請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74610完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳世雄(Shih-Hsiung Wu) | |
| dc.contributor.author | Meng-Chu Lin | en |
| dc.contributor.author | 林孟筑 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:45:35Z | - |
| dc.date.available | 2024-08-18 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-06 | |
| dc.identifier.citation | 1. Control, C.f.D. and Prevention, Acinetobacter baumannii infections among patients at military medical facilities treating injured US service members, 2002-2004. MMWR. Morbidity and mortality weekly report, 2004. 53(45): p. 1063.
2. Davis, K.A., et al., Multidrug-resistant Acinetobacter extremity infections in soldiers. Emerging infectious diseases, 2005. 11(8): p. 1218. 3. Roca, I., et al., The Acinetobacter baumannii Oxymoron: Commensal Hospital Dweller Turned Pan-Drug-Resistant Menace. Frontiers in Microbiology 2012. 3: p. 148. 4. Espinal, P., S. Marti, and J. Vila, Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. Journal of Hospital Infection, 2012. 80(1): p. 56-60. 5. Navon-Venezia, S., R. Ben-Ami, and Y. Carmeli, Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Current opinion in infectious diseases, 2005. 18(4): p. 306-313. 6. Fiester, S.E. and L.A. Actis, Stress responses in the opportunistic pathogen Acinetobacter baumannii. Future Microbiology, 2013. 8(3): p. 353-65. 7. Gandhi, J.A., et al., Alcohol enhances Acinetobacter baumannii-associated pneumonia and systemic dissemination by impairing neutrophil antimicrobial activity in a murine model of infection. PLoS One, 2014. 9(4): p. e95707. 8. Bergogne-Berezin, E. and K. Towner, Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clinical microbiology reviews, 1996. 9(2): p. 148. 9. Pogue, J.M., et al., Carbapenem-resistantAcinetobacter baumannii: epidemiology, surveillance and management. Expert Review of Anti-infective Therapy, 2013. 11(4): p. 383-393. 10. Rodriguez-Bano, J., et al., Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clinical Microbiology and Infection, 2008. 14(3): p. 276-8. 11. Kim, Y.J., et al., Risk factors for mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia: impact of appropriate antimicrobial therapy. Journal of Korean Medical Science, 2012. 27(5): p. 471-5. 12. Abbott, I., et al., Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights and therapeutic strategies. Expert Review of Anti-Infective Therapy, 2013. 11(4): p. 395-409. 13. Peleg, A.Y., H. Seifert, and D.L. Paterson, Acinetobacter baumannii: emergence of a successful pathogen. Clinical microbiology reviews, 2008. 21(3): p. 538-582. 14. Dijkshoorn, L., A. Nemec, and H. Seifert, An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nature Review Microbiology, 2007. 5(12): p. 939-51. 15. Karageorgopoulos, D.E. and M.E. Falagas, Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. The Lancet infectious diseases, 2008. 8(12): p. 751-762. 16. Zarrilli, R., et al., Carbapenem resistance in Acinetobacter baumannii: the molecular epidemic features of an emerging problem in health care facilities. The Journal of Infection in Developing Countries, 2009. 3(05): p. 335-341. 17. Hawkey, P.M. and A.M. Jones, The changing epidemiology of resistance. Journal of Antimicrobial Chemotherapy, 2009. 64(suppl_1): p. i3-i10. 18. Vila, J., et al., In vitro antimicrobial production of beta-lactamases, aminoglycoside-modifying enzymes, and chloramphenicol acetyltransferase by and susceptibility of clinical isolates of Acinetobacter baumannii. Antimicrobial agents and chemotherapy, 1993. 37(1): p. 138-141. 19. Seifert, H., et al., Antimicrobial susceptibility of Acinetobacter species. Antimicrobial agents and chemotherapy, 1993. 37(4): p. 750-753. 20. Peleg, A.Y. and D.C. Hooper, Hospital-acquired infections due to gram-negative bacteria. The New England Journal of Medicine, 2010. 362(19): p. 1804-13. 21. Héritier, C., et al., A nosocomial outbreak of Acinetobacter baumannii isolates expressing the carbapenem-hydrolysing oxacillinase OXA-58. Journal of Antimicrobial Chemotherapy, 2005. 55(1): p. 115-118. 22. Tankovic, J., et al., Characterization of a hospital outbreak of imipenem-resistant Acinetobacter baumannii by phenotypic and genotypic typing methods. Journal of Clinical Microbiology, 1994. 32(11): p. 2677-2681. 23. Vila, J. and J. Pachon, Therapeutic options for Acinetobacter baumannii infections. Expert Opinion on Pharmacotherapy, 2008. 9(4): p. 587-99. 24. Sengstock, D., et al., Multidrug-resistant Acinetobacter baumannii: an emerging pathogen among older adults in community hospitals and nursing homes. Clinical Infectious Diseases, 2010. 50(12): p. 1611-1616. 25. HASHIZUME, T., et al., Studies on the mechanism of action of imipenem (N-formimidoylthienamycin) in vitro: binding to the penicillin-binding proteins (PBPs) in Escherichia coli and Pseudomonas aeruginosa, and inhibition of enzyme activities due to the PBPs in E. coli. The Journal of antibiotics, 1984. 37(4): p. 394-400. 26. Rodloff, A.C., E.J. Goldstein, and A. Torres, Two decades of imipenem therapy. Journal of Antimicrobial Chemotherapy, 2006. 58(5): p. 916-29. 27. Vila, J., S. Marti, and J. Sanchez-Cespedes, Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2007. 59(6): p. 1210-5. 28. Coyne, S., P. Courvalin, and B. Perichon, Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrobial Agents and Chemotherapy, 2011. 55(3): p. 947-53. 29. Zhang, Y., et al., Overproduction of efflux pumps caused reduced susceptibility to carbapenem under consecutive imipenem-selected stress in Acinetobacter baumannii. Infection and Drug Resistance, 2017. 11: p. 457-467. 30. Lin, M.F., et al., Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance. Journal of Microbiology, Immunology and Infection, 2017. 50(2): p. 224-231. 31. Coyne, S., et al., Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrobial agents and chemotherapy, 2010. 54(10): p. 4389-4393. 32. Damier-Piolle, L., et al., AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrobial agents and chemotherapy, 2008. 52(2): p. 557-562. 33. Su, X.Z., et al., AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrobial Agents and Chemotherapy, 2005. 49(10): p. 4362-4. 34. Hou, P.F., et al., Study of the Correlation of Imipenem Resistance with Efflux Pumps AdeABC, AdeIJK, AdeDE and AbeM in Clinical Isolates of Acinetobacter baumannii. Chemotherapy, 2012. 58(2): p. 152-158. 35. Davidson, A.L., et al., Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiology and Molecular Biology Review, 2008. 72(2): p. 317-364. 36. Higgins, C.F., Multiple molecular mechanisms for multidrug resistance transporters. Nature, 2007. 446(7137): p. 749-57. 37. Hvorup, R.N., et al., The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. European Journal of Biochemistry, 2003. 270(5): p. 799-813. 38. de Kraker, M.E., A.J. Stewardson, and S. Harbarth, Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Medicine, 2016. 13(11): p. e1002184. 39. Morfin-Otero, R. and M.J. Dowzicky, Changes in MIC Within a Global Collection of Acinetobacter baumannii Collected as Part of the Tigecycline Evaluation and Surveillance Trial, 2004 to 2009. Clinical Therapeutics, 2012. 34(1): p. 101-112. 40. Mendes, R.E., et al., Comprehensive assessment of tigecycline activity tested against a worldwide collection of Acinetobacter spp. (2005–2009). Diagnostic Microbiology and Infectious Disease, 2010. 68(3): p. 307-311. 41. Peleg, A.Y., H. Seifert, and D.L. Paterson, Acinetobacter baumannii: emergence of a successful pathogen. Clinical Microbiology Reviews, 2008. 21(3): p. 538-82. 42. Organization, W.H., WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Geneva: World Health Organization. 2017. 43. Organization, W.H., Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics, in World Health Organization, Geneva. 2017. 44. Tacconelli, E., et al., Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 2018. 18(3): p. 318-327. 45. Visca, P., H. Seifert, and K.J. Towner, Acinetobacter infection – an emerging threat to human health. IUBMB Life, 2011. 63(12): p. 1048-1054. 46. Garnacho-Montero, J. and R. Amaya-Villar, Multiresistant Acinetobacter baumannii infections: epidemiology and management. Current Opinion in Infectious Diseases, 2010. 23(4): p. 332-9. 47. Kuo, H.Y., et al., Imipenem: a potent inducer of multidrug resistance in Acinetobacter baumannii. International Journal of Antimicrobial Agents, 2012. 39(1): p. 33-8. 48. Dhabaan, G.N., et al., Imipenem Treatment Induces Expression of Important Genes and Phenotypes in a Resistant Acinetobacter baumannii Isolate. Antimicrobial Agents and Chemotherapy, 2015. 60(3): p. 1370-6. 49. Chang, K.-C., et al., Transcriptome profiling in imipenem-selected Acinetobacter baumannii. BMC genomics, 2014. 15(1): p. 815. 50. Cozzone, A.J., Protein phosphorylation in prokaryotes. Annual Reviews in Microbiology, 1988. 42(1): p. 97-125. 51. Manning, G., et al., Evolution of protein kinase signaling from yeast to man. Trends in biochemical sciences, 2002. 27(10): p. 514-520. 52. Graves, J.D. and E.G. Krebs, Protein phosphorylation and signal transduction. Pharmacology & therapeutics, 1999. 82(2-3): p. 111-121. 53. Cohen, P., The regulation of protein function by multisite phosphorylation–a 25 year update. Trends in biochemical sciences, 2000. 25(12): p. 596-601. 54. Engholm-Keller, K. and M.R. Larsen, Technologies and challenges in large-scale phosphoproteomics. Proteomics, 2013. 13(6): p. 910-31. 55. Huttlin, E.L., et al., A tissue-specific atlas of mouse protein phosphorylation and expression. Cell, 2010. 143(7): p. 1174-89. 56. Ge, R. and W. Shan, Bacterial phosphoproteomic analysis reveals the correlation between protein phosphorylation and bacterial pathogenicity. Genomics, proteomics & bioinformatics, 2011. 9(4-5): p. 119-127. 57. Deutscher, J. and M.H. Saier Jr, Ser/Thr/Tyr protein phosphorylation in bacteria–for long time neglected, now well established. Journal of molecular microbiology and biotechnology, 2005. 9(3-4): p. 125-131. 58. Dworkin, J., Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Current Opinion in Microbiology, 2015. 24: p. 47-52. 59. Whitmore, S.E. and R.J. Lamont, Tyrosine phosphorylation and bacterial virulence. International journal of oral science, 2012. 4(1): p. 1. 60. Goulian, M., Two-component signaling circuit structure and properties. Current opinion in microbiology, 2010. 13(2): p. 184-189. 61. Ninfa, A.J., Use of two-component signal transduction systems in the construction of synthetic genetic networks. Current Opinion in Microbiology, 2010. 13(2): p. 240-5. 62. Kannan, N., et al., Structural and functional diversity of the microbial kinome. PLoS biology, 2007. 5(3): p. e17. 63. Kalantari, A., et al., Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators. Microbiology, 2015. 161(9): p. 1720-1729. 64. Tiwari, S., et al., Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: an overview. Frontiers in microbiology, 2017. 8: p. 1878. 65. Pensinger, D.A., A.J. Schaenzer, and J.D. Sauer, Do Shoot the Messenger: PASTA Kinases as Virulence Determinants and Antibiotic Targets. Trends in Microbiology, 2018. 26(1): p. 56-69. 66. Soares, N.C., et al., Ser/Thr/Tyr phosphoproteome characterization of Acinetobacter baumannii: comparison between a reference strain and a highly invasive multidrug-resistant clinical isolate. Journal of proteomics, 2014. 102: p. 113-124. 67. Lin, M.-H., N. Sugiyama, and Y. Ishihama, Systematic profiling of the bacterial phosphoproteome reveals bacterium-specific features of phosphorylation. Science Signaling, 2015. 8(394): p. rs10-rs10. 68. Rappsilber, J., Y. Ishihama, and M. Mann, Stop and Go Extraction Tips for Matrix-Assisted Laser Desorption/Ionization, Nanoelectrospray, and LC/MS Sample Pretreatment in Proteomics. Analytical Chemistry, 2003. 75(3): p. 663-670. 69. Rappsilber, J., M. Mann, and Y. Ishihama, Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols, 2007. 2(8): p. 1896-906. 70. Sugiyama, N., et al., Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Molecular & cellular proteomics, 2007. 6(6): p. 1103-1109. 71. Thingholm, T.E., et al., Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nature Protocols, 2006. 1(4): p. 1929-35. 72. Kyono, Y., et al., Successive and Selective Release of Phosphorylated Peptides Captured by Hydroxy Acid-Modified Metal Oxide Chromatography. Journal of Proteome Research, 2008. 7(10): p. 4585-4593. 73. Lin, M.-H., et al., Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 reveals a tight link between tyrosine phosphorylation and virulence. Molecular & Cellular Proteomics, 2009. 8(12): p. 2613-2623. 74. Lai, J.-H., et al., Comparative phosphoproteomics reveals the role of AmpC β-lactamase phosphorylation in the clinical imipenem-resistant strain Acinetobacter baumannii SK17. Molecular & Cellular Proteomics, 2016. 15(1): p. 12-25. 75. Olsen, J.V., et al., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006. 127(3): p. 635-48. 76. Götz, S., et al., High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic acids research, 2008. 36(10): p. 3420-3435. 77. Bishop, R.E., et al., The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death11Edited by M. Gottesman. Journal of Molecular Biology, 1998. 280(4): p. 583-596. 78. Calloni, G., et al., DnaK functions as a central hub in the E. coli chaperone network. Cell Reports, 2012. 1(3): p. 251-64. 79. Tomoyasu, T., et al., Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity. Cell Stress and Chaperones, 2012. 17(1): p. 41-55. 80. Cardoso, K., et al., DnaK and GroEL are induced in response to antibiotic and heat shock in Acinetobacter baumannii. Journal of Medical Microbiology, 2010. 59(Pt 9): p. 1061-8. 81. Knappe, D., et al., Rational design of oncocin derivatives with superior protease stabilities and antibacterial activities based on the high-resolution structure of the oncocin-DnaK complex. Chembiochem, 2011. 12(6): p. 874-6. 82. Andersson, D.I. and D. Hughes, Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Review Microbiology, 2010. 8(4): p. 260-71. 83. Nikaido, H., Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 2003. 67(4): p. 593-656. 84. Sugawara, E. and H. Nikaido, OmpA is the principal nonspecific slow porin of Acinetobacter baumannii. Journal of Bacteriology, 2012. 194(15): p. 4089-96. 85. Sato, K. and T. Nakae, Outer membrane permeability of Acinetobacter calcoaceticus and its implication in antibiotic resistance. Journal of Antimicrobial Chemotherapy, 1991. 28(1): p. 35-45. 86. Wang, Y., The function of OmpA in Escherichia coli. Biochemical and biophysical research communications, 2002. 292(2): p. 396-401. 87. Lee, C.R., et al., Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Frontiers in Cellular and Infection Microbiology, 2017. 7: p. 55. 88. Iyer, R., et al., Acinetobacter baumannii OmpA Is a Selective Antibiotic Permeant Porin. ACS Infectious Diseases, 2018. 4(3): p. 373-381. 89. Sánchez-Encinales, V., et al., Overproduction of Outer Membrane Protein A by Acinetobacter baumannii as a Risk Factor for Nosocomial Pneumonia, Bacteremia, and Mortality Rate Increase. The Journal of Infectious Diseases, 2017. 215(6): p. 966-974. 90. Tsao, S., et al., Positive regulation of the Candida albicans multidrug efflux pump Cdr1p function by phosphorylation of its N-terminal extension. Journal of Antimicrobial Chemotherapy, 2016. 71(11): p. 3125-3134. 91. Aryal, B., C. Laurent, and M. Geisler, Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems. Biochemical Society Transactions, 2015. 43(5): p. 966-74. 92. Truong-Bolduc, Q.C., Y. Ding, and D.C. Hooper, Posttranslational modification influences the effects of MgrA on norA expression in Staphylococcus aureus. Journal of bacteriology, 2008. 190(22): p. 7375-7381. 93. He, X., et al., Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature, 2010. 467(7318): p. 991-4. 94. van Veen, H.W., Last of the multidrug transporters. Nature, 2010. 467: p. 926. 95. Otsuka, M., et al., Identification of essential amino acid residues of the NorM Na+/multidrug antiporter in Vibrio parahaemolyticus. Journal of Bacteriology, 2005. 187(5): p. 1552-8. 96. Guan, L., et al., Manipulating phospholipids for crystallization of a membrane transport protein. Proceedings of the National Academy of Sciences, 2006. 103(6): p. 1723-1726. 97. Caffrey, M., Membrane protein crystallization. Journal of structural biology, 2003. 142(1): p. 108-132. 98. Ye, J.J., et al., Multidrug resistant Acinetobacter baumannii: risk factors for appearance of imipenem resistant strains on patients formerly with susceptible strains. PLoS One, 2010. 5(4): p. e9947. 99. Ikonomidis, A., et al., Heteroresistance to meropenem in carbapenem-susceptible Acinetobacter baumannii. Journal of Clinical Microbiology, 2009. 47(12): p. 4055-9. 100. Pournaras, S., et al., Heteroresistance to carbapenems in Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2005. 55(6): p. 1055-6. 101. Lee, H.Y., et al., Imipenem heteroresistance induced by imipenem in multidrug-resistant Acinetobacter baumannii: mechanism and clinical implications. International Journal of Antimicrobial Agents, 2011. 37(4): p. 302-8. 102. Chin, C.Y., et al., A high-frequency phenotypic switch links bacterial virulence and environmental survival in Acinetobacter baumannii. Nature Microbiology, 2018. 3(5): p. 563-569. 103. Foucault, M.L., et al., Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(39): p. 16964-9. 104. Burse, A., H. Weingart, and M.S. Ullrich, NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Applied and Environmental Microbiology, 2004. 70(2): p. 693-703. 105. Hughes, D. and D.I. Andersson, Selection of resistance at lethal and non-lethal antibiotic concentrations. Current Opinion of Microbiology, 2012. 15(5): p. 555-60. 106. Baquero, F., et al. The antibiotic selective process: concentration-specific amplification of low-level resistant populations. in Ciba Found Symp. 1997. Wiley Online Library. 107. Negri, M.-C., et al., Concentration-dependent selection of small phenotypic differences in TEM β-lactamase-mediated antibiotic resistance. Antimicrobial agents and chemotherapy, 2000. 44(9): p. 2485-2491. 108. Andersson, D.I. and D. Hughes, Persistence of antibiotic resistance in bacterial populations. FEMS Microbiology Reviews, 2011. 35(5): p. 901-11. 109. Andersson, D.I. and D. Hughes, Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resistance Updates, 2012. 15(3): p. 162-72. 110. Capita, R., et al., Exposure of Escherichia coli ATCC 12806 to sublethal concentrations of food-grade biocides influences its ability to form biofilm, resistance to antimicrobials, and ultrastructure. Applied and Environmental Microbiology, 2014. 80(4): p. 1268-80. 111. Lorian, V. and B. Atkinson, Abnormal forms of bacteria produced by antibiotics. American journal of clinical pathology, 1975. 64(5): p. 678-688. 112. Braga, P. and G. Piatti, Kinetics of filamentation of Escherichia coli induced by different sub-MICs of ceftibuten at different times. Chemotherapy, 1993. 39(4): p. 272-277. 113. Diver, J. and R. Wise, Morphological and biochemical changes in Escherichia coli after exposure to ciprofloxacin. Journal of Antimicrobial Chemotherapy, 1986. 18(Supplement_D): p. 31-41. 114. El-Mowafy, S.A., et al., Quorum sensing inhibitory activity of sub-inhibitory concentrations of beta-lactams. African Health Sciences, 2017. 17(1): p. 199-207. 115. Hvorup, R.N., et al., The multidrug/oligosaccharidyl‐lipid/polysaccharide (MOP) exporter superfamily. European Journal of Biochemistry, 2003. 270(5): p. 799-813. 116. Omote, H., et al., The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends in Pharmacological Sciences, 2006. 27(11): p. 587-93. 117. Morita, Y., et al., NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrobial agents and chemotherapy, 1998. 42(7): p. 1778-1782. 118. Morita, Y., et al., NorM of Vibrio parahaemolyticus is an Na+-driven multidrug efflux pump. Journal of bacteriology, 2000. 182(23): p. 6694-6697. 119. Braibant, M., L. Guilloteau, and M.S. Zygmunt, Functional characterization of Brucella melitensis NorMI, an efflux pump belonging to the multidrug and toxic compound extrusion family. Antimicrobial agents and chemotherapy, 2002. 46(9): p. 3050-3053. 120. He, G.X., et al., An H(+)-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. Journal of Bacteriology, 2004. 186(1): p. 262-5. 121. McAleese, F., et al., A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrobial Agents and Chemotherapy, 2005. 49(5): p. 1865-71. 122. Tarrant, M.K. and P.A. Cole, The chemical biology of protein phosphorylation. Annual Review of Biochemistry, 2009. 78: p. 797-825. 123. Andersson, D.I. and D. Hughes, Microbiological effects of sublethal levels of antibiotics. Nature Review Microbiology, 2014. 12(7): p. 465-78. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74610 | - |
| dc.description.abstract | 介紹:鮑氏不動桿菌是眾所週知的重要院內感染菌,能夠呈現抗藥性並能夠在乾燥或消毒的醫院環境以生物薄膜的形式生存在醫療器材上。這樣爆發性感染的鮑氏不動桿菌以能夠獲得多重抗藥機制為勝,已造成公共衛生重大的議題。Carbapenem類抗生素包括亞胺培南imipenem(一種院內常用的Carbapenem類抗生素)和美羅培南meropenem已經被普遍用在對付這種多重抗藥性的鮑氏不動桿菌。然而隨著使用頻率增加,這些對於Carbapenem有抗藥性的鮑氏不動桿菌感染事件越來越來多,並獲得關切。
目的:為了以評估imipenem在細菌細胞間溝通與釋放抗藥因子的影響力,我們使用磷酸化蛋白質體分析去了解鮑氏不動桿菌在接受imipenem抗生素後的早期(形成基因突變的抗藥性菌株之前)如何去作反應因應壓力變化。這篇研究使用對imipenem具有耐受性的菌株鮑氏不動桿菌17978以驗證過往使用低於最小抑菌濃度抗生素的方式做表現型篩選來誘導異質性抗藥性的產生。我們使用細菌指數生長期的細菌培養加藥後,並收取細胞作蛋白質體和磷酸化蛋白體的分析。我們根據生物資訊分析的結果,針對對於imipenem有表現變化的蛋白質和經過基因功能註解的磷酸化蛋白質去做討論和比較。而在這其中我們集中探討一個磷酸化蛋白(磷酸化的NorM蛋白質,是一種MATE家族的藥物排出幫浦)。經過蛋白模擬結構與計算,這個藥物幫浦蛋白上的酪氨酸磷酸化修飾剛好位於幫浦蛋白通道的中間位置。以這樣的情況來說,我們推測這個磷酸化酪氨酸基團在這結構中可能造成立體阻礙而導致幫浦功能效率減弱。更近一步推論在施加imipenem後,這個位置的磷酸根被移去,使立體障礙同時減去,以方便藥物輸出幫浦能夠正常地作構型互變來將藥物打出。我們在未來會提供更多有效證據來支持這樣的假說和模型,以證明磷酸化在這個幫浦蛋白對於藥物抗藥性的重要性。 | zh_TW |
| dc.description.abstract | Introduction: Acinetobacter baumannii has emerged as an important nosocomial and opportunistic pathogen worldwide, reflecting antimicrobial resistance, tolerance to desiccation and disinfection and biofilm formation on common abiotic surfaces in healthcare settings. Institutional outbreaks caused by Acinetobacter baumannii strains that have acquired multiple mechanisms of antimicrobial drug resistance constitute a growing public-health problem. Carbapenems, primarily imipenem (a frequently used carbapenem in clinical practices) and meropenem, have been used to treat multidrug-resistant (MDR) A. baumannii infections. However, the increasing incidence of carbapenem-resistant A. baumannii (CRAB) infections has become of major concern.
Objectives: In order to assess the influence of imipenem on bacterial cell communication and the release of different factors of drug resistance, we utilize phosphoproteomics analysis to understand how A. baumannii responds to carbapenem at the early stage before transforming to a genotypic variation-derived drug-resistant strain. In order to verify the selective effect using sub-MIC antibiotic and the commonly seen heteroresistance induced by environmental stress, a drug-sensitive A. baumannii 17978 was chosen as study. By growth phase-dependent sampling, the proteomes and phosphoproteomes of A. baumannii 17978 in the presence of imipenem were identified. Based on bioinformatics analysis, differentially expressed proteins and functional annotations of phosphoproteins in imipenem-treated A. baumannii 17978 were discussed. The phosphoprotein (a phosphorylated NorM), a MATE drug efflux antiporter, was identified. Consistent with our modeling calculation, the phosphorylation of Tyrosine (pY) of MATE drug efflux antiporter was shown to be in the middle of the efflux channel. In this scenario, the phospho-Tyrosine residue in the channel might cause a steric hindrance to reduce the pumping efficiency of MATE drug efflux antiporter. Therefore, upon the addition of imipenem, the phosphate group is suggested to be removed in order to facilitate the progression of the structural switching in the topology of the transporter. In the future, we will perform more evidence-based studies about this protein to better clarify the role of phosphorylation in this protein in relation of drug resistance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:45:35Z (GMT). No. of bitstreams: 1 ntu-108-R06b46031-1.pdf: 3186036 bytes, checksum: 03e3d21e17741b73dacc63b5edd6023f (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Contents
誌謝…………………………………………………………………………………………………………………………….….. 2 1. 中文摘要……………………………………………………………………………………………….…… 3 Abstract.……………………………………………………………………………………………………………...… 4 2. Introduction………………………………………………………………………………………………………….. 10 3. Material and Method….…………………………………………………………….. 18 3.1 Bacterial strain and growth curve ….………………………. 18 3.2 MIC determination……………………………………………………………...... 19 3.3 Protein extraction and Lysate preparation…………. 19 3.4 Western blot…………………………………………………………………………………….. 20 3.5 In-solution digestion…………………………………………………………..… 21 3.6 Phosphopeptide enrichment and MS analysis……….. 21 3.7 Data analysis and Gene ontology enrichment analyses.............................................. 22 4. Results……………………………………………………….……………………………………….. 24 4.1 Minimal inhibitory concentration determination 25 4.2 Time-dependent variation of the imipenem-treated proteome profile...................................... 27 4.3 Proteome analysis by mass spectrometry…….….……… 31 4.4 Phosphoproteome analysis……………………………………………………….…34 4.5 Phosphoproteins correlated to drug resistance.........................................……..38 5. Discussion………………………………………………………………………….……………..………… 49 6. Conclusion……………………………………………………………………………………………..….. 56 7. References…………………………………………………………………………………………..………… 59 8. Supplementary……………………………………………………………………..……….…..…. 68 8.1 Differentially Expression of Imipenem-treated Proteome at 60 min…................................... 68 8.2 Main biological processes implicated in proteome: control >imipenem-treated one at 30min…………………………..…....68 8.3 Proteome exists in control but not in 0.5µg/ml imipenem-treated sample…………………………………………………………......….. 69 8.4 Phosphoproteins involved in the biological process…………………........................…….... 70 8.5 Phosphorylated efflux pumps identified……………….. 82 8.6 Protein modeling of NorM-AB……………………………..….………. 83 | |
| dc.language.iso | en | |
| dc.subject | 亞胺培南 | zh_TW |
| dc.subject | 磷酸化蛋白質體 | zh_TW |
| dc.subject | 鮑氏不動桿菌 | zh_TW |
| dc.subject | 藥物抗藥性 | zh_TW |
| dc.subject | 藥物輸出幫浦 | zh_TW |
| dc.subject | efflux pump | en |
| dc.subject | phosphoproteome | en |
| dc.subject | Acinetobacter baumannii | en |
| dc.subject | Imipenem | en |
| dc.subject | drug resistance | en |
| dc.title | 針對鮑氏不動桿菌17978 的亞胺培南抗藥性機制進行蛋白質體與磷酸化蛋白質體分析 | zh_TW |
| dc.title | Investigation of Imipenem-Resistant Mechanism in Acinetobacter baumannii 17978 by Proteomic and Phosphoproteomic Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 花國鋒(Kuo-Feng Hua),梁博煌(Po-Huang Liang) | |
| dc.subject.keyword | 亞胺培南,磷酸化蛋白質體,鮑氏不動桿菌,藥物抗藥性,藥物輸出幫浦, | zh_TW |
| dc.subject.keyword | Imipenem,phosphoproteome,Acinetobacter baumannii,drug resistance,efflux pump, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU201902499 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
