Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74647
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林怡成
dc.contributor.authorTzu-Chieh Linen
dc.contributor.author林子捷zh_TW
dc.date.accessioned2021-06-17T08:47:43Z-
dc.date.available2024-08-07
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-05
dc.identifier.citation[1]D. R Jackson, A. A. Oliner, and A. Ip, “Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure, ” IEEE Trans. Antennas Propag., Vol. 41, pp. 344-348, Mar. 1993.
[2]T. Zhao, D. R. Jackson, J. T. Williams, H.-Y. D. Yang, and A. A. Oliner, “2-D periodic leaky-wave antennas-part I: metal patch design,” IEEE Trans. Antennas Propag., Vol. 53, N. 11, pp. 3505 - 3514, Nov. 2005.
[3]C. Caloz and T. Itoh Electromagnetuc Metamaterials: Transmission Line Theory and Microwave Applications. New York: Wiley, 2004.
[4]O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, “Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches,” IEEE Trans. on Antennas and Propag., vol. 56, no. 6, pp.1624-1632, Jun. 2008.
[5]A. Feresidis and J. Vardaxoglou, “High gain planar using optimized partially reflective surfaces,” IEE Proceedings microwaves, Antennas & Propagation, vol. 148, no. 6, pp.344-350, Dec. 2001.
[6]A. P. Feresidis, G. Goussetis, S. Wang, and J. Y. C. Vardaxoglou, “Artificial Magnetic Conductor Surfaces and Their Application to Low-Profile High-Gain Planar Antennas,” IEEE Trans. on Antennas and Propag., vol. 53, no. 1, pp.209-215, Jan. 2005.
[7]G. V. Trentini, “Partially reflective sheet arrays,” IRE Trans. Antennas and Propag., vol.4, no.4, pp.666-671, Oct. 1956.
[8]N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A Metallic Fabry–Perot Directive Antenna,” IRE Trans. Antennas and Propag., vol. 54, no. 1, pp.220-224, Jan. 2006.
[9]T. Tamir and A. A. Oliner, “Guided complex waves. Part2: Relation to radation patterns,” Proc. Inst. Elect. Eng., vol. 110, pp. 325-334, Feb. 1963.
[10]G. Lovat, P. Burghignoli, and D. R. Jackson, “Fundamental Properties and Optimization of Broadside Radiation from Uniform Leaky-Wave Antennas,” IEEE Trans. on Antennas and Propag., vol. 54, no. 5, pp.1442-1452, May 2006.
[11]D. R. Jackson, and N. G. Alexopoulos, “Gain Enhancement Methods for Printed Circuit Antennas,” IEEE Trans. on Antennas and Propag., vol. ap-33, no. 9, pp.976-987, Sep. 1985.
[12]H. Y. Yang and N. G. Alexopoulos, “Gain enhancement methods for printed circuit antennas through multiple superstrates,” IEEE Trans. Antennas Propag., vol. 35, no. 7, pp. 860–863, Sep. 1987
[13]R. Gardelli, M. Albani, and F. Capolino, “Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement,” IEEE Trans. Antennas Propag., vol. 54, no. 7, July 2006.
[14]Y. F. Lu, and Y. C. Lin, “A Hybrid Approach for Finite-Size Fabry-Pérot Antenna Design With Fast and Accurate Estimation on Directivity and Aperture Efficiency,” IEEE Trans. on Antennas and Propag., vol. 61, no. 11, pp. 5394-5401, Nov. 2013.
[15]D. R. Jackson, P. Burghignoli, G. Lovat, F. Capolino, J. Chen, D. Wilton, and A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves,” Proc. IEEE, vol. 99, no. 110, pp. 1780-1805, 2011.
[16]M. A. Al-Tarifi, D. E. Anagnostou, A. K. Amert, and K. W. Whites, “Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1898-1908, Apr. 2013.
[17]R. M. Hashmi, B. A. Zeb, and K. P. Esselle, “Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2970-2977, June 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74647-
dc.description.abstract本篇論文提出一種毫米波頻段的高增益天線之設計方法,利用超穎材料及多層印刷電路板的架構來實現,其中一層為超穎材料所設計之部分反射表面(Partially Reflecting Surface, PRS),另一層金屬接地面所構成,故此天線亦稱為部分反射表面天線。其中此型態的天線可讓電磁波在部分反射面及接地面之間所形成的共振腔中來回共振以達到高增益天線的特性,將可應用於即時且高傳輸速率的第五代行動通訊(5G)中。
在本論文中,首先探討超穎材料週期性結構單元的反射係數大小及相位,並依此設計天線共振腔之高度,完成原型的設計。接著以陣列方式進行激發來提高整體之增益,並採用非等能量走線的方式饋入,用以實現降低旁辦波束的表現,除此之外,在天線模組的周圍加上由金屬通孔所組成的金屬壁,除了可使共振到外圍的波再反射回來,用以增加天線增益外,亦可減少天線模組之間的互相干擾。在操作頻段37 – 40 GHz的頻率下, 陣列天線的正向輻射最大實際增益可達到19.1 dBi,SLL(Side lobe Level)在中心頻處可達到-22.5 dB。在 陣列天線的部分,正向輻射增益最高可以達到25.1 dBi,SLL在中心頻處也可達到-17.3 dB。
此外本篇論文設計了一提升部分反射表面天線頻寬的解決方案,由原本典型的結構底層加入一漸進式矩形的超穎材料,其利用五種不同大小的金屬片,藉由反射相位正向斜率的特性來達到寬頻的效果。
zh_TW
dc.description.abstractThis thesis proposes a high-gain antenna designed in the millimeter-wave band using Metamaterials, which is implemented by multilayer printed circuit board architecture. One of the layer is made by Metamaterials designed for partially reflecting surface (PRS), the other layer is ideal metal ground plane. We call it a partially reflective surface antenna. The resonant cavity formed between the PRS layer and the ground plane allows electromagnetic waves to resonate back and forth in the resonant cavity to achieve high gain antenna characteristics. It can be applied to fifth generation (5G) communication systems with low latency and high data rate.
First, we analyzed the reflection coefficient and reflection phase of each unit cell structure of Metamaterials. According to this model, we design the height of the antenna cavity and complete the preliminary design. Second we use 4 by 4 and 8 by 8 array feed excitation which use non-equal power feeding network to go in order to reduce the function of the side lobe. A metal wall composed of through via is added around the antenna module, it can not only reflect the EM wave and enhance the antenna gain but also reduce interference with each antenna modules. In our operating frequency band of 37 to 40 GHz, the maximum realized gain of the 4 by 4 antenna array can reach 19.1 dBi, the SLL (Side lobe Level) can reach -22.5 dB at center frequency. For the 8 by 8 antenna array, the maximum realized gain and SLL can also achieve 25.1 dBi and -17.3 dB respectively.
Also, we proposed a solution for enhance the bandwidth of a partially reflective surface antenna. Tapered Metamaterial is added to bottom of the typical structure, which utilizes five different sizes of metal sheets, with different reflection phases. The characteristics can achieve broadband effects.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:47:43Z (GMT). No. of bitstreams: 1
ntu-108-R06942006-1.pdf: 7953296 bytes, checksum: 632520a546c45ea215c35c4ade5bb10f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 xii
第一章 緒論 1
1-1 超穎材料簡介 1
1-2 部分反射表面天線 6
1-3 研究動機 14
1-4 設計目標 16
1-5 論文架構 16
第二章 部分反射表面天線單元之設計 17
2-1 週期性結構單元設計 17
2-2 部分反射表面天線單元設計 26
2-3 實際天線單元與饋入結構設計 29
2-4 總結 37
第三章 部分反射表面天線陣列之設計 38
3-1 4x4天線陣列之設計 38
3-2 8x8天線陣列之設計 62
3-3 總結 77
第四章 優化原型之模擬與量測 78
4-1 4 4天線陣列之模擬與量測比較 78
4-2 8 8天線陣列之模擬與量測比較 86
4-3 誤差分析 93
4-4 總結 106
第五章 頻寬拓展之研究 108
5-1 漸進式排列之超穎材料 108
5-2 總結 121
第六章 結論 122
參考文獻 125
dc.language.isozh-TW
dc.subject毫米波zh_TW
dc.subject旁辦波束抑制zh_TW
dc.subject高增益zh_TW
dc.subject空腔共振天線zh_TW
dc.subject超穎材料zh_TW
dc.subjectMetamaterialsen
dc.subjectmillimeter waveen
dc.subjecthigh gainen
dc.subjectcavity resonant antennaen
dc.subjectside lobe inhibitionen
dc.title超穎材料應用於毫米波高增益天線之設計zh_TW
dc.titleDesign of High Gain Antenna Using Metamaterials for Millimeter-Wave Applicationsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張嘉展,曾昭雄,廖文照
dc.subject.keyword超穎材料,毫米波,高增益,空腔共振天線,旁辦波束抑制,zh_TW
dc.subject.keywordMetamaterials,millimeter wave,high gain,cavity resonant antenna,side lobe inhibition,en
dc.relation.page127
dc.identifier.doi10.6342/NTU201902390
dc.rights.note有償授權
dc.date.accepted2019-08-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
7.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved