請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74620完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江衍偉(Yean-Woei Kiang) | |
| dc.contributor.author | Wen-Yen Chang | en |
| dc.contributor.author | 張文彥 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:46:10Z | - |
| dc.date.available | 2019-08-16 | |
| dc.date.copyright | 2019-08-16 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-06 | |
| dc.identifier.citation | 1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).
2. C. F. Bohren, “How can a particle absorb more than the light on it?” Am. J. Phys. 51, 323 (1983). 3. N. A. Azarenkov and N. K. Ostrikov, “Surface magnetoplasma waves at the interface between a plasma-like medium and a metal in a Voigt geometry,” Phys. Rep. 308, 333–428 (1999). 4. J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley Publications, Boston, 1967). 5. K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92(1), 013108 (2008). 6. Y. C. Lu, Y. S. Chen, F. J. Tsai, J. Y. Wang, C. H. Lin, C. Y. Chen, Y. W. Kiang, and C. C. Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009). 7. C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96(26), 261104 (2010). 8. C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23(6), 8150-8161 (2015). 9. C. H. Lin, C. G. Tu, Y. F. Yao, S. H. Chen, C. Y. Su, H. T. Chen, Y. W. Kiang, and C. C. Yang, “High modulation bandwidth of a light-emitting diode with surface plasmon coupling,” IEEE Transact. Electron Dev. 63(10), 3989-3995 (2016). 10. C. Y. Su, C. H. Lin, Y. F. Yao, W. H. Liu, M. Y. Su, H. C. Chiang, M. C. Tsai, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode,” Opt. Express 25(18), 21526-21536 (2017). 11. C. H. Lin, C. Y. Su, Y. F. Yao, M. Y. Su, H. C. Chiang, M. C. Tsai, W. H. Liu, C. G. Tu, Y. W. Kiang, C. C. Yang, F. W. Huang, C. L. Lee, and T. C. Hsu, “Further emission efficiency improvement of a commercial-quality light-emitting diode through surface plasmon coupling,” Opt. Lett. 43(22), 5631-5634 (2018). 12. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205-213 (2010). 13. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cu, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979-1984 (2010). 14. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19(S4), A914-A929, (2011). 15. J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18(3), 2682-2694 (2010). 16. F. J. Tsai, J. Y. Wang, J. J. Huang, Y. W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(13), A207-A220 (2010). 17. H. Y. Lin, Y. Kuo, C. Y. Liao, C. C. Yang, and Y. W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Opt. Express 20(S1), A104-A118 (2012). 18. Y. Kuo, W. Y. Chang, H. S. Chen, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with a radiating dipole near an Ag nanoparticle embedded in GaN,” Appl. Phys. Lett. 102(16), 161103 (2013). 19. Y. Kuo, W. Y. Chang, H. S. Chen, Y. R. Wu, C. C. Yang, and Y. W. Kiang, “Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode,” J. Opt. Soc. Am. B 30(10), 2599-2606 (2013). 20. Y. Kuo, H. T. Chen, W. Y. Chang, H. S. Chen, C. C. Yang, and Y. W. Kiang, “Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device,” Opt. Express 22(S1), A155-A166 (2014). 21. Y. Kuo, Y. F. Yao, M. H. Chiu, W. Y. Chang, C. C. Yang, Y. W. Kiang, “Coupling behaviors of a radiating dipole with the surface plasmon induced on a metal protrusion,” Plasmonics 10(2), 241-249 (2015). 22. Y. Kuo, W. Y. Chang, C. H. Lin, C. C. Yang, and Y. W. Kiang, “Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating,” Opt. Express 23(24), 30709-30720 (2015). 23. Y. Kuo, C. Y. Su, C. Hsieh, W. Y. Chang, C. A. Huang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling for suppressing p-GaN absorption and TM-polarized emission in a deep-UV light-emitting diode,” Opt. Letters 40(18), 4229-4232 (2015). 24. H. Hirayama, Y. Tsukada, T. Maeda, and N. Kamata, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer,” Appl. Phys. Express 3(3), 031002 (2010). 25. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26(1), 014036 (2011). 26. M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012). 27. T. F. Kent, S. D. Carnevale, A. T. M. Sarwar, P. J. Phillips, R. F. Klie, and R. C. Myers, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25(45), 455201 (2014). 28. T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017). 29. K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Unique optical properties of AlGaN alloys and related ultraviolet emitters,” Appl. Phys. Lett. 84(25), 5264-5266 (2004). 30. H. Kawanishia, M. Senuma, and T. Nukui, “Anisotropic polarization characteristics of lasing and spontaneous surface and edge emissions from deep-ultraviolet (λ≈240nm) AlGaN multiple-quantum-well lasers,” Appl. Phys. Lett. 89(4), 041126 (2006). 31. T. Kolbe, A. Knauer, C. Chua, Z. Yang, S. Einfeldt, P. Vogt, N. M. Johnson, M. Weyers, and M. Kneissl, “Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 97(17), 171105 (2010). 32. J. E. Northrup, C. L. Chua, Z. Yang, T. Wunderer, M. Kneissl, N. M. Johnson, and T. Kolbe, “Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells,” Appl. Phys. Lett. 100(2), 021101 (2012). 33. S. Fan, Z. Qin, C. He, X. Wang, B. Shen, and G. Zhang, “Strain effect on the optical polarization properties of c-plane Al0.26Ga0.74N/GaN superlattices,” Opt. Express 22(6), 6322-6328 (2014). 34. X. Chen, C. Ji, Y. Xiang, X. Kang, B. Shen, and T. Yu, “Angular distribution of polarized light and its effect on light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes,” Optics Express 24(10), A935-A942 (2016). 35. S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491- 2504 (1996). 36. S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252-263 (1997). 37. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675-3696 (2003). 38. C. Reich, M. Guttmann, M. Feneberg, T. Wernicke, F. Mehnke, C. Kuhn, H. Rass, M. Lapeyrade, S. Einfeldt, A. Knauer, V. Kuller, M. Weyers, R. Goldhahn, and M. Kneissl, “Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes,” Appl. Phys. Lett. 107(14), 142101 (2015). 39. M. Imura, K. Nakano, G. Narita, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers,” J. Cryst. Growth 298, 257-260 (2007). 40. H. Hirayama, S. Fujikawa, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “Fabrication of a low threading dislocation density ELO-AlN template for application to deep-UV LEDs,” Phys. Status Solidi C 6(S2), S356-S359 (2009). 41. H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014). 42. R. Gaska, C. Chen, J. Yang, E. Kuokstis, A. Khan, G. Tamulaitis, I. Yilmaz, M. S. Shur, J. C. Rojo, and L. J. Schowalter, “Deep-ultraviolet emission of AlGaN/AlN quantum wells on bulk AlN,” Appl. Phys. Lett. 81(24), 4658-4660 (2002). 43. T. Nishida, T. Makimoto, H. Saito, and T. Ban, “AlGaN-based ultraviolet light-emitting diodes grown on bulk AlN substrates,” Appl. Phys. Lett. 84(6), 1002-1003 (2004). 44. T. Kinoshita, T. Obata, T. Nagashima, H. Yanagi, B. Moody, S. Mita, S. Inoue, Y. Kumagai, A. Koukitu, and Z. Sitar, “Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy,” Appl. Phys. Express 6(9), 092103 (2013). 45. M. Martens, F. Mehnke, C. Kuhn, C. Reich, V. Kueller, A. Knauer, C. Netzel, C. Hartmann, J. Wollweber, J. Rass, T. Wernicke, M. Bickermann, M. Weyers, and M. Kneissl, “Performance characteristics of UV-C AlGaN-based lasers grown on sapphire and bulk AlN substrates,” IEEE Photon. Technol. Lett. 26(4), 342-345 (2014). 46. H. Lu, T. Yu, G. Yuan, X. Chen, Z. Chen, G. Chen, and G. Zhang, “Enhancement of surface emission in deep ultraviolet AlGaN-based light emitting diodes with staggered quantum wells,” Opt. Lett. 37(17), 3693-3695 (2012). 47. W. Wang, H. Lu, L. Fu, C. He, M. Wang, N. Tang, F. Xu, T. Yu, W. Ge, and B. Shen, “Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure,” Opt. Express 24(16), 18176-18183 (2016). 48. J. Zhang, H. P. Zhao, and N. Tansu, “Large optical gain AlGaN-Delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes,” Appl. Phys. Lett. 98(17), 171111 (2011). 49. X. J. Chen, T. J. Yu, H. M. Lu, G. C. Yuan, B. Shen, and G. Y. Zhang, “Modulating optical polarization properties of Al-rich AlGaN/AlN quantum well by controlling wavefunction overlap,” Appl. Phys. Lett. 103(18), 181117 (2013). 50. C. Y. Su, M. C. Tsai, K. P. Chou, H. C. Chiang, H. H. Lin, M. Y. Su, Y. R. Wu, Y. W. Kiang, and C. C. Yang, “Method for enhancing the favored transverse-electric-polarized emission of an AlGaN deep-ultraviolet quantum well,” Opt. Express 25(22), 26365-26377 (2017). 51. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007). 52. K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93(23), 231111 (2008). 53. K. R. Son, B. R. Lee, M. H. Jang, H. C. Park, Y. H. Cho, and T. G. Kim, “Enhanced light emission from AlGaN/GaN multiple quantum wells using the localized surface plasmon effect by aluminum nanoring patterns,” Photon. Research 6(1), 30-36 (2018). 54. C. Zhang, N. Tang, L. Shang, L. Fu, W. Wang, F. Xu, X. Wang, W. Ge, and B. Shen, “Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells,” Scientific Reports 7(1), 2358 (2017). 55. K. Okamoto, M. Funato, Y. Kawakami, and K. Tamada, “High-efficiency light emission by means of exciton–surface-plasmon coupling,” J. Photoch. Photobio. C: Photoch. Rev. 32, 58-77 (2017). 56. H. W. Shin, K. R. Son, and T. G. Kim, “Localized surface plasmon-enhanced light emission using platinum nanorings in deep ultraviolet-emitting AlGaN quantum wells,” Opt. Lett. 41(1), 88-91 (2016). 57. K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localised surface plasmons,” Sci. Rep. 4(4038), 1-7 (2014). 58. C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett 102(21), 211110 (2013). 59. N. Gao, K. Huang, J. Li, S. Li, X. Yang, and J. Kang, “Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells,” Sci. Rep. 2(816), 1-6 (2012). 60. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076-3080 (2010). 61. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602-606 (2010). 62. C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268-1277 (2011). 63. H. Y. Lee, Y. C. Lin, I. H. Chen, and C. H. Chao, “Effective color conversion of GaN-based LEDs via coated phosphor layers,” IEEE Photon. Technol. Lett. 25(8), 764-767 (2013). 64. J. H. Oh, K. H. Lee, H. C. Yoon, H. Yang, and Y. R. Do, “Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors,” Opt. Express 22(S2), A511-A520 (2014). 65. C. T. Lee, C. J. Cheng, H. Y. Lee, Y. C. Chu, Y. H. Fang, C. H. Chao, and M. H. Wu, “Color conversion of GaN-based micro light-emitting diodes using quantum dots,” IEEE Photon. Technol. Lett. 27(21), 2296-2299 (2015). 66. H. V. Han, H. Y. Lin, C. C. Lin, W. C. Chong, J. R. Li, K. J. Chen, P. Yu, T. M. Chen, H. M. Chen, K. M. Lau, and H. C. Kuo, “Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology,” Opt. Express 23(25), 32504-32515 (2015). 67. C. Y. Liu, T. P. Chen, T. S. Kao, J. K. Huang, H. C. Kuo, Y. F. Chen, and C. Y. Chang, “Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes,” Opt. Express 24(17), 19978-19987 (2016). 68. H. C. Yoon, H. Kang, S. Lee, J. H. Oh, H. Yang, and Y. R. Do, “Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance,” ACS Appl. Mater. Interfaces 8(28), 18189-18200 (2016). 69. G. S. Chen, B. Y. Wei, C. T. Lee, and H. Y. Lee, “Monolithic red/green/blue micro-LEDs with HBR and DBR structures,” IEEE Photon. Technol. Lett. 30(3), 262-265 (2018). 70. C. H. Lin, H. C. Chiang, Y. T. Wang, Y. F. Yao, C. C. Chen, W. F. Tse, R. N. Wu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Efficiency enhancement of light color conversion through surface plasmon coupling,” Opt. Express 26(18), 23629-23640 (2018). 71. A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling”, Phys. Rev. B. 66(15), 153305 (2002). 72. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(4), 601-605 (2004). 73. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007). 74. G. Sun and J. B. Khurgin, “Plasmon enhancement of luminescence by metal nanoparticles,” IEEE J. Select. Topics in Quantum Electron. 17(1), 110-118 (2011). 75. K. Tateishi, M. Funato, Y. Kawakami, K. Okamoto, and K. Tamada, “Highly enhanced green emission from InGaN quantum wells due to surface plasmon resonance on aluminum films,” Appl. Phys. Lett. 106(12), 121112 (2015). 76. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). 77. S. Nootchanat, A. Pangdam, R. Ishikawa, K. Wongravee, K. Shinbo, K. Kato, F. Kaneto, S. Ekgasit, and A. Baba, “Grating-coupled surface plasmon resonance enhanced organic photovoltaic devices induced by blu-ray disc recordable and blu-ray disc grating structures,” Nanoscale 9(15), 4963-4971 (2017). 78. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102-1106 (1997). 79. R. Gillibert, M. Sarkar, J. F. Bryche, R. Yasukuni1, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(15), 115202 (2016). 80. W. Yue, Z. Wang, J. Whittaker, F. Lopez-royo, Y. Yang, and A. V. Zayats, “Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers,” J. Mater. Chem. C. 5(16), 4075-4084 (2017). 81. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253-1257 (2008). 82. C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles,” Appl. Phys. Lett. 98(5), 051106 (2011). 83. H. S. Chen, C. P. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013). 84. C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22(S3), A842-A856 (2014). 85. C. H. Lin, C. Y. Su, Y. Kuo, C. H. Chen, Y. F. Yao, P. Y. Shih, H. S. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles,” Appl. Phys. Lett. 105(10), 101106 (2014). 86. Y. Kuo, C. H. Lin, H. S. Chen, C. Hsieh, C. G. Tu, P. Y. Shih, C. H. Chen, C. H. Liao, C. Y. Su, Y. F. Yao, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode - experimental and numerical studies,” Jap. J. of Appl. Phys. 54(2S), 02BD01 (2015). 87. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 14(26), 1096-1098 (2001). 88. M. W. Knight, J. Fan, F. Capasso, and N. J. Halas, “Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures,” Opt. Express 3(18), 2579-2587 (2010). 89. L. Y. Jiang, T. T. Yin, Z. G. Dong, H. L. Hu, M. Y. Liao, D. Allioux, S. J. Tan, X. M. Goh, X. Y. Li, J. K. W. Yang, and Z. X. Shen, “Probing vertical and horizontal plasmonic resonant states in the photoluminescence of gold nanodisks,” ACS Photon. 8(2), 1217-1223 (2015). 90. S. Balci, E. Karademir, and C. Kocabas, “Strong coupling between localized and propagating plasmon polaritons,” Opt. Express 40(13), 3177-3180 (2015). 91. W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Hybridization of localized and guided modes in 2D metal-insulator-metal nanocavity arrays,” J. Phys. Chem. C 117(6), 2541-2546 (2012). 92. L. Du, X. Zhang, T. Mei, and X. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959-1965 (2010). 93. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244-246 (2009). 94. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006). 95. E. Homeyer, P. Mattila, J. Oksanen, T. Sadi, H. Nykanen, S. Suihkonen, C. Symonds, J. Tulkki, F. Tuomisto, M. Sopanen, and J. Bellessa, “Enhanced light extraction from InGaN/GaN quantum wells with silver gratings, Appl. Phys. Lett. 102(08),” 081110 (2013). 96. H. Chen, H. Fu, Z. Lu, X. Huang, and Y. Zhao, “Optical properties of highly polarized InGaN light-emitting diodes modified by plasmonic metallic grating,” Opt. Express 24(10), A856-A867 (2016). 97. G. Zhang, X. Guo, F. F. Ren, Y. Li, B. Liu, J. Ye, H. Ge, Z. Xie, R. Zhang, H. H. Tan, and C. Jagadish, “High-brightness polarized green InGaN/GaN light-emitting diode structure with Al-coated p-GaN grating,” ACS Photonics 3(10), 1912-1918 (2016). 98. H. Zhang, J. Zhu, Z. Zhu, Y. Jin, Q. Li, and G. Jin, “Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating,” Opt. Express 21(11), 13492-13501 (2013). 99. C. L. Tang, Fundamentals of Quantum Mechanics, Cambridge: Cambridge University Press (2005). 100. J. C. Ryan and N. M. Lawandy, “Density matrix solutions for the susceptibilities of a three-level system with arbitrary relaxation rates and field strengths,” IEEE J. Quantum Electron. QE-22(11), 2075-2078 (1986). 101. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed., New Jersey: World Scientific Publishing Co (2004). 102. Y. Xu, J. Vučković, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16(3), 465-474 (1999). 103. The simulation program can be downloaded at http://yrwu-wk.ee.ntu.edu.tw/ 104. X. Chen, K. Y. Ho, and Y. R. Wu, “Modeling and optimization of p-AlGaN super lattice structure as the p-contact and transparent layer,” Opt. Express 23(25), 32367-32376 (2015). 105. C. P. Wang and Y. R. Wu, “Study of optical anisotropy in nonpolar and semipolar AlGaN quantum well deep ultraviolet light emission diode,” J. Appl. Phys. 112(3), 033104 (2012). 106. C. Y. Chen, J. Y. Wang, F. J. Tsai, Y. C. Lu, Y. W. Kiang, and C. C. Yang, “Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors,” Opt. Express 17(16), 14186-14198 (2009). 107. J. Sun and E. M. Goldys, “Linear Absorption and Molar Extinction Coefficients in Direct Semiconductor Quantum Dots,” J. Phys. Chem. C 112(25), 9261-9266 (2008). 108. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(11-12), 681-681 (1946). 109. Y. He, W. H. Hua, M. C. Low, Y. H. Tsai, C. J. Cai, H. C. Chiang, J. H. Yu, J. H. Hsiao, P. H. Tseng, Y. W. Kiang, C. C. Yang, and Z. Zhang, “Exocytosis of gold nanoparticle and photosensitizer from cancer cells and their effects on photodynamic and photothermal processes,” Nanotechnology 29(23), 235101 (2018). 110. W. H. Hua, C. J. Cai, K. P. Chou, Y. H. Tsai, M. C. Low, C. G. Tu, C. Y. Chen, C. C. Ni, Y. W. Kiang, C. C. Yang, and Y. C. Hsu, “Control of pore structure in a porous gold nanoparticle for effective cancer cell damage,” Nanotechnology 30(2), 025101 (2019). 111. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1991). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74620 | - |
| dc.description.abstract | 本論文中,我們利用半古典模型與電磁理論探討量子發射體、量子吸收體與表面電漿子間的耦合效應,以及表面電漿子的共振特性。經數值模擬,可瞭解表面電漿子在深紫外發光二極體之放光、量子井與量子點間光色轉換、氮化鎵上銀光柵之光特性等三方面所扮演的角色。
為探討表面電漿子耦合效應對深紫外發光二極體效能的影響,我們建立一套三能級系統之理論模型,藉數值模擬法,探討受空氣/氮化鋁鎵介面散射與表面鋁奈米粒子之表面電漿子耦合效應之影響下,氮化鋁鎵量子井的橫電與橫磁兩種偏振發光的Purcell效應。合理選擇氮化鋁鎵量子井內的鋁含量範圍,使其發出深紫外光,我們發現橫電(橫磁)偏振光之增強(減弱)主要係來自表面電漿子耦合(介面散射)效應。不同於兩二能級之模型,在三能級系統中,橫電與橫磁兩種偏振發光彼此會競爭高能階(用以模擬導電帶)中的共用電子,因此介面散射或表面電漿子耦合效應將稍減弱。在頗寬的發光波長範圍內,即使原本深紫外發光二極體之放光係以橫磁偏振為主,藉由介面散射與表面電漿子耦合效應,增強的橫電偏振將可成為主要的偏振。此種以橫電偏振為主的發光亦可提升深紫外發光二極體之光萃取效率。 其次我們也使用二能級系統來分析表面電漿子如何增強量子井與量子點間的光色轉換效率。數值模擬時,我們將短波長發光的量子井與長波長發光的量子點各視為一個電偶極,並在二電偶極間置入一顆具有兩種表面電漿子共振模態的銀奈米粒子,其一共振對應於量子井的發光波長,另一共振對應於量子點的發光波長。短波長的共振可以增加量子井與量子點間的能量轉換,亦即增強量子點吸收,長波長的共振可以增強量子點的輻射。總光色轉換效率則比例於此二機制相乘的結果。我們亦針對不同大小的銀奈米粒子所造成的表面電漿子增強效果作比較。 除了表面電漿子的耦合效應外,表面電漿子的基礎特性也很重要。一般金屬光柵結構是藉動量匹配來激發表面電漿極化子,但實際上侷域表面電漿子也存在於金屬光柵結構中,其耦合效應可用於發光二極體。因此我們特地研究存在於氮化鎵與銀光柵交界面之侷域表面電漿子與對向傳播的表面電漿極化子的特性。計算結果顯示,侷域表面電漿子的共振行為不只受制於金屬光柵的寬度與高度,還受週期影響,尤以小週期為甚。若光柵中的每一個突起物偏高、寬、或陡峭,侷域表面電漿子共振所造成的表面電荷分佈會橫跨在突起物之間。此時共振波長與突起物寬度較無關聯而表面電荷分佈較廣,可與發光二極體中的量子井作有效耦合。因為表面電漿極化子的消逝波涵蓋範圍小,由對向傳播之表面電漿極化子所造成的侷域震盪現象較不利耦合。故在發光二極體的應用上,侷域表面電漿子的效果略勝一籌。 | zh_TW |
| dc.description.abstract | In this dissertation, we propose numerical algorithms based on semi-classical model and electromagnetic theory to investigate the coupling between quantum emitters, absorbers and surface plasmon (SP) as well as resonance characteristics of SP. These algorithms are applied to discuss the roles of SPs in deep-ultraviolet (UV) light-emitting diodes (LEDs), in the light color conversion between quantum wells (QWs) and quantum dots (QDs), and at the interface between silver grating and GaN.
For discussing how SP coupling affects the performance of a deep-UV LED, the formulations and numerical algorithms derived from a three-level model for studying the Purcell effect produced by the scattering of an air/AlGaN interface and the SP-coupling effect induced by a surface Al nanoparticle (NP) in a two-polarization emission system to simulate the transverse-electric- (TE-) and transverse-magnetic- (TM-) polarized emissions in an AlxGa1-xN/AlyGa1-yN (y > x) QW are built. In reasonably selected ranges of Al content for an AlGaN QW to emit deep-UV light, the enhancement (suppression) of TE- (TM-) polarized emission is mainly caused by the SP-coupling (interface-scattering) effect. Different from a two two-level model, in the three-level model the TE- and TM-polarized emissions compete for electrons in the shared upper state, which is used for simulating the conduction band, such that either interface-scattering or SP-coupling effect becomes weaker. In a quite large range of emission wavelength, in which the intrinsic emission is dominated by TM polarization, with the interface-scattering and SP-coupling effects, the TE-polarized emission becomes dominant for enhancing the light extraction efficiency of a deep-UV light-emitting diode. To investigate the mechanism of the color conversion, another theoretical model together with numerical algorithms of SP coupling are built for simulating SP-enhanced light color conversion from a shorter-wavelength radiating dipole (representing a QW) into a longer-wavelength one (representing a QD) through QD absorption at the shorter wavelength. An Ag NP located between the two dipoles is designed for producing strong SP couplings simultaneously at the two wavelengths. At the QW emission wavelength, SP couplings with the QW and QD dipoles lead to the energy transfer from the QW into the QD and hence the absorption enhancement of the QD. At the QD emission wavelength, SP coupling with the excited QD dipole results in the enhancement of QD emission efficiency. The combination of the SP-induced effects at the two wavelengths leads to the increase of overall color conversion efficiency. The color conversion efficiencies in using Ag NPs of different geometries or SP resonance behaviors for producing different QD absorption and emission enhancement levels are compared. Apart from SP coupling effects, the fundamental characteristics of SPs are also important. Although a metal grating structure is usually fabricated for momentum-matching a surface plasmon polariton (SPP) with photon, for SP coupling application in an LED, localized surface plasmon (LSP) on such a structure also plays an important role. We numerically study the LSP resonance behaviors, including the localized resonance behavior of counter-propagating SPP interference, of an Ag grating on GaN. It is found that the resonance behaviors of LSP are controlled not only by the geometry of a grating ridge, but also by grating period, particularly when the grating period is small. In a grating with sharp ridge, large ridge height or width, LSP features of dense charge distributions around the boundaries between ridges and connecting valleys exist. The spectral positions of such LSP features are weakly dependent on the ridge width. Among such features, those with their mode field oscillations across a ridge and hence distributions in an extended space around the ridge can more strongly couple with the QWs of an LED. Because of the short coverage range of SPP evanescent field, the localized resonance feature caused by counter-propagating SPP interference has a shorter coupling range. For LED application, an LSP mode with field oscillation across a ridge is preferred. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:46:10Z (GMT). No. of bitstreams: 1 ntu-108-D01941012-1.pdf: 3987795 bytes, checksum: 784c54990f0194cd15d364b3b924f6a6 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Contents
Chapter 1 Introduction 1 1.1 Surface plasmon (SP) 1 1.2 Surface plasmon coupling 3 1.3 Applications of surface plasmon coupling 3 1.4 Surface plasmon coupled deep-ultraviolet light-emitting diode 4 1.5 Color conversion through surface plasmon coupling 6 1.6 Light-emitting diode with a grating structure 7 1.7 Research motivations 8 1.8 Organization of the dissertation 10 Chapter 2 Different surface plasmon coupling behaviors of a surface Al nanoparticle between TE and TM polarizations in a deep-UV light-emitting diode 12 2.1 Problem geometries, model formulations, and simulation methods 13 2.2 Numerical results 17 2.3 Discussions 23 Chapter 3 Light color conversion enhancement through surface plasmon coupling 35 3.1 Simulation model, methods, and sample structures 35 3.2 Simulation results 40 3.3 Discussions 45 Chapter 4 Resonance behaviors of localized surface plasmon on an Ag/GaN nano-grating interface for light-emitting diode application 57 4.1 Structure for simulation and simulation method 58 4.2 Differentiation between LSP and SPP 59 4.3 Dependence of LSP behavior on grating period 63 4.4 Dependence of LSP behavior on grating ridge height and width 65 4.5 Discussions 68 Chapter 5 Conclusions…………………………………………………82 Appendix A…………..……………………………………………........84 Appendix B…………..……………………………………………........92 Appendix C…………..……………………………………………........97 References…………..……………………………………………........100 Publication list…………...……………...…………………………......115 | |
| dc.language.iso | en | |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 表面電漿子 | zh_TW |
| dc.subject | 光色轉換 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | 深紫外線 | zh_TW |
| dc.subject | Surface Plasmon | en |
| dc.subject | Deep-ultraviolet Light-emitting Diode | en |
| dc.subject | Light Color Conversion | en |
| dc.title | 應用於深紫外發光二極體與光色轉換表面電漿子耦合的模擬研究 | zh_TW |
| dc.title | Simulation Studies on Surface Plasmon Coupling Applications to Deep-ultraviolet Light-emitting Diode and Light Color Conversion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 楊志忠(Chih-Chung Yang) | |
| dc.contributor.oralexamcommittee | 黃建璋(JianJang Huang),吳育任(Yuh-Renn Wu),林晃巖(Hoang Yan Lin),郭仰(Yang Kuo),李佳翰(Jia-Han Li) | |
| dc.subject.keyword | 表面電漿子,量子點,深紫外線,發光二極體,光色轉換, | zh_TW |
| dc.subject.keyword | Surface Plasmon,Deep-ultraviolet Light-emitting Diode,Light Color Conversion, | en |
| dc.relation.page | 116 | |
| dc.identifier.doi | 10.6342/NTU201902573 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
