請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74581
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃升龍 | |
dc.contributor.author | Ting-Wei Hsu | en |
dc.contributor.author | 許庭瑋 | zh_TW |
dc.date.accessioned | 2021-06-17T08:43:56Z | - |
dc.date.available | 2024-08-13 | |
dc.date.copyright | 2019-08-13 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-06 | |
dc.identifier.citation | D. Huang et al., “Optical coherence tomography,” Science (80-. )., vol. 254, no. 5035, pp. 1178–1181, 1991.
A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In Vivo Optical Coherence Tomography,” Am. J. Ophthalmol., vol. 116, no. 1, pp. 113–114, 1993. E. A. Swanson et al., “In vivo retinal imaging by optical coherence tomography,” Opt. Lett., vol. 18, no. 21, pp. 1864–1866, Nov. 1993. A. O. Eghrari, S. A. Riazuddin, and J. D. Gottsch, “Chapter Two - Overview of the Cornea: Structure, Function, and Development,” Molecular Biology of Eye Disease, vol. 134, J. F. Hejtmancik and J. M. Nickerson, Eds. Academic Press, 2015, pp. 7–23. A. Foster and S. Resnikoff, “The impact of Vision 2020 on global blindness,” Eye, vol. 19, no. 10, pp. 1133–1135, 2005. V. Christopoulos et al., “In Vivo Corneal High-Speed, Ultra–High-Resolution Optical Coherence Tomography,” JAMA Ophthalmol., vol. 125, no. 8, pp. 1027–1035, 2007. R. M. Werkmeister et al., “Ultrahigh-resolution OCT imaging of the human cornea,” Biomed. Opt. Express, vol. 8, no. 2, pp. 1221–1239, Feb. 2017. U. Morgner et al., “Spectroscopic optical coherence tomography,” vol. 25, no. 2, pp. 62–63, 2003. B. Hermann et al., “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express, vol. 12, no. 8, pp. 1677–1688, Apr. 2004. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express, vol. 1, no. 1, pp. 310–317, Aug. 2010. Z. Deng et al., “Determination of continuous complex refractive index dispersion of biotissue based on internal reflection.,” J. Biomed. Opt., vol. 21, no. 1, p. 15003, Jan. 2016. A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res., vol. 23, no. 12, pp. 1351–1363, 1983. J.-C. Lai, Y.-Y. Zhang, Z.-H. Li, H.-J. Jiang, and A.-Z. He, “Complex refractive index measurement of biological tissues by attenuated total reflection ellipsometry,” Appl. Opt., vol. 49, no. 16, pp. 3235–3238, Jun. 2010. Z. Turani, E. Fatemizadeh, Q. Xu, S. Daveluy, D. Mehregan, and M. R. A. Nasiri, “Refractive index correction in optical coherence tomography images of multilayer tissues,” J. Biomed. Opt., vol. 23, no. 7, 2018. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett., vol. 20, no. 21, pp. 2258–2260, Nov. 1995. R. Chakraborty, K. D. Lacy, C. C. Tan, H. na Park, and M. T. Pardue, “Refractive index measurement of the mouse crystalline lens using optical coherence tomography,” Exp. Eye Res., vol. 125, pp. 62–70, 2014. C.-T. Yen et al., “Simultaneously measuring the refractive index and thickness of an optical sample by using improved fiber-based optical coherence tomography,” Opt. Eng., vol. 53, no. 4, 2014. T.-S. Ho, P. Yeh, C.-C. Tsai, K.-Y. Hsu, and S.-L. Huang, “Spectroscopic measurement of absorptive thin films by spectral-domain optical coherence tomography,” Opt. Express, vol. 22, no. 5, p. 5675, 2014. J. A. Izatt, M. A. Choma, and A.-H. Dhalla, “Theory of optical coherence tomography,” Optical coherence tomography: technology and applications, W. Drexler and J. G. Fujimoto, Eds. Springer, 2015, pp. 65–94. C.-C. Tsai et al., “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett., vol. 35, no. 6, p. 811, 2010. 王政凱, “摻鈦藍寶石寬頻晶體光纖光源之製備與檢測,” 國立臺灣大學, 碩士論文, 2011. S. Rehn, A. Planat-Chrétien, M. Berger, J.-M. Dinten, C. Deumié, and A. da Silva, “Comparison of polarized light penetration depth in scattering media,” Diffuse Optical Imaging III, 2011, p. 80881I. 林彥宏, “Mirau 全域式光學同調斷層掃描於皮膚結構及動態特性分析,” 國立臺灣大學, 碩士論文, 2016. “Infinity-Corrected Tube Lenses.” [Online]. Available: https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=5834. K. Creath, “Calibration of numerical aperture effects in interferometric microscope objectives,” Appl. Opt., vol. 28, no. 16, pp. 3333–3338, Aug. 1989. J. Q. Lu, H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X.-H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol., vol. 51, no. 6, pp. 1479–1489, Mar. 2006. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt., vol. 41, no. 4, pp. 805–812, Feb. 2002. “Limitations on Resolution and Contrast: The Airy Disk.” [Online]. Available: https://www.edmundoptics.com/resources/application-notes/imaging/limitationson-resolution-and-contrast-the-airy-disk/. A. L. Oldenburg, C. Xu, and S. A. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Sel. Top. Quantum Electron., vol. 13, no. 6, pp. 1629–1640, Nov. 2007. D. Gabor, “Theory of communication. Part 1: The analysis of information,” J. Inst. Electr. Eng. - Part III Radio Commun. Eng., vol. 93, no. 26, pp. 429–441, Nov. 1946. D. An, H. Li, Y. Xu, and L. Zhang, “Compensation of hysteresis on piezoelectric actuators based on tripartite PI Model,” Micromachines, vol. 9, no. 2, p. 44, 2018. D. Damjanovic, “Hysteresis in piezoelectric and ferroelectric materials,” Sci. Hysteresis, vol. III, pp. 337–465, 2006. M. Rakotondrabe, “Classical Prandtl-Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators,” 2012 American Control Conference (ACC), 2012, pp. 1646–1651. J. Gan and X. Zhang, “A review of nonlinear hysteresis modeling and control of piezoelectric actuators,” AIP Adv., vol. 9, no. 4, p. 40702, 2019. J. Ma, L. Tian, Y. Li, Z. Yang, Y. Cui, and J. Chu, “Hysteresis compensation of piezoelectric deformable mirror based on Prandtl–Ishlinskii model,” Opt. Commun., vol. 416, pp. 94–99, 2018. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am., vol. 55, no. 10, pp. 1205–1209, Oct. 1965. D. J. Segelstein, “The complex refractive index of water,” University of Missouri–Kansas City, Master thesis, 1981. D. W. DelMonte and T. Kim, “Anatomy and physiology of the cornea,” J. Cataract Refract. Surg., vol. 37, no. 3, pp. 588–598, 2011. “Facts About the Cornea and Corneal Disease.” [Online]. Available: https://nei.nih.gov/health/cornealdisease. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74581 | - |
dc.description.abstract | 本論文建立了以Mirau 全域式光學同調斷層掃瞄系統(Optical Coherence Tomography;OCT)架構對應的光譜式OCT 分析(Spectroscopic OCT; S-OCT)程序,並且開發使用該系統產生的光譜資訊來計算樣本光學性質參數的演算法。整套技術建於原本的OCT 系統架構上,不需額外硬體改造,且掃描的生物樣本可以保持其原始完整組織結構,不需做切片等任何侵入式的破壞。
本論文的 Mirau 全域式OCT 系統光源為實驗室自行生長的摻鈰釔鋁石榴石(Ce3+:YAG)晶體光纖的自發輻射(Spontaneous Emission; SE),能產生中心波長560 nm,頻寬98 nm的光源。系統具備縱向1.07 μm,橫向1.35 μm 的高解析度,於掃描大鼠角膜檢體樣本時,能夠清楚解析角膜各個重要的分層與細胞結構。為了確定OCT 掃描機構的壓電掃描器,於掃描取樣點的位移能保持正確,使用OCT 掃描光學仿體所得的干涉訊號來量測掃描過程的位移曲線,對壓電掃描器非線性特性進行校正,達成控制每單位位移與理想值9.8%之誤差。 針對使用的 Mirau 全域式OCT 系統建立的光譜式OCT 分析程序,產生針對樣本中一段8 μm 厚度的局部區域,產生該位置對應的光譜資訊,並擁有約14 nm 之頻域解析度。以光譜式OCT 分析產生的系統光源光譜,與光譜儀量測結果吻合,僅受到其光譜解析度限制而使量測頻寬略高於光譜儀之光譜。 針對 Mirau 全域式OCT 系統量測樣本中的一層介質,依據Fresnel 方程式建立該介質前、後界面干涉訊號的兩個強度與兩訊號相位差與波長關係之數值模型,建立透過量測數值與模型擬合的演算法來計算出該樣本介質的折射率、衰減係數隨波長變化,以及該介質層的物理厚度。利用模擬數據進測試,解決光譜式OCT 分析產生的相位具有相位未定的問題。使用已知性質的Fused silica 樣本來做整套技術的驗證。與文獻參考數據比較,整體折射率計算值約僅2%,厚度5.5%的誤差。最後,針對大鼠完整眼球檢體中角膜的部分,進行OCT 掃描以及計算其樣本性質參數,展現整套技術用於分析生物組織的可能性,量測結果統計上,折射率的標準差為計算平均值之0.8%,衰減係數標準差為2.3 × 10-4,物理厚度標準差比上平均值的百分比為4.8%,呈現量測的可重複性。 | zh_TW |
dc.description.abstract | Spectroscopic optical coherence tomography (S-OCT) analysis technique was implemented for Mirau-based full-field OCT (FF-OCT). An algorithm for calculating a layer of medium in the scanned sample, using spectral information generated with S-OCT, was also developed. The whole technique used the original OCT setup, without a need for further hardware modification, and the scanned bio-samples were not sectioned samples, still preserving its original structural integrity during measurement.
The Mirau-based FF-OCT system used a lab-grown Ce3+:YAG crystal fiber as its light source. The generated 98 nm broadband spontaneous emission and 560 nm center wavelength allowed the OCT system to have 1.07 μm and 1.35 μm resolution in axial and lateral direction, respectively. Using the OCT system to scan and ex vivo rat cornea, important corneal structures and cell arrangement were clearly visible, demonstrating the high resolution advantage of the OCT system. The OCT system utilized a piezo actuator as its scanning mechanics. For piezo scanning device having non-linearity effects, a calibration was performed to ensuring that during OCT scanning the scanning displacements were equally sampled. A novel method for displacement measurement were implemented using OCT scan signal of an optical phantom. After the calibration, the unit scan displacement differed from ideal value by 9.8%. S-OCT analysis procedure for the Mirau-based FF-OCT system was implemented. The technique allowed generation of a spectrum with 8 nm spectral resolution, for an 8 μm localized depth of the scanned sample signal. S-OCT-generated spectrum of the OCT light source matched the one measured with an optical spectrum analyzer, barring a slightly extended measured FWHM bandwidth. The difference was caused by spectral resolution limitation, which was due to inherent trade-off of time-spectral resolution of the S-OCT. Theoretical models for Mirau-based FF-OCT interference signals of a medium within the scanned sample were built, based on Fresnel equations. An algorithm for characterizing the refractive index and extinction coefficient dispersion, and the physical thickness of that sample medium was developed. Verifications of the algorithm were performed by simulated interference signals and OCT signals of a known-characteristics sample. Comparing with reference value, the overall measured refractive index had error of 2.0%, and for thickness 5.5%. Lastly, the whole technique was applied to a biological sample. The demonstration was done on the corneal layer of an intact ex vivo rat eye. The measured results from different lateral position and the same OCT field of view were compared. Defined a minimum absorption threshold of 5.2 × 10-3 μm-1 for positive κ measured results. Also, statistically, overall measured refractive index had a standard deviation of 0.8%, and measured thickness standard deviation 4.8%. The results demonstrated the possibility of S-OCT analysis technique with FF-OCT system on biological samples. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:43:56Z (GMT). No. of bitstreams: 1 ntu-108-R05941050-1.pdf: 5212248 bytes, checksum: 500daf80c236ccc164a6ca7d2b97693c (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝....................................................I
中文摘要.............................................. III Abstract .............................................. V 目錄................................................. VII 圖目錄.................................................IX 表目錄............................................... XII 第一章 緒論............................................. 1 1.1 技術背景與研究動機.................................. 1 1.2 本文概要............................................ 2 第二章 光譜式全域式光學同調斷層掃描術..................... 3 2.1 時域OCT 基本原理.................................... 3 2.2 Mirau 全域式OCT 系統架構............................ 7 2.2.1 光源模組.......................................... 8 2.2.2 OCT 模組........................................ 11 2.3 光譜式OCT 分析..................................... 19 2.3.1 光譜式OCT 原理................................... 19 2.3.2 光譜式全域式OCT 光譜性質.......................... 22 第三章 壓電掃描器掃描線性化............................. 25 3.1 壓電掃描器非線性效應................................ 25 3.2 線性掃描校正....................................... 28 第四章 光譜式OCT 樣本性質參數演算法...................... 34 4.1 單層樣本性質參數與光譜之關係........................ 34 4.1.1 單層樣本之前、後界面干涉訊號模型................... 34 4.1.2 以牛頓法求解非線性方程組.......................... 37 4.2 演算法驗證與參考樣本量測............................ 38 4.2.1 以模擬數據對演算法之驗證與分析..................... 38 4.2.2 實驗量測已知樣本對演算法之驗證分析................. 45 第五章 大鼠角膜OCT 掃描與性質分析....................... 52 5.1 角膜結構........................................... 52 5.2 大鼠角膜OCT 掃描訊號及影像.......................... 54 5.3 大鼠角膜光學性質分析................................ 57 第六章 結論與未來展望................................... 62 6.1 結論.............................................. 62 6.2 未來展望........................................... 63 參考文獻............................................... 65 | |
dc.language.iso | zh-TW | |
dc.title | 光譜式光學同調斷層掃描術對大鼠角膜光學性質之分析 | zh_TW |
dc.title | Optical Properties Analysis of Rat Cornea using Spectroscopic Optical Coherence Tomography | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃義侑,李翔傑 | |
dc.subject.keyword | 光學同調斷層掃瞄,光譜式OCT,Mirau 全域式OCT,角膜,折射率, | zh_TW |
dc.subject.keyword | optical coherence tomography,spectroscopic OCT,Mirau-based full-field OCT,cornea,refractive index, | en |
dc.relation.page | 68 | |
dc.identifier.doi | 10.6342/NTU201902630 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-07 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 5.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。