Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7460
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳韋仁(Wei-Jen Chen)
dc.contributor.authorShih-Yu Wangen
dc.contributor.author王世伃zh_TW
dc.date.accessioned2021-05-19T17:44:09Z-
dc.date.available2021-08-19
dc.date.available2021-05-19T17:44:09Z-
dc.date.copyright2018-08-19
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citationAnderson, W. W., Gehringer, J. W., & Berry, F. H. (1966). Family Synodontidae: Lizardfishes. Denmark: Sears Foundation for Marine Research, Yale University.
Avise, J. C., & Wollenberg, K. (1997). Phylogenetics and the origin of species. Proceedings of the National Academy of Sciences, 94(15), 7748-7755.
Veron, J. (1995). Corals in space and time: the biogeography and evolution of the Scleractinia. Sydney, Australia: University of New South Wales Press
Baldwin, C. C. & Johnson, G. D. (1996): Interrelationships of Aulopiformes. In: Stiassny, M. L. J., Parenti, L. R. & Johnson, G. D. (eds.). Interrelationships of Fishes: 355-404; San Diego (Academic Press).
Bargelloni, L., Marcato, S., Zane, L., & Patarnello, T. (2000). Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Systematic Biology, 49(1), 114-129.
Bowen, B. W., Bass, A., Rocha, L., Grant, W., & Robertson, D. R. (2001). Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution, 55(5), 1029-1039.
Briggs, J. C. (1960). Fishes of worldwide (circumtropical) distribution. Copeia, 1960(3), 171-180.
Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013). How to fail at species delimitation. Molecular ecology, 22(17), 4369-4383.
Chaiyapo, M. (2013). Comparative anatomy and phylogenetic systematics of lizardfishes (Actinopterygii: Aulopiformes: Synodontidae). doctoral thesis (an abstract of entire text), Hokkaido University, Japan.
Chen, W.-J., Bonillo, C., & Lecointre, G. (2003). Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Molecular Phylogenetics and Evolution, 26(2), 262-288.
Chen, W.-J., Miya, M., Saitoh, K., & Mayden, R. L. (2008). Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: the order Cypriniformes (Ostariophysi) as a case study. Gene, 423(2), 125-134.
Chen, W.-J., Santini, F., Carnevale, G., Chen, J.-N., Liu, S.-H., Lavoué, S., & Mayden, R. L. (2014). New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha). Frontiers in Marine Science, 1, 53.
Davis, M. P. (2010). Evolutionary relationships of the Aulopiformes (Euteleostei: Cyclosquamata): a molecular and total evidence approach. Origin and Phylogenetic Interrelationships of Teleosts, 431-470.
Davis, M. P., & Fielitz, C. (2010). Estimating divergence times of lizardfishes and their allies (Euteleostei: Aulopiformes) and the timing of deep-sea adaptations. Molecular Phylogenetics and Evolution, 57, 1194-1208.
DiBattista, J. D., Berumen, M. L., Gaither, M. R., Rocha, L. A., Eble, J. A., Choat, J. H., . . . Bowen, B. W. (2013). After continents divide: comparative phylogeography of reef fishes from the Red Sea and Indian Ocean. Journal of Biogeography, 40(6), 1170-1181.
Dobzhansky, T., & Dobzhansky, T. G. (1970). Genetics of the evolutionary process (Vol. 139): Columbia University Press. 505 pp.
Drummond, A. J., Ho, S. Y., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS biology, 4(5), e88.
Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, 32(5), 1792-1797.
Eschmeyer, W. N., R. Fricke, and R. van der Laan (eds). CATALOG OF FISHES: CLASSIFICATION.(http://www.calacademy.org/scientists/catalog-of-fishes-classification/). Electronic version accessed 13 July 2018.
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783-791.
Froese, R. and D. Pauly (eds.) 2018. FishBase. World Wide Web electronic publication.(www.fishbase.org), version (02/2018).
Frable, B. W., Baldwin, C. C., Luther, B. M., & Weigt, L. A. (2013). A new species of western Atlantic lizardfish (Teleostei: Synodontidae: Synodus) and resurrection of Synodus bondi Fowler, 1939, as a valid species from the Caribbean with redescriptions of S. bondi, S. foetens (Linnaeus, 1766), and S. intermedius (Agassiz, 1829). Fishery Bulletin, 111(2), 122-146.
Fujisawa, T., & Barraclough, T. G. (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology, 62(5), 707-724.
Ganga, U., Thomas, J. P., & Sukumaran, S. (2015). A new species of the Genus Harpadon (Aulopiformes, Synodontidae) from the north-eastern Arabian Sea, India. Indian Journal of Fisheries, 62(4), 1-9.
Gerald R. Allen, M. V. E., and Teguh Peristiwady. (2017). Synodus nigrotaeniatus, a new species of lizardfish (Aulopiformes: Synodontidae) from Indonesia. Journal of the Ocean Science Foundation, 26, 59-67.
Gosline, W. A., Marshall, N. B., & Mead, G. W. (1966). Order Iniomi. Characters and synopsis of families. Fishes of the Western North Atlantic. Sears Foundation for Marine Research, Memoir, 1(5), 1-18.
Hartel, K. E., & Stiassny, M. L. J. (1986). The identification of larval Parasudis (Teleostei, Chlorophthalmidae); with notes on the anatomy and relationships of aulopiform fishes. Breviora, 478, 1-23.
Hung, K. W., Russell, B. C., & Chen, W. J. (2017). Molecular systematics of threadfin breams and relatives (Teleostei, Nemipteridae). Zoologica Scripta, 46(5), 536-551.
Hurst, G. D., & Jiggins, F. M. (2005). Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society of London B: Biological Sciences, 272(1572), 1525-1534.
Inoue, T., & Nakabo, T. (2006). The Saurida undosquamis group (Aulopiformes: Synodontidae), with description of a new species from southern Japan. Ichthyological Research, 53(4), 379-397.
Ivanova, N. V., Zemlak, T. S., Hanner, R. H., & Hebert, P. D. (2007). Universal primer cocktails for fish DNA barcoding. Molecular ecology resources, 7(4), 544-548.
Johnson, R. K. (1982). Fishes of the families Evermannellidae and Scopelarchidae: systematics, morphology, interrelationships, and zoologeography. Fieldiana Zoology New Series, 12, 1-252.
Johnson, R. K., Langston, R. C., & Schmitz, R. J. (1997). A Revision of the Indo-Pacific Genus Harpadon (Pisces, Aulopiformes, Harpadontidae). Paper presented at the 9th Annual SSM Poster Session, College of Charleston School of Sciences and Mathematics, USA.
Kekkonen, M., & Hebert, P. D. (2014). DNA barcode‐based delineation of putative species: efficient start for taxonomic workflows. Molecular ecology resources, 14(4), 706-715.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution, 16(2), 111-120.
Klausewitz, W. 1983. Tiefenwasser-und Tiefseefische aus dem Roten Meer. VII. Harpadon erythraeus, sp. n. aus der Tiefsee des zentralen Roten Meeres (Pisces: Teleostei: Scopelomorpha: Myctophiformes: Harpadontidae). Senck Biology, 64(1-3): 35-45.
Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., & Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences, 86(16), 6196-6200.
Lanfear, R., Calcott, B., Ho, S. Y., & Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular biology and evolution, 29(6), 1695-1701.
Leavitt, S. D., Moreau, C. S., & Lumbsch, H. T. (2015). The dynamic discipline of species delimitation: progress toward effectively recognizing species boundaries in natural populations. In Recent advances in lichenology (pp. 11-44). New Delhi: Springer.
Lessios, H. A., & Robertson, D. R. (2006). Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proceedings of the Royal Society of London B: Biological Sciences, 273(1598), 2201-2208.
Li, C., Ortí, G., Zhang, G., & Lu, G. (2007). A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evolutionary Biology, 7(1), 44.
Lo, P.-C., Liu, S.-H., Chao, N. L., Nunoo, F. K., Mok, H.-K., & Chen, W.-J. (2015). A multi-gene dataset reveals a tropical New World origin and Early Miocene diversification of croakers (Perciformes: Sciaenidae). Molecular Phylogenetics and Evolution, 88, 132-143.
Lo, P. C., Liu, S. H., Nor, S. A. M., & Chen, W. J. (2017). Molecular exploration of hidden diversity in the Indo-West Pacific sciaenid clade. PloS one, 12(4), e0176623.
Luiz, O. J., Madin, J. S., Robertson, D. R., Rocha, L. A., Wirtz, P., & Floeter, S. R. (2012). Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proceedings of the Royal Society B, 279(1730), 1033-1040.
Machida Y. 1984. Family Synodontidae. In: Masuda H, Amaoka K, Araga C, Uyeno T, Yoshino T (eds.), The Fishes of the Japanese Archipelago. Tokyo: Tokai University Press, p. 60-61.
Matsubara, K., & Iwai, T. (1951). Comparative study of the lizard-fishes referred to the genus Saurida found in the waters of Japan and China. Memoirs of the College of Agriculture, Kyoto University, (59), 19-30.
Mayden, R. L., & Chen, W.-J. (2010). The world’s smallest vertebrate species of the genus Paedocypris: a new family of freshwater fishes and the sister group to the world’s most diverse clade of freshwater fishes (Teleostei: Cypriniformes). Molecular Phylogenetics and Evolution, 57(1), 152-175.
Mayr, E. (1942). Systematics and the origin of species, from the viewpoint of a zoologist. USA: Harvard University Press.
Near, T. J., Eytan, R. I., Dornburg, A., Kuhn, K. L., Moore, J. A., Davis, M. P., . . . Smith, W. L. (2012). Resolution of ray-finned fish phylogeny and timing of diversification. Proceedings of the National Academy of Sciences, 109(34), 13698-13703.
Nelson, J. S., Grande, T. C., & Wilson, M. V. (2016). Fishes of the World: John Wiley & Sons. 601 pages.
Norman, J. R. (1935). A Revision of the Lizard‐fishes of the Genera Synodus, Trachinocephalus, and Saurida. In Proceedings of the Zoological Society of London (Vol. 105, No. 1, pp. 99-136). Oxford, UK: Blackwell Publishing Ltd.
Okiyama, M. (1984). Myctophiformes: relationships. In H. G. Moser, W. J. Richards, D. M. Cohen, M. P. Falgay, A. W. Kendall and S. L. Richardson (eds.), Ontogeny and systematics of fishes. American Society of Ichthyologists and Herpetologists Special Publication 1. pp. 254-259.
Parin, N. V., & Kotlyar, A. N. (1989). A new aulopodid species, Hime microps, from the eastern South Pacific, with comments on geographic variations of H. japonica. Japanese Journal of Ichthyology, 35(4), 407-413.
Pavlicev, M., & Mayer, W. (2009). Fast radiation of the subfamily Lacertinae (Reptilia: Lacertidae): history or methodical artefact? Molecular Phylogenetics and Evolution, 52(3), 727-734.
Polanco F, A., Acero P, A., & Betancur‐R, R. (2016). No longer a circumtropical species: revision of the lizardfishes in the Trachinocephalus myops species complex, with description of a new species from the Marquesas Islands. Journal of fish biology, 89(2), 1302-1323.
Prokofiev, A. (2008). A new species of genus Aulopus from waters of Vietnam (Myctophiformes s. lato: Aulopidae). Journal of Ichthyology, 48(1), 134-137.
Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular ecology, 21(8), 1864-1877.
Rambaut, A. (2002). Sequence Alignment Editor. Version 2.0. Department of Zoology, University of Oxford.
Rambaut, A. (2012). FigTree v1. 4.0. Molecular evolution, phylogenetics and epidemiology. Edinburgh, UK: University of Edinburgh, Institute of Evolutionary Biology.
Rambaut, A., & Drummond, A. (2012). TreeAnnotator v. 1.8.3. Available as part of the BEAST package at http://beast. bio. ed. ac. uk.
Rambaut, A., Drummond, A., & Suchard, M. (2007). Tracer v1. 6 http://beast/. bio. ed. ac. uk. Tracer.
Randall, J. E. (2009). Five new Indo-Pacific lizardfishes of the genus Synodus (Aulopiformes: Synodontidae). Zoological Studies 48(3), 402-417.
Rao, K. V. (1977). Systematics and comparative osteology of Indian lizard fishes (Saurida spp.). Indian Journal of Fisheries, 24(1&2), 143-171.
Regan, C. T. (1911). The anatomy and classification of the Teleostean fishes of the order Iniomi. Journal of Natural History, 7(37), 120-133.
Rosen, D. E. (1973): Interrelationships of higher euteleosteans. In: Greenwood, P. H., Miles, R. S. & Patterson, C. (eds.). Interrelationships of Fishes: 397-513. London: Academic Press.

Rosen, D. E. (1985). An essay on euteleostean classification. American Museum novitates. 2827: 1-57.
Rosen, D. E., & Patterson, C. (1969). The structure and relationships of the paracanthopterygian fishes. In D. W. Greenfield (ed.), Systematic Ichthyology: A Collection of Readings. New York: Northern Illinois University, MSS Information Corporation.
Russell, B. C. (2002). Synodontidae. In K. E. Carpenter (ed.), The Living Marine Resources of the Western Central Atlantic (Vol. 2, pp. 923–930). Rome: FAO.
Russell, B. C. (2015). A new species of Saurida (Pisces: Synodontidae) from the Mascarene Plateau, Western Indian Ocean. Zootaxa, 3947(3), 440-446.
Sato, T., & Nakabo, T. (2002). Paraulopidae and Paraulopus, a new family and genus of aulopiform fishes with revised relationships within the order. Ichthyological Research, 49, 25-46.
Schwartz, M., & Vissing, J. (2002). Paternal inheritance of mitochondrial DNA. New England Journal of Medicine, 347(8), 576-580.
Stamatakis, A. (2014). RAxML version 8.0: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313.
Starks, E. C. (1924). Hime, a new genus of fishes related to Aulopus. Copeia(127), 30-30.
Sulak, K. J. (1977). The systematics and biology of Bathypterois (Pisces, Chlorophthalmidae). Gulathea Reports, 14, 49-108.
Sulak, K. J. (1989). Synodontidae. In Whitehead, P. J. P., Bauchot, M. L., Hureau, J. C., Nielsen, J., & Tortonese (eds.), Fishes of the North-eastern Atlantic and Mediterranean (Vol. 1, pp. 405-411). Paris: UNESCO.
Nakabo, T. (2002) Family Synogontidae. In: T. Nakabo (eds.) Fishes of Japan with pictorial keys to the species, English edn. (Vol.1, pp 351–358). Tokyo: Tokai University Press.
Thompson, B. A. (1998). Redescription ofaulopus bajacali parin & kotlyar, 1984, comments on its relationships and new distribution records. Ichthyological Research, 45(1), 43-51.
Thompson, B. A. (2002). Aulopidae. In K. E. Carpenter & N. De Angelis (eds.), The living marine resources of the Western Central Atlantic (Vol. 2, pp. 914). Food and agriculture organization of the United Nations.
Tikochinski, Y., Russell, B., Hyams, Y., Motro, U., & Golani, D. (2016). Molecular analysis of the recently described lizardfish Saurida lessepsianus (Synodontidae) from the Red Sea and the Mediterranean, with remarks on its phylogeny and genetic bottleneck effect. Marine Biology Research, 12(4), 419-425.
Tomiyama, I., & Abe, T. (1958). Vertebrates. In I. Tomiyama, T. Abe, & T. Tokioka (eds.). Encyclopaedia zoologica illustrated in colours,Vol. 2. Tokyo: Hokuryukan. 342 pages.
Ward, R. D., Hanner, R., & Hebert, P. D. (2009). The campaign to DNA barcode all fishes, FISH‐BOL. Journal of Fish Biology, 74(2), 329-356.
Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. (2005). DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1462), 1847-1857.
Yamada, U. (2000). Synodontidae. Fishes of Japan with pictorial keys to the species, 351, 1485-1486.
Yamada, U., & Ikemoto, R. (1979). A quick identification of three species of lizard fish, Saurida, in the Japanese and adjacent waters. Bulletin of the Seikai Regional Fisheries Research Laboratory, 52, 61-69.
Yamaoka, K., Nishiyama, M., & Taniguchi, N. (1989). Genetic divergence in lizardfishes of the genus Saurida from southern Japan. Japanese Journal of Ichthyology, 36(2), 208-219.
Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22), 2869-2876.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7460-
dc.description.abstract合齒魚科(Synodontidae)包含四個屬與八十三個有效種,其下可再分為兩個亞科:鐮齒魚亞科(Harpadontinae)內包含了鐮齒魚(龍頭魚)屬(Harpadon)與蛇鯔屬(Saurida);狗母魚亞科(Synodontinae)內則包含了狗母魚屬(Synodus)及大頭狗母魚屬(Trachinocephalus)。本科魚類為底棲性掠食者,體橢圓形或延長,具有極寬的口與尖利的牙齒,多棲息於熱帶及副熱帶海域的沙泥地。自從此類群之分類於西元1861年被Gill建立以來,其地位一直存在爭議,各屬下之物種更常發生因外型相似而有誤鑑之情形,近一步分類上的修訂仍需仰賴完善的親緣關係建構。鑑此,本研究利用分子系統分類學的方法,針對合齒魚科的物種探討以下的問題:(1)建構較完整的合齒魚科及其相對於其他仙女魚目物種的親緣關係 (2)檢驗合齒魚科及其下四屬是否皆為單系群 (3)在已建立的完善親緣關係下推估合齒魚的分化時間 (4)鑑驗目前合齒魚科下各物種的種名有效性及探索其物種之多樣性。本研究中建立了兩種型態的資料矩陣,一為包含了四個核基因(RH,RAG1,ZIC1和ENC1)與三個粒線體基因(COI, 12S和16S)的多基因資料矩陣,用以建構合齒魚科及其相對於仙女魚目物種間之親緣關係;另一種則為搭配種類界定軟體 (ABGD與 bPTP) 用以進行物種界定的粒線體COI基因資料矩陣,其中包含了975條序列(202條為本研究提供,773條則由資料庫或私人資源取得)與52個已知種。根據結果顯示,合齒魚科並不是一個單系群,然而其下之兩個亞科卻各自為單系群。因此,本研究結果支持將現今分類的龍頭魚亞科及狗母魚亞科提升至科別的等級。而在原先分類下的四個屬中,僅龍頭魚屬與大頭狗母魚屬為單系群,蛇鯔屬與狗母魚屬則為多系群,分別具三及四個分支。其中龍頭魚屬與蛇鯔屬的其中兩個分支為姊妹群,而大頭狗母魚屬則與狗母魚屬中的其中兩個分支形成的單系群為姊妹群。分化時間推估顯示出狗母魚科的最近共同祖先出現於白堊紀晚期,而龍頭魚科的最近共同祖先則是出現於始新世。此外,物種界定分析的結果中,本研究定義約87個假定物種(演化操作單元),此數目遠高於本研究中所包含的已知種,顯示出此類群的生物多樣性可能有被低估的情形。本研究對於合齒魚的系統分類提供了一個更深入的觀點,並對於後續分類學及演化學的相關研究提供了一個完善的架構。zh_TW
dc.description.abstractLizardfishes are a group of benthic carnivorous fishes that have cylindrical bodies and relatively large mouths, live mostly in the sandy bottom of tropic and sub-tropic seas. Belong to the family Synodontidae, the lizardfishes include 83 currently recognized species in 4 genera, Synodus, Harpadon, Saurida, and Trachinocephalus. However, the taxonomy of the family has been controversial since it had been established by Gill (1861). A robust phylogeny of this family is required for further taxonomy revision. In this study, we aimed to: (1) reconstruct a comprehensive phylogeny of the family Synodontidae along with its aulopiform allies; (2) test the monophyly of the family and the four recognized genera; (3) estimate the divergence times of synodontids under a robust phylogeny; (4) investigate the validity of the existing species within the family with an integrated approach in taxonomy (i.e. species delimitation). To infer the phylogeny of the family, a multi-gene dataset was composed of four nuclear genes (RH, RAG1, ZIC1 and ENC1) and three mitochondrial (COI, 12S, 16S) genes. The datasets used for the species delimitation analysis with two programs (ABGD and bPTP) included 975 mitochondrial COI gene sequences, of which 202 were newly generated in this study and 773 were retrieved from public and private sources. In the results, the Synodontidae was not monophyletic while each of the two subfamilies of the Synodontidae was resolved as a monophyletic group. Therefore, the elevation of the two subfamilies Synodontinae Gill 1861 and Harpadontinae Bleeker 1875 is suggested, i.e., from subfamily level to family level. Within the family, only two out of the four currently recognized genera are monophyletic, which are Harpadon and Trachinocephalus. The monophyletic Harpadon is sister to the clade composed of two of the four well-resolved Saurida lineages, while the monophyletic genus Trachinocephalus is sister to the clade composed of two of the three well-resolved Synodus lineages. The divergence time estimations recovered that the most recent common ancestor of the family Synodontidae arose during the Late Cretaceous, while that of the family Harpadontidae occurred during the Eocene. From the species delimitation analyses, 87 putative species (OTUs) were observed out of the 52 recognized species included in the study, indicating an underestimated biodiversity of the family. This study offers an insight into the systematics of the family Synodontidae, and provides a framework for further taxonomic and evolutionary studies.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:44:09Z (GMT). No. of bitstreams: 1
ntu-107-R05241204-1.pdf: 18082708 bytes, checksum: 52a88587504c1138f0d0144d6f615638 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAcknowledgement i
摘要 ii
Abstract iv
Content vi
Table Legend viii
Figure Legend ix
1. Introduction 1
2. Materials and methods 10
2.1 Sample collection 10
2.2 DNA extraction, PCR amplification and sequencing 11
2.3 Analytical methods 12
2.3.1 Sequence editing 12
2.3.2 Phylogenetic reconstruction and divergence time estimation 14
2.3.3 Species delimitation 16
3. Results 18
3.1 Characteristics of sequence data 18
3.1.1 Multi-gene dataset 18
3.1.2 COI gene dataset 19
3.2 Phylogenetic inferences 19
3.2.1 Combined gene tree 19
3.2.2 Divergence time estimation 21
3.2.3 COI gene tree 21
3.3 Species delimitation 23
4. Discussion 26
4.1 High level phylogeny 26
4.1.1 Phylogenetic position(s) of the Synodontidae within the Aulopiformes 26
4.1.2 Phylogeny of the synodontid-like fishes 29
4.2 Evolutionary history of the synodontid-like fishes 31
4.3 Species diversity exploration 33
4.3.1 Species delimitation 33
4.3.2 Species diversity of the synodontid-like fishes 35
5. Conclusion 39
6. References 40
Appendix I. Full result of COI gene tree of Synodontinae 127
Appendix II. Full result of COI gene tree of Harpadontinae 136
Appendix III. Publication 148
dc.language.isoen
dc.title合齒魚科之分子系統分類zh_TW
dc.titleMolecular Systematics of Lizardfishes (Aulopiformes: Synodontidae)en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅素巴里(Barry C. Russell),蕭仁傑(Jen-Chieh Shiao),葉信明(Hsin-Ming Yeh),陳貞年(Jhen-Nien Chen)
dc.subject.keyword合齒魚科,分子系統分類,親緣關係,分化時間,生命條碼,種類界定,zh_TW
dc.subject.keywordSynodontidae,molecular systematics,phylogeny,divergence time,Automatic Barcoding Gap Discovery,bPTP,en
dc.relation.page154
dc.identifier.doi10.6342/NTU201803197
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf17.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved