Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74695
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳士元
dc.contributor.authorChin-Lung Liaoen
dc.contributor.author廖金隆zh_TW
dc.date.accessioned2021-06-17T09:06:08Z-
dc.date.available2022-01-14
dc.date.copyright2020-01-14
dc.date.issued2019
dc.date.submitted2020-01-09
dc.identifier.citation[1] W.-S. Chen and K.-Y. Ku, “Band-rejected design of the printed open slot antenna for WLAN/WiMAX operation,” IEEE Trans. Antennas Propag., vol. 56, no. 4, pp. 1163–1169, Apr. 2008
[2] J. H. Lu and B. J. Huang, “Planar compact slot antenna with multiband operation for IEEE 802.16 m application,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1411–1414, Mar. 2013.
[3] T. Huynh and K. F. Lee, “Single-layer single-patch wideband microstrip antenna,” Electron. Lett., vol. 31, no. 16, pp. 1310–1312, Aug. 1995.
[4] S. L.-S. Yang, A. A. Kishk, and K.-F. Lee, “Frequency reconfigurable U-slot microstrip patch antenna,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 127–129, Jan. 2008.
[5] Zhanwei Zhou, Shiwen Yang, and Zaiping Nie, 'A Novel Broadband Printed Dipole Antenna With Low Cross-Polarization,' IEEE Trans. Antennas Propag., vol. 55, no. 11, pp. 3091–3093, Nov. 2007.
[6] H. Park, K. Chung, and J. Choi, “Design of a planar inverted-F antenna with very wide impedance bandwidth,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 3, pp. 113–115, Mar. 2006.
[7] John D. Kraus and Ronald J. Marhefka, (2003). Antennas For All Applications (Third Edition). McGraw-Hill, ch. 2.
[8] Robert S. Elliott, J. (2003). Antenna Theory and Design (Revised ed.). Wiley-IEEE Press, ch. 7.
[9] E. Levine, S. Shtrikman, and D. Treves, “Double-sided printed arrays with large bandwidth,” Proc. Inst. Elect. Eng. Microw. Antennas Propag., vol. 135, pp. 54–59, Feb. 1988.
[10] F. Tefiku and C. A. Grimes, “Design of broad-band and dual-band antennas comprised of series-fed printed-strip dipole pairs,” IEEE Trans. Antennas Propag., vol. AP-48, pp. 895–900, Jun. 2000.
[11] B. Edward and D. Rees, “A broad-band printed dipole with integrated balun,” Microw. J., pp. 339–344, May 1987.
[12] Y. H. Cui, R. L. Li, and P. Wang, “A novel broadband planar antenna for 2G/3G/LTE base stations,” IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2767–2774, May 2013.
[13] J. B. Knorr and K. D. Kuchler, “Analysis of coupled slots and coplanar strips on dielectric substrate,” IEEE Trans. Microwave Theory Tech., vol. MTT-23, no. 7, pp. 541-548, July 1975.
[14] G. Ghione and C. Naldi, 'Analytical Formulas for Coplanar Line in Hybrid and Monolithic MICs,' Electronics Letters, Vol. 20, No. 4, February 16, 1984, pp. 179-181.
[15] Z.-C. Hao, H.-H. Wang, and W. Hong, 'A Novel Planar Reconfigurable Monopulse Antenna for Indoor Smart Wireless Access Points Application', IEEE Trans. Antennas Propag., vol. 64, no. 4, pp. 1250–1261, Apr. 2016.
[16] 中華民國無線電頻率分配表,交通部審定編印,民106.2,64-69。
[17] Nguyen, V.A., Park, B.Y., Park, S.O., et al., “A planar dipole for multiband antenna systems with self-balanced impedance”, IEEE Antennas Wireless Propag. Lett., 2014, 13, pp. 1632–1635
[18] R. K. Joshi and A. R. Harish, “A modified bow-tie antenna for dual band applications,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 468–471, 2007.
[19] H. M. Chen, J. M. Chen, P. S. Cheng, and Y. F. Lin, 'Feed for dual-band printed dipole antenna,' Electron. Lett., vol. 40, pp. 1320-1322, Oct. 2004.
[20] C.-M. Su, H.-T. Chen, and K.-L. Wong,“Printed dual-band dipole an-tenna with U-slotted arms for 2.4/5.2 GHz WLAN operation,” Electron. Lett., vol. 38, pp. 1308–1309, Oct. 2002.
[21] E. A. Navarro, J. A. Carrasco, and C. Reig, “Dual printed antenna for Wi-Fi applications,” IEEE Antennas Wireless Propag. Lett.,vol.8,pp. 596–598, 2009.
[22] E. Avila-Navarro, C. Cayuelas, and C. Reig, “Dual-band printed dipole antenna for Wi-Fi 802.11n applications,” Electron. Lett., vol. 46, pp. 1421–1422, Oct. 2010.
[23] C. Lin, C. Su, F. Hsiao, and K. Wong, “Printed folded dipole array antenna with directional radiation for 2.4/5 GHz WLAN operation,” Electron. Lett., vol. 39, no. 24, pp. 1698–1699, Nov. 2003.
[24] X. Cai, W. Geyi and H. Sun, 'A Printed Dipole Array With High Gain and Endfire Radiation,' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1512-1515, 2017.
[25] R. D. Bari, T. Brown, S. Gao, M. Notter, D. Hall, and C. Underwood, “Dual-polarized printed S-band radar array antenna for spacecraft applications,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 987–990, 2011.
[26] Zedong Wang, Ouanxi Zhang, Yingzeng Yin, “Design of a Dual- band High Gain Antenna Array for Wlan and Wimax Base Station,” IEEE Antennas Wireless Propag. Lett, vol. 13, pp. 1721-1724, August 2014.
[27] Je-Ruei Bai, Polarimetric radar and entropy applied to target identification and criterions for radar antenna design, Master Thesis, Graduate institute of communication engineering, College of electrical engineering and computer science, National Taiwan University, Taiwan, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74695-
dc.description.abstract本論文提出一款印刷式雙偶極天線架構,可設計應用於無線通訊系統,亦可設計成雙線性極化印刷式偶極天線陣列以應用於雷達系統中。論文一開始先介紹偶極天線的基本原理及其相關的重要參數,接著針對印刷式雙偶極天線的輻射原理進行探討,並且改善前人研究的天線饋入架構,提出新的T型饋入架構,藉此可降低交叉極化的位準,使得該天線作為雙極化天線陣列之輻射單元後,可降低不同極化之間的耦合量。首先,透過適當地設計印刷式偶極天線的長度和間距,以及T型饋入結構的長度及寬度,即可設計出符合IEEE 802.11無線區域網路系列標準的相關頻寬及頻帶。為了驗證所設計出來的天線是否滿足標準要求,模擬和實驗是必須的。模擬的部分使用全波模擬軟體建立了天線的模型,而為了滿足商用的目的,實作時採用市售便宜的板材當作基板,藉此達到適用於無線區域網路且具成本效益的天線,並比較了相關文獻的成果與本篇的差異。接著,本論文進一步以此設計完成可應用於極化雷達系統之雙極化天線陣列,該陣列的天線單元亦為印刷式雙偶極天線,兩種極化方向的天線單元及天線單元間的間距亦需仔細設計,而雷達陣列的饋入網路採用三維的方式走線,其中採用了水平及垂直饋入網路,並巧妙地使用卡榫的技巧,一方面利於饋入網路的組裝及定位,另一方面利於焊接,模擬與實驗的結果大致都吻合,表示這種三維的饋入網路是可用於實際的應用上。最後將設計好的雙極化雷達陣列天線應用於雷達目標物辨識上,透過前人研究所提出的極化熵的演算法及模擬環境,也得到不錯的結果,並且相較於前人的研究,本篇所提之雙極化雷達陣列天線可適用的頻率範圍更廣,在實際應用上能夠有更多的彈性。zh_TW
dc.description.abstractIn this thesis, we proposed a printed dual dipole antenna along with a new feeding network that can be applied to wireless communication systems and can also be designed as a dual-linearly-polarized printed dual dipole array for use in polarimetric radar systems. This thesis begins with the basics of dipole antennas and some important parameters and then discusses the radiation principle of printed dual dipole antennas. Based on the feeding structure proposed in [12], we proposed a new T-shaped feeding structure that can reduce the cross-polarization level. Thus, the coupling between adjacent antenna elements with orthogonal polarizations in the array design can be reduced. By properly designing the length and spacing of the printed dual dipole antenna as well as the length and width of the T-shaped feeding structure, the desired bandwidths and frequency bands for the IEEE 802.11 wireless local area network standard can be achieved. For verification, simulated and measured results of the fabricated prototype are given and compared. The simulations are conducted using full-wave simulation software. For practical consideration, commercially available inexpensive boards are used as the substrate to achieve a cost-effective antenna for wireless local area network applications. A comparison between the recently published works and our design is given as well. Moreover, a dual-linearly-polarized array antenna for polarimetric radar system is designed based on the printed dual dipole antenna. The orthogonally polarized printed dual dipole elements and the spacing between adjacent elements need to be designed carefully. A three-dimensional feeding network is proposed for the array design, including horizontal and vertical parts. The concept of mortise and tenon is used in this design, making it compatible to PCB-process and easy for assembly, welding, and positioning of the vertical and horizontal parts of the feeding network. The results of the simulation and experiment agree well, meaning that the proposed three-dimensional feeding network is feasible for practical applications. Finally, the designed dual-linearly-polarized radar array antenna is used for radar target identification. Based on the polarization-entropy-based method previously proposed by our lab, decent identification performance can be obtained. Compared with the dual-linearly-polarized square patch antenna used in our previous work, the dual- linearly-polarized radar array antenna proposed in this thesis demonstrates a wider frequency bandwidth and greater flexibility for practical applications.en
dc.description.provenanceMade available in DSpace on 2021-06-17T09:06:08Z (GMT). No. of bitstreams: 1
ntu-108-R05942145-1.pdf: 7475984 bytes, checksum: c3796b12d2f69b63c148d6659d39b1cc (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Thesis Outline 1
Chapter 2 Fundamentals of Dipole Antenna 3
2.1 Antenna Basics 3
2.1.1 Impedance Matching 3
2.1.2 Return Loss 4
2.1.3 Directivity, Gain, and Efficiency 5
2.2 Dipole Antenna 6
2.2.1 Equivalent circuit model 6
2.2.2 Radiation Mechanism of Dipole Antenna 7
Chapter 3 Operational Principles of Printed Dual Dipole Antenna and A New Feeding Structure 12
3.1 Introduction of printed dipole antenna 12
3.2 Basic Antenna Structure 12
3.3 Radiation Mechanism of Printed Dual Dipole Antenna 13
3.4 Antenna Structure Improvement 16
Chapter 4 Design Example for Access Point of Wireless Local Area Network (WLAN) 23
4.1 Antenna for WLAN Access Points 25
4.2 Radiation Pattern 27
4.2.1 2.4-GHz band 27
4.2.2 5-GHz band 28
4.3 Prototyping, Results, and Comparison 30
Chapter 5 Dual-Linearly-Polarized Printed Dual-Dipole Array for Use in S-band Polarimetric Radar System 37
5.1 Antenna Unit Design 37
5.1.1 X-polarized antenna unit design 38
5.1.2 Y-polarized antenna unit design 43
5.2 55 Dual-Linearly-Polarized Array Design 48
5.3 Feeding Circuit Design 53
5.3.1 Vertical Feeding Sub-Circuits for Dual Polarization Linear Sub-Arrays 54
5.3.2 Feeding Circuit for 55 Dual Polarization Antenna Array 61
5.4 Simulation and Measurement Results 67
Chapter 6 Application in Polarimetric Radar System 77
Chapter 7 Conclusions and Future Works 84
7.1 Conclusions 84
7.2 Future Works 85
7.3 List of Contributions 85
REFERENCE 87
dc.language.isoen
dc.title雙線性極化印刷式雙偶極天線陣列及其極化雷達系統應用zh_TW
dc.titleDual-Linearly-Polarized Printed Dual-Dipole Antenna Array and Its Application in Polarimetric Radar Systemen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee許博文,陳念偉,歐陽良昱
dc.subject.keyword天線陣列,饋入網路,極化雷達,印刷式偶極天線,zh_TW
dc.subject.keywordantenna arrays,feeding network,polarimetric radar,printed dipole antennas,en
dc.relation.page89
dc.identifier.doi10.6342/NTU201904024
dc.rights.note有償授權
dc.date.accepted2020-01-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
7.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved