請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74645
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳振山 | |
dc.contributor.author | Te-Wei Chen | en |
dc.contributor.author | 陳得瑋 | zh_TW |
dc.date.accessioned | 2021-06-17T08:47:36Z | - |
dc.date.available | 2021-08-12 | |
dc.date.copyright | 2019-08-12 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-05 | |
dc.identifier.citation | [1] Lubinski, A.: A study of the buckling of rotary drilling strings. Drilling and production practice. American Petroleum Institute (1950).
[2] Schneider, P.A.: Endovascular skills: guidewire and catheter skills for endovascular surgery. Marcel Dekker, Inc., New York (2003). [3] Mahvash, M., Dupont, P.E.: Stiffness control of surgical continuum manipulators. IEEE Transactions on Robotics. 27, 334-345 (2011) [4] Lubinski, A., Althouse, W.S., Logan, J.L.: Helical buckling of tubing sealed in packers. J. Petrol. Technol. 225, 650-670 (1962). [5] Mitchell, R.F.: Buckling behavior of well tubing: the packer effect. Soc. Petrol. Eng. J., 22, 616–624 (1982). [6] Cheatham, J.B., Pattillo, P.D.: Helical postbuckling configuration of a weightless column under the action of an axial load. Soc. Petrol. Eng. J. 24, 467-472 (1984). [7] Tan, X.C., Forsman, B.: Buckling of slender string in cylindrical tube under axial load: Experiments and theoretical analysis. Experimental Mechanics 35, 55-60 (1995) [8] Paslay, P.R., Bogy, D.B.: The stability of a circular rod laterally constrained to be in contact with an inclined circular cylinder. ASME J. Appl. Mech. 31, 605-610 (1966). [9] Dawson, R., Paslay, P.R.: Drillpipe buckling in inclined holes. Journal of Petroleum Technology. 36, 1734-1738 (1984). [10] Tan, X.C., Digby, P.J.: Buckling of drill string under the action of gravity and axial thrust. Int. J. Solids Struct. 30, 2675-2691 (1993). [11] Wu, J., and Juvkam-Wold, H.C.: Helical buckling of pipes in extended reach and horizontal wells. Part 2. Frictional drag analysis. ASME J. Energ. Resour. 115, 196-201 (1993). [12] Miska, S., Cunha, J.C.: An analysis of helical buckling of tubulars subjected to axial and torsional loading in inclined wellbore. Proc., SPE Production and Operations Symposium, SPE 29460, Oklahoma City, OK, April 2–4 (1995). [13] Huang, N.C., Pattillo, P.D.: Helical buckling of a tube in an inclined wellbore. Int. J. Nonlinear Mech. 35, 911-923 (2000). [14] Martinez, A., Miska, S., Kuru, E., Sorem, J.: Experimental evaluation of the lateral contact force in horizontal wells. ASME J. Energ. Resour. 122, 123-128 (2000). [15] McCourt, I., Truslove, T., Kubie, J.: Penetration of tubulars drill pipes in horizontal oil wells. P. I. Mech. Eng. C- J. Mec. 216, 1237-1245 (2002). [16] Miller, J.T., Su, T., Pabon, J., Wicks, N., Bertoldi, K., Reis, P.M., Buckling of a thin elastic rod inside a horizontal cylindrical constraint. Extreme Mechanics Letters 3, 36–44 (2015) [17] Miller, J.T., Su, T., Dussan, E.B., Dussan V., Pabon, J., Wicks, N., Bertoldi, K., Reis, P.M., Buckling-induced lock-up of a slender rod injected into a horizontal cylinder. International Journal of Solids and Structures 72, 153–164 (2015) [18] Liu, J.-P., Zhong, X.-Y., Cheng, Z.-B., Feng, X.-Q., Ren, G.-X.: Buckling of a slender rod confined in a circular tube: Theory, simulation, and experiment. International Journal of Mechanical Sciences 140, 288–305 (2018). [19] Xiao, J., Chen, Y., Lu, X., Xu, B., Chen, X., Xu, J.: Three dimensional buckling beam under cylindrical constraint. International Journal of Mechanical Sciences 150, 348–355 (2018). [20] Wu, J., and Juvkam-Wold, H.C.: The Effect of Wellbore Curvature on Tubular Buckling and Lockup. Journal of Energy Resources Technology 117, 214-218 (1995) [21] Kuru, E., Martinez, A., Miska, S., Qiu, W.: The buckling behavior of pipes and its influence on the axial force transfer in directional wells. ASME J. Energ. Resour. 122, 129-135 (2000). [22] van der Heijden, G.H.M.: The static deformation of a twisted elastic rod constrained to lie on a cylinder. Proc. R. Soc. London A 457, 695–715 (2001). [23] van der Heijden, G.H.M., Champneys, A. R., Thompson, J. M. T.: Spatially complex localisation in twisted elastic rods constrained to a cylinder. Int. J. Solids Struct. 39, 1863–1883 (2002). [24] van der Heijden, G.H.M.: Helical collapse of a whirling elastic rod forced to lie on a cylinder. ASME J. Appl. Mech. 70, 771-774 (2003). [25] Thompson, J.M.T., Silveria, M., van der Heijden, G.H.M., Weircigroch, M.: Helical post-buckling of a rod in a cylinder: with applications to drill-strings. Proc. R. Soc. A 468, 1591–1614 (2012). [26] Feodosyev, V.I.: Selected Problems and Questions in Strength of Materials. Mir, Moscow. Translated from the Russian by M. Konyaeva (1977). [27] Sorenson, K.G., Cheatham, Jr., J.B.: Post-buckling behavior of a circular rod constrained within a circular cylinder. ASME J. Appl. Mech. 53, 929-934 (1986). [28] Chen, J.-S., Li, H.-C.: On an elastic rod inside a slender tube under end twisting moment. ASME J. Appl. Mech. 78, 041009 (2011). [29] Chen, J.-S., Fang, J.: Deformation sequence of a constrained spatial buckled beam under edge thrust. International Journal of Non-Linear Mechanics. 55, 98-101 (2013). [30] Chen, J.-S., Li, S.-Y.: A twisted elastica constrained inside a tube. European Journal of Mechanics –A/Solids. 44, 61-74 (2014). [31] Fang, J., Li, S.-Y., Chen, J.-S.: On a compressed spatial elastica constrained inside a tube: Acta Mechanica. 224, 2635-2647 (2013). [32] Hetenyi, M.: Beams on Elastic Foundation. The University of Michigan Press, Ann Arbor (1946). [33] Jansen, J.D.: Non-linear rotor dynamics as applied to oil well drillstring vibrations, Journal of sound and vibration 147, 115-135 (1991) [34] Rybacki, E., Reinicke, A., Meier, T., Makasi, M., Drese, G.: What controls the mechanical properties of shale rocks? – Part I: Strength and Young's modulus. Journal of Petroleum Science and Engineer 135, 702-722 (2015) [35] Gholipour, A., Ghayesh, M.H., Zander, A.: Nonlinear biomechanics of bifurcated atherosclerotic coronary arteries. International journal of engineering science 133, 60-83 (2018) [36] Craiem, D., Casciaro, M.E., Graf, S., Glaser, C.E., Gurfinkel, E.P., Armentano, R.L.: Coronary arteries simplified with 3D cylinders to assess true bifurcation angles in atherosclerotic patients. Cardiovassc. Eng. 9, 127-133 (2009) [37] Hirai, T., Sasayama, S., Kawasaki, T., Yagi, S.-I.: Stiffness of systemic arteries in patients with myocardial-infarction - a noninvasive method to predict severity of coronary atherosclerosis. Circulation 80, 78-86 (1989). [38] Tran, J.S., Schiavazzi, D.E., Kahn, A.M., Marsden, A.L.: Uncertainty quantification of simulated biomechanical stimuli in coronary artery bypass grafts. Computer Methods in Applied Mechanics and Engineering 345, 402–428 (2019) [39] Kim, T. J. , Kim, J. K. , Park, B. M. , Song, P. S. , Kim, D. K. , Kim, K. H. , Seol, S.H., Kim, D.I: Fatal subacute stent thrombosis induced by guidewire fracture with retained filaments in the coronary artery. Korean Circulation Journal, 43 , 761–765 (2013) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74645 | - |
dc.description.abstract | 先前對於彈性圓桿被拘束在圓管的研究都假設圓管管壁為剛性管壁,這樣的假設在醫學上不適用,像是血管或是人體組織多是彈性體而非剛體,本篇論文中將介紹一根兩端夾持(clamped-clamped)且被拘束在彈性直管或是彈性彎管中的圓桿在端點推力作用下的變形。我們假設彈性圓桿只受到在圓管半徑方向所給的反力,且不考慮摩擦力與重力的影響。在圓管管壁的部份我們假設彈性管壁所給的反力會與接觸點的半徑方向之位移成正比,一般而言在剛性的情況,從接觸轉變到未接觸的過程只會在一個非常小的區域發生,但若為彈性的情況下,這種小區域的轉變會擴散開成為一段線段。當彈性係數 較大時,彈性管壁所給的反作用力的形式會非常接近剛性管壁的形式。舉例來說,在剛性管壁線接觸時,線接觸段的兩端會有一對集中力,若在彈性管壁的情況下也可以從分佈力中看出此現象。另外,被拘束的彈性圓桿其凸出量與分佈力的大小成正比,彈性圓桿的最大凸出量發生的位置不一定要在彈性圓桿的中點,另外,有趣的是軸向負載在最大值時,不會有最大凸出量的發生。在彈性彎管的部分,若以控制推進量的方式施加負載, 的情況會發生跳躍(jump)的現象。若管壁的彈性係數低於 或是實際轉角較大時,則不會發生跳躍的現象。在凸出量的部分,當推力達到最大負載時並不會有最大凸出量,反而是在三線接觸時圓桿的中點位置有最大凸出量。 | zh_TW |
dc.description.abstract | Most previous works on spatial elastica constrained inside a tube assumed that the tube wall is rigid. This assumption is not adequate when it involves human artery and tissue. In this paper we study the deformation of a clamped-clamped rod constrained inside a straight or curved flexible tube. The reactive force exerted on the rod is assumed to be only in the radial direction and proportional to the radial displacement of the tube wall at the contact point. The results are compared with those of a rigid tube. The complicated deformations, which change from contact to non-contact within a tight range, can exist only when the tube is rigid. As the tube becomes more flexible, the dramatic variation of contact and non-contact tends to be eased off. It is shown that the peculiar phenomenon of concentrated force pairs on the edges of line-contact segment in rigid tube model can be captured by the springy wall model as the spring constant approaches infinity. It is also found that the maximum lateral protrusion of the flexible tube does not necessarily occur at the midpoint of the rod. In the case of a curved tube, jump phenomenon can be observed from the load-deflection diagram if the initial twist is specified at certain level. However, if the initial twist increases to a certain level or the spring constant becomes lower, the jump phenomenon may disappear. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:47:36Z (GMT). No. of bitstreams: 1 ntu-108-R06522515-1.pdf: 2814874 bytes, checksum: 2779338a1e6dc6ee166601e83686e6b9 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 英文摘要 i
中文摘要 ii 第一章 導論 1 1.研究動機 1 2.文獻回顧 2 第二章 圓桿拘束於彈性直管中的變形 3 1.理論模型 3 1.1 未接觸之統御方程式推導: 4 1.2 中點條件 8 1.3 對稱性 9 2.線接觸推導 10 2.1 Winkler’s spring model 10 2.2 線接觸方程式推導 12 3.求解方法 14 3.1 Newton-Raphson method 15 3.2 未接觸:變形0 17 3.3 一線接觸:變形L 17 3.4 兩線接觸:變形LL 17 3.5 三線接觸:變形LLL 18 4.數值結果 20 4.1 力與變形關係 20 4.2 不同彈性係數的管壁與剛性管壁的比較 24 4.3 剛性管壁與彈性管壁的分佈力比較 26 4.4 彈性管壁凸出量 28 5.結論 30 第三章 圓桿拘束於彈性彎管中的變形 31 1. 理論模型: 32 1.1 未接觸之統御方程式推導: 35 1.2 對稱性 39 1.3 中點邊界條件 41 2. 線接觸之統御方程式推導 43 3. 求解方法 45 3.1 未接觸:變形0 45 3.2 一線接觸:變形L 45 3.3三線接觸:變形LLL 46 4. 數值結果 48 4.1 力與變形關係 48 4.2 不同彈性係數 下的分佈力比較 53 4.3 初始角對於變形的影響 54 4.4 彈性管壁凸出量 54 5. 結果與討論 56 參考文獻 57 附錄A 60 附錄B 61 附錄C 63 | |
dc.language.iso | zh-TW | |
dc.title | 拘束在彈性圓管內的彈性圓桿受軸向負載作用下的變形 | zh_TW |
dc.title | Deformation of a spatial elastica under edge thrust constrained inside a springy tube | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 莊嘉揚,盧中仁 | |
dc.subject.keyword | 彈性圓桿,彈性圓管, | zh_TW |
dc.subject.keyword | spatial elastica,springy tube, | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU201902495 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 2.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。