961.
69. Wu, T. C.; Congreve, D. N.; Baldo, M. A. Appl. Phys. Lett. 2015, 107, (3),031103.
70. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492,(7428), 234.
71. Yurash, B.; Nakanotani, H.; Olivier, Y.; Beljonne, D.; Adachi, C.; Nguyen, T. Q.
Adv. Mater. 2019, 1804490.
72. Peng, J.; Guo, X.; Jiang, X.; Zhao, D.; Ma, Y. Chem. Sci. 2016, 7, (2), 1233-1237.
73. Chen, Q.; Liu, Y.; Guo, X.; Peng, J.; Garakyaraghi, S.; Papa, C. M.; Castellano,F. N.; Zhao, D.; Ma, Y. J. Phys. Chem. A 2018, 122, (33), 6673-6682.
74. Wei, D.; Ni, F.; Zhu, Z.; Zou, Y.; Yang, C. J. Mater. Chem. C 2017, 5, (48),12674-12677.
75. Chen, W.; Song, F.; Tang, S.; Hong, G.; Wu, Y.; Peng, X. ChemComm 2019.
76. Huang, Z.; Li, X.; Mahboub, M.; Hanson, K. M.; Nichols, V. M.; Le, H.; Tang,M. L.; Bardeen, C. J. Nano Lett. 2015, 15, (8), 5552-5557.
77. Piland, G. B.; Huang, Z.; Lee Tang, M.; Bardeen, C. J. J. Phys. Chem. C 2016,120, (11), 5883-5889.
78. Mase, K.; Okumura, K.; Yanai, N.; Kimizuka, N. ChemComm 2017, 53, (59),8261-8264.
79. Amemori, S.; Sasaki, Y.; Yanai, N.; Kimizuka, N. J Am Chem Soc 2016, 138,(28), 8702-5.
80. Sasaki, Y.; Amemori, S.; Kouno, H.; Yanai, N.; Kimizuka, N. J. Mater. Chem. C2017, 5, (21), 5063-5067.
81. Sher, P. H.; Chen, C. H.; Chiu, T. L.; Lin, C. F.; Wang, J. K.; Lee, J. H. J. Phys.Chem. C 2019, 123, (6), 3279-3284.
82. Lee, J.; Bruzek, M. J.; Thompson, N. J.; Sfeir, M. Y.; Anthony, J. E.; Baldo, M.A. Adv. Mater. 2013, 25, 1445–1448.
83. Piland, G. B.; Bardeen, C. J. J. Phys. Chem. Lett. 2015, 6, (10), 1841-1846.
84. Yost, S. R.; Lee, J.; Wilson, M. W. B.; Wu, T.; McMahon, D. P.; Parkhurst, R.R.; Thompson, N. J.; Congreve, D. N.; Rao, A.; Johnson, K.; Sfeir, M. Y.; Bawendi,
M. G.; Swager, T. M.; Friend, R. H.; Baldo, M. A.; Van Voorhis, T. Nat Chem 2014,6, (6), 492-497.
85. Avakian, P.; Merrifield, R. E. Phys. Rev. Lett. 1964, 13, (18), 541-543.
86. Keivanidis, P. E.; Baluschev, S.; Miteva, T.; Nelles, G.; Scherf, U.; Yasuda, A.;Wegner, G. Adv. Mater. 2003, 15, (24), 2095-2098.
87. Chen, Y. L.; Li, S. W.; Chi, Y.; Cheng, Y. M.; Pu, S. C.; Yeh, Y. S.; Chou, P. T.
ChemPhysChem 2005, 6, (10), 2012-2017.
88. Guo, S.; Wu, W.; Guo, H.; Zhao, J. J. Org. Chem. 2012, 77, (8), 3933-3943.
89. Sugunan, S. K.; Greenwald, C.; Paige, M. F.; Steer, R. P. J. Phys. Chem. A 2013,117, (26), 5419-5427.
90. Guo, X.; Liu, Y.; Chen, Q.; Zhao, D.; Ma, Y. Adv. Opt. Mater. 2018, 6, (4),1700981.
91. Ji, S.; Wu, W.; Wu, W.; Guo, H.; Zhao, J. Angew. Chem. 2011, 50, (7), 1626-1629.
92. Yi, X.; Zhao, J.; Wu, W.; Huang, D.; Ji, S.; Sun, J. Dalton Transactions 2012,41, (29), 8931-8940.
93. Jiang, X.; Peng, J.; Wang, J.; Guo, X.; Zhao, D.; Ma, Y. ACS Appl. Mater.Interfaces 2016, 8, (6), 3591-3600.
94. Sun, J.; Zhong, F.; Yi, X.; Zhao, J. Inorganic Chemistry 2013, 52, (11), 6299-6310.
95. Wang, J.; Lu, Y.; McGoldrick, N.; Zhang, C.; Yang, W.; Zhao, J.; Draper, S. M.J. Mater. Chem. C 2016, 4, (25), 6131-6139.
96. Yi, X.; Zhang, C.; Guo, S.; Ma, J.; Zhao, J. Dalton Transactions 2014, 43, (4),1672-1683.
97. Jiang, X.; Guo, X.; Peng, J.; Zhao, D.; Ma, Y. ACS Appl. Mater. Interfaces 2016,8, (18), 11441-11449.
98. Peng, J.; Jiang, X.; Guo, X.; Zhao, D.; Ma, Y. ChemComm 2014, 50, (58), 7828-7830.
99. Yan, Q.; Fan, Y.; Zhao, D. Macromolecules 2012, 45, (1), 133-141.
100. Guo, X.; Chen, Q.; Tong, Y.; Li, Y.; Liu, Y.; Zhao, D.; Ma, Y. J. Phys. Chem. A2018, 122, (35), 6963-6969.
101. Lu, Y.; Wang, J.; McGoldrick, N.; Cui, X.; Zhao, J.; Caverly, C.; Twamley, B.;Ó Máille, G. M.; Irwin, B.; Conway-Kenny, R.; Draper, S. M. Angew. Chem. 2016,55, (47), 14688-14692.
102. Chen, C. H. National Taiwan University Master Thesis 2015.
103. Minolt, K.
104. Chen, C. P. National Taiwan University Master Thesis 2017.
105. Tseng, P. C. National Taiwan University Master Thesis 2017.
106. Coherent. 2013.
107. Müller, A. M.; Avlasevich, Y. S.; Schoeller, W. W.; Müllen, K.; Bardeen, C. J. J.Am. Chem. Soc. 2007, 129, (46), 14240-14250.
108. Wu, K. C.; Ku, P. J.; Lin, C. S.; Shih, H. T.; Wu, F. I.; Huang, M. J.; Lin, J. J.;Chen, I. C.; Cheng, C. H. Adv. Funct. Mater 2008, 18, (1), 67-75.
109. Chou, P. Y.; Chou, H. H.; Chen, Y. H.; Su, T. H.; Liao, C. Y.; Lin, H. W.; Lin,W. C.; Yen, H. Y.; Chen, I. C.; Cheng, C. H. ChemComm 2014, 50, (52), 6869-6871.
110. Chen, Y. H.; Lin, C. C.; Huang, M. J.; Hung, K.; Wu, Y. C.; Lin, W. C.; ChenCheng, R. W.; Lin, H. W.; Cheng, C. H. Chem. Sci. 2016, 7, (7), 4044-4051.
111. Wen, S. W.; Lee, M. T.; Chen, C. H. J DISP TECHNOL 2005, 1, (1), 90-99.
112. Tanaka, I.; Tokito, S. J. Appl. Phys. 2005, 97, (11), 113532.
113. Burrows, H. D.; Fernandes, M.; Seixas de Melo, J.; Monkman, A. P.;Navaratnam, S. J. Am. Chem. Soc. 2003, 125, (50), 15310-15311.
114. Cölle, M.; Brütting, W. Phys. Status Solidi 2004, 201, (6), 1095-1115.
115. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R.Appl. Phys. Lett. 1999, 75, (1), 4-6.
116. Tanaka, I.; Tabata, Y.; Tokito, S. Phys. Rev. B 2005, 71, (20), 205207.
117. Tanaka, I.; Tabata, Y.; Tokito, S. J. Appl. Phys. 2006, 99, (7), 073501.
118. Tsuboi, T.; Jeon, W. S.; Kwon, J. H. Opt. Mater. 2009, 31, (12), 1755-1758.
119. Tokito, S.; Tanaka, I. Electrochemistry 2008, 76, (1), 24-31.
120. Hosokawa, C.; Tokailin, H.; Higashi, H.; Kusumoto, T. J. Appl. Phys. 1995, 78,(9), 5831-5833.
121. Yu, Y.; Jiao, B.; Wu, Z.; Li, Z.; Ma, L.; Zhou, G.; Yu, W.; So, S. K.; Hou, X. J.Mater. Chem. C 2014, 2, (44), 9375-9384.
122. Chang, M. Y.; Han, Y. K.; Wu, C. C.; Lin, S. C.; Huang, W. Y. J. Electrochem.Soc. 2008, 155, (12), J345-J349.
123. Baldo, M. A.; Adachi, C.; Forrest, S. R. Phys. Rev. B 2000, 62, (16), 10967-10977.
124. Zhu, T.; Wan, Y.; Guo, Z.; Johnson, J.; Huang, L. Adv. Mater. 2016, 28, (34),7539-7547.
125. Renschler, C. L.; Faulkner, L. R. J. Am. Chem. Soc. 1982, 104, (12), 3315-3320.
126. Nandi, A.; Manna, B.; Ghosh, R. Phys. Chem. Chem. Phys. 2019, 21, (21),11193-11202.
127. Narushima, K.; Hirata, S.; Vacha, M. Nanoscale 2017, 9, (30), 10653-10661.
128. Deotare, P.; Chang, W.; Hontz, E.; Congreve, D.; Shi, L.; Reusswig, P.;Modtland, B.; Bahlke, M.; Lee, C.; Willard, A. NATURE MATERIALS 2015, 14, (11),1130.
129. Natali, M.; Campagna, S.; Scandola, F. Chem. Soc. Rev. 2014, 43, (12), 4005-4018.
130. Zhang, T.; Chu, B.; Li, W.; Su, Z.; Peng, Q. M.; Zhao, B.; Luo, Y.; Jin, F.; Yan,X.; Gao, Y.; Wu, H.; Zhang, F.; Fan, D.; Wang, J. ACS Appl. Mater. Interfaces 2014,6, (15), 11907-11914.
131. Graves, D.; Jankus, V.; Dias, F. B.; Monkman, A. J. A. F. M. Adv. Funct. Mater2014, 24, (16), 2343-2351.
132. Kalinowski, J. Materials Science Poland 2009, 27.
133. Hoffmann, S. T.; Bässler, H.; Koenen, J. M.; Forster, M.; Scherf, U.; Scheler, E.;Strohriegl, P.; Köhler, A. Phys. Rev. B 2010, 81, (11), 115103.
134. Athanasopoulos, S.; Hoffmann, S. T.; Bässler, H.; Köhler, A.; Beljonne, D. J.Phys. Chem. Lett. 2013, 4, (10), 1694-1700.
135. Mikhnenko, O. Zernike Institute PhD Thesis Series 2012.
136. Baleizão, C.; Berberan-Santos, M. N. J. Chem. Phys. 2007, 126, (20), 204510.137. Griffith, O. L.; Liu, X.; Amonoo, J. A.; Djurovich, P. I.; Thompson, M. E.;Green, P. F.; Forrest, S. R. Phys. Rev. B 2015, 92, (8), 085404.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74697-
dc.description.abstract本論文分為兩個部分,第一部分將介紹一種基於三重態-三重態湮滅上轉換設計出來的有機發光二極體發光機制,利用 Tris-(8-hydroxyquinoline)aluminum (Alq3) 當作綠色的敏化層和 9,10-Bis(2-naphthyl)anthraces (ADN)作為藍色的三重態-三重態湮滅與放光層,其三重態激子可具有極高的轉換利用效率(86.1%),元件表現比傳統的三重態-三重態湮滅有機發光二極體具有較高的元件效率與較長的操作壽命。另外,我們可以引入”三重態擴散與單重態阻擋層”提高元件的效率,並且摻雜一種磷光材料於螢光材料敏化層裡面,更可將元件效率和色彩純度表現更大幅提升。
第二部分我們使用光激發光譜系統之量測, 來瞭解以激基複合物(Exciplex)作為敏化層之化三重態-三重態湮滅上轉換的激子與載子動態特性,我們可以利用受體-橋梁-施體的這種模型來敘述我們在這使用的三層的架構,並總結出了三種方法: 增加三重態-三重態湮滅層的厚度,引入在三重態激子擴散與單重態阻擋層和於放光層內之高放光效率螢光的摻雜,都可使得藍色的三重態-三重態湮滅上轉換訊號提高。除此之外,我們也演示了三重態激子擴散與單重態阻擋層亦可利用於綠色及紅色的熱活化型延遲螢光敏化三重態-三重態湮滅上轉換,使得其轉換效率提升。
zh_TW
dc.description.abstractThere are two parts in this dissertation. In the first part, we demonstrated a new emission mode of organic light-emitting diode (OLED) based on triplet-triplet annilihiation upconversion (TTAUC) with a high intrinsic upconversion efficiency (86.1%) by using tris-(8-hydroxyquinoline)aluminum (Alq3) and 9,10-Bis(2-naphthyl)anthraces (ADN) as green sensitizer and blue emitter, respectively. This structure improved the device efficiency and operation lifetime compared to the conventional TTA-OLEDs. Besides, a triplet-diffusion and singlet-blocking (TDSB) layer and phosphor doped fluorophore sensitizer were both employed to improve their deivce efficiency and color performances.
In chapter 4, exciton and carrier dynamics of exciplex-sensitized triplet-triplet annihilation (ESTTA) were detail discussed by time-resolved photoluminescence (TrPL). This trilayer system applied in ESTTA can be described by Donor-BridgeAcceptor model with TDSB layer as its bridge. The upconversion blue emission can be enhanced by increasing the thickness of emitter layer, insertion of TDSB layer and incorporation of high quantum yield dopant inside the emitting layer. Also, green and red thermally activated delayed fluorescence (TADF)-sensitized triplet-triplet annihilation (TSTTA) were demonstrated with TDSB layer to improve their conversion efficiency.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:06:09Z (GMT). No. of bitstreams: 1
ntu-109-D04941005-1.pdf: 9765361 bytes, checksum: 3e81f00f704a8a38fde3b7603db6f916 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 ..... iii
摘要 ..... iv
Abstract ..... v
Content ..... vi
Figure content ..... ix
Table content ..... xvi
1 Chapter 1 Introduction ..... 1
1.1 Overview ..... 1
1.2 STTA ..... 2
1.2.1 STTA efficiency ..... 3
1.2.2 STTA in solution ..... 5
1.2.3 STTA in solid state ..... 7
1.2.4 STTA in solid state EL devices ..... 9
1.3 Exciplex as sensitizer ..... 11
1.3.1 Exciplex ..... 12
1.3.2 Long-range exciplex ..... 13
1.3.3 Exciplex as sensitizer ..... 15
1.4 TADF as sensitizer ..... 18
1.5 Criteria for emitter and sensitizer modification ..... 20
2 Chapter 2 Experiments ..... 25
2.1 Fabrication process of OLE ..... 25
2.2 OLED device performances ..... 26
2.3 Transient EL ..... 27
2.4 Transient PL ..... 28
3 Chapter 3 Efficient Triplet–Triplet Annihilation Upconversion (TTAUC) in an Electroluminescence Device with a Fluorescent Sensitizer ..... 30
3.1 Introduction ..... 30
3.2 TTAUC-OLED with fluorophore as the sensitizer ..... 31
3.2.1 TTAUC-OLED with sensitizer/emitter bilayer structure ..... 32
3.2.2 Efficiency improvement with TDSB-layer insertion ..... 37
3.2.3 Phosphor-doped-fluorophore as the dark sensitizer of TTAUC-OLED ..... 44
3.3 Device optimization of Alq3-sensitized TTAUC-OLED ..... 60
3.3.1 TTAUC-OLED with different Alq3 thicknesses ..... 60
3.3.2 TTAUC-OLED with different DMPPP thicknesses ..... 65
3.3.3 TTAUC-OLED with DPAVBi-doped ADN ..... 70
3.4 Alternative materials for TTAUC-OLED ..... 75
3.4.1 Device performances with different sensitizer and TDSB materials ..... 76
3.5 TTAUC-OLED with doped sensitizer ..... 84
3.5.1 Device performances for incorporation a fluorescence dopant (Ir(ppy)3) in Alq3 ..... 84
3.5.2 Device performances for incorporation a phosphorescence (PtOEP) dopant in Alq3 ..... 87
3.5.3 Device performances for incorporation a fluorescence dopant (DCJTB) in Alq3 ..... 95
4 Chapter 4 Charge and Exciton Dynamics of Triplet-Triplet Annihilation Upconversion (TTAUC) in Heterojunction Thin Film with Exciplex and Thermally Activated Delayed Fluorescence (TADF) Materials as Sensitizers ..... 100
4.1 Introduction ..... 100
4.2 Exciplex as the sensitizer of TTAUC Thin Film ..... 100
4.2.1 Charge and exciton dynamics of m-MTDATA/ ADN and mMTDATA/ DMPPP bilayer thin films ..... 102
4.2.2 Charge and exciton dynamics of m-MTDATA/ ADN with different ADN thicknesses ..... 105
4.2.3 Charge and exciton dynamics of m-MTDATA/ DMPPP/ ADN layer triple-layer thin film ..... 109
4.2.4 Charge and exciton dynamics of m-MTDATA/ DPAVBi-doped ADN ..... 117
4.3 TADF as the sensitizer of TTAUC Thin Film ..... 121
4.3.1 Charge and exciton dynamics of green TADF/ DMPPP/ ADN thin films ..... 121
4.3.2 Charge and exciton dynamics of red TADF/ DMPPP/ ADN thin films ..... 124
5 Chapter 5 Conclusion ..... 127
5.1 Summary ..... 127
5.2 Future work ..... 128
A. Chapter Appendix ..... 129
Chapter A Temperature dependent of m-MTDATA:ADN and mMTDATA:DMPPP exciplex ..... 129
Chapter B Optimization of bulk heterojunction Organic Solar Cell for D-A-A configuration molecule with Fluorinated Benzothiadiazole as the electron donor material ..... 132
B.1 Introduction ..... 132
B.2 Photophysical properties of the four Fluorinated Benzothiadiazolev group electron donor materials ..... 133
B.3 Comparison of optimized device structures among six fluorinated benzothiadiazole group electron donor materials ..... 135
B.4 Exciton dynamics of DTCPB, DTCPiFBT and DTCPoFBT in solution, solid state and C70 mixed layer ..... 139
B.5 Sun intensity variation, mobility and AFM measurements of OSCs with DTCPB, DTCPiFBT and DTCPoFBT electron donor materials ..... 142
B.6.1 Optimization of different mixing ratio and thickness of active layer for DTCPiFBT: C70 based OSC ..... 145
B.6.2 Optimization of different mixing ratio and thickness of active layer for DTCPoFBT: C70 based OSC ..... 148
B.6.3 Optimization of different mixing ratio and thickness of active layer for DTCTiFBT: C70 based OSC ..... 151
B.6.4 Optimization of different mixing ratio and thickness of active layer for DTCToFBT: C70 based OSC ..... 154
6 References ..... 158
dc.language.isozh-TW
dc.title三重態-三重態湮滅上轉換電致發光元件與異質接面薄膜zh_TW
dc.titleTriplet–Triplet Annihilation Upconversion in Electroluminescence Device and Heterojunction Thin Filmsen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.oralexamcommittee邱天隆(Tien-Lung Chiu),陳錦地(Chin-Ti Chen),周必泰(Pi-Tai Chou),梁文傑(Man-Kit Leung),汪根欉(Ken-Tsung Wong)
dc.subject.keyword有機發光二極體,三重態-三重態湮滅上轉換,三重態擴散與單重態阻擋層,光激發光譜量測系統,激基複合物,熱活化型延遲螢光,zh_TW
dc.subject.keywordorganic light-emitting diode,triplet-triplet annilihiation upconversion,triplet-diffusion and singlet-blocking layer,transient photoluminescence,exciplex,thermally activated delayed fluorescence,en
dc.relation.page164
dc.identifier.doi10.6342/NTU202000042
dc.rights.note有償授權
dc.date.accepted2020-01-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  目前未授權公開取用
9.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved