請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74578
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳振川 | |
dc.contributor.author | Ya-Ju Yu | en |
dc.contributor.author | 游雅如 | zh_TW |
dc.date.accessioned | 2021-06-17T08:43:46Z | - |
dc.date.available | 2020-08-18 | |
dc.date.copyright | 2019-08-18 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-07 | |
dc.identifier.citation | [1] Bazant, Z.P., Hubler, M.H., and Wendner, R., 'Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability,' RILEM Technical Committee TC-242-MDC (2015).
[2] Bazant, Z.P. and Murphy, W.P., 'Creep and shrinkage prediction model for analysis and design of concrete structures-model B3,' Materiaux et constructions, Vol. 28, No. 180, pp. 357-365 (1995). [3] 廖昱霖,「建置及應用資料庫以發展台灣自充填混凝土潛變預測公式」,碩士論文(指導教授:陳振川),國立臺灣大學土木工程學研究所,台北 (2018)。 [4] 陸景文、陳振川、張國鎮,、詹穎雯,「台灣地區溫度對混凝土橋樑影響之監測與分析」,第593-604頁 (2001)。 [5] Hołowaty, J., 'Creep and Shrinkage of Concrete in Eurocode 2 and Polish Bridge Standards—Necessity for Implementation,' Journal of Civil Engineering and Architecture Vol. 9, pp. 460-466 (2015). [6] Gilbert, R.I. and Ranzi, G., Time-dependent behaviour of concrete structures. CRC Press (2010). [7] 詹穎雯,「環境溫、濕度對含高爐石、飛灰與普通卜特蘭水泥混凝土強度之影響與變形之研究」,碩士論文(指導教授:陳振川),國立臺灣大學土木工程學研究所,台北 (1988)。 [8] Neville, A.M., Properties of concrete. longman London (1995) [9] Pickett and Gerald, 'The effect of change in moisture-content on the crepe of concrete under a sustained load,' in Journal Proceedings, of Conference, Vol. 38, pp. 333-356 (1942). [10] Bazant, Z.P. and Chern, J.C., 'Concrete creep at variable humidity: constitutive law and mechanism,' Vol. 18, No. 1, p. 1 (1985) [11] Lorman, W.R., 'Theory of concrete creep,' Proc. ASTM, Vol. 40, pp. 1082-1102 (1940). [12] 夏建交、譚東山,「混凝土徐變的影響因素分析」,中國科技資訊,第27-31頁 (2007)。 [13] Mehta, P.K., Concrete : microstructure, properties, and materials, 3rd ed. New York: McGraw-Hill (2006). [14] Neville, A.M., Creep of plain and structural concrete. London (1983). [15] Shariq, M., Prasad, J., and Abbas, H., 'Creep and drying shrinkage of concrete containing GGBFS,' Cement and Concrete Composites, Vol. 68, pp. 35-45 (2016) [16] Brooks, J.J., Wainwright, P.J., and Boukendakji, M., 'Influence of Slag Type and Replacement Level on Strength Elasticity, Shrinkage and Creep of Concrete,' Special Publication, Vol. 132 (1992). [17] Robert, L.Y. and James, E.C., 'Study of a Class C Fly Ash Concrete,' Special Publication, Vol. 79 (1983). [18] Tazawa, E. and Yonekura, A., 'Drying Shrinkage and Creep of Concrete with Condensed Silica Fume,' Special Publication, Vol. 91 (1986). [19] Chern, J., Bazant, Z., and Marchertas, A., 'Concrete creep at transient temperature: Constitutive law and mechanism,' Argonne National Lab (1985). [20] F. Feldman, R. and J. Sereda, P., A New Model for Hydrated Portland Cement and Its Practical Implications (1970). [21] 陳育聖,「自充填混凝土之工程性質」,碩士論文(指導教授:詹穎雯),國立臺灣大學土木工程學研究所,台北 (2000)。 [22] 劉家佑,「高性能混凝土自體收縮性質之研究」,碩士論文(指導教授:詹穎雯),國立臺灣大學土木工程學研究所,台北 (1996)。 [23] Mehta, P.K. and Monteiro, P.J.M., Concrete: structure, properties, and materials. Prentice Hall (1993). [24] Holt, E.E., Early age autogenous shrinkage of concrete. Technical Research Centre of Finland Espoo, Finland (2001). [25] Aitcin, P.C., Neville, A., and Acker, P., 'Integrated View of Shrinkage Deformation,' Concrete International, Vol. 19, No. 9 (1997). [26] Krishna, V. and Kumar, R., 'Water to Cement Ratio: A Simple and Effective Approach to Control Plastic and Drying Shrinkage in Concrete,' Sustainable Construction Materials Technology (2016). [27] Tazawa, E. and Miyazawa, S., 'Influence of constituents and composition on autogenous shrinkage of cementitious materials,' Magazine of Concrete Research, Vol. 49, No. 178, pp. 15-22 (1997). [28] Roper, H., 'The Influence of Cement Composition and Fineness on Concrete Shrinkage, Tensile Creep and Cracking Tendency,' (1974). [29] Bentur, A., Igarashi, S.I., and Kovler, K., 'Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates,' Cement and Concrete Research, Vol. 31, No. 11, pp. 1587-1591 (2001).. [30] Lee, K.M., Lee, H.K., Lee, S.H., and Kim, G.Y., 'Autogenous shrinkage of concrete containing granulated blast-furnace slag,' Cement and Concrete Research, Vol. 36, No. 7, pp. 1279-1285 (2006). [31] Tangtermsirikul, S., 'Class C Fly Ash as a Shrinkage Reducer for Cement Paste,' Special Publication, Vol. 153 (1995). [32] Wang, X.H., 'Drying shrinkage of ternary blends in mortar and concrete,' Master Dissertation, Civil Engineering, Lowa State Univeristy, Ames (2011). [33] Tazawa, E.i. and Miyazawa, S., 'Influence of cement and admixture on autogenous shrinkage of cement paste,' Cement and Concrete Research, Vol. 25, No. 2, pp. 281-287 (1995). [34] Brooks, J.J. and Hynes, J.P., 'Creep and shrinkage of ultra high-strength silica fume concrete,' in RILEM proceeding, pp. 493-493, Chapamn and Hall (1993) [35] Ma, B.g., Wang, X.g., Li, X.g., and Yang, L., 'Influence of superplasticizers on strength and shrinkage cracking of cement mortar under drying conditions,' Journal of Wuhan University of Technology-Mater. Sci. Ed., Vol. 22, No. 2, pp. 358-361 (2007). [36] Yang, J., Wang, Q., and Zhou, Y., 'Influence of Curing Time on the Drying Shrinkage of Concretes with Different Binders and Water-to-Binder Ratios,' Advances in Materials Science and Engineering, Vol. 2017, p. 10, Art. no. 2695435 (2017). [37] Blakey, F., Influence of Creep and Shrinkage on Structural Behaviour Constructional Review 36(11) (1963). [38] 公共工程施工綱要規範第03315章,「自充填混凝土」(2010)。 [39] 日本土木學會,「高流動混凝土施工指南」(平成10年)。 [40] 周禮良,「日本自己充填混凝土之應用現況」,高性能混凝土新進發展與應用,第19-36頁 (1997)。. [41] 歐昱辰,「自充填混凝土配比及早期行為之研究」,碩士論文(指導教授:詹穎雯),國立臺灣大學土木工程學研究所,台北 (2001)。 [42] Hauke, B., 'Self-compacting concrete for precast concrete products in Germany,' in Proceedings of the 2nd international RILEM symposium on self-compacting concrete, of Conference, pp. 633-642, COMS Engineering Corporation, Tokyo (2001). [43] Kavanaugh, B., 'Creep Behavior of Self-Consolidating Concrete,' Master Dissertation, Faculty of Science Auburn University Alabama (2008). [44] Turcry, P., Loukili, A., Haidar, K., Pijaudier-Cabot, G., and Belarbi, A., 'Cracking tendency of self-compacting concrete subjected to restrained shrinkage: experimental study and modeling,' Journal of Materials in Civil Engineering, Vol. 18, No. 1, pp. 46-54 (2006). [45] Persson, B., 'A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete,' Cement and Concrete Research, Vol. 31, No. 2, pp. 193-198 (2001). [46] Loser, R. and Leemann, A., 'Shrinkage and restrained shrinkage cracking of self-compacting concrete compared to conventionally vibrated concrete,' Materials structures, Vol. 42, No. 1, pp. 71-82 (2009). [47] Heirman, G. et al., 'Time-dependent deformations of limestone powder type self-compacting concrete,' Engineering Structures, Vol. 30, No. 10, pp. 2945-2956 (2008). [48] Tazawa, E.-i. and Miyazawa, S., 'Experimental study on mechanism of autogenous shrinkage of concrete,' Cement and Concrete Research, Vol. 25, No. 8, pp. 1633-1638 (1995). [49] Rozière, E., Granger, S., Turcry, P., and Loukili, A., 'Influence of paste volume on shrinkage cracking and fracture properties of self-compacting concrete,' Cement and Concrete Composites, Vol. 29, No. 8, pp. 626-636 (2007). [50] 秦維邑,「建置及應用資料庫以發展台灣混凝土收縮預測公式」,碩士論文(指導教授:陳振川),國立臺灣大學土木工程學研究所,台北 (2017)。 [51] 陸景文,「台灣地區混凝土橋梁溫度、彈性應變、潛變及乾縮特性之整合研究」,博士論文(指導教授:陳振川、詹穎雯),國立臺灣大學土木工程學研究所,台北 (2001)。 [52] Rozière, E., Granger, S., Turcry, P., and Loukili, A., 'Influence of paste volume on shrinkage cracking and fracture properties of self-compacting concrete,' Cement and Concrete Composites, Vol. 29, No. 8, pp. 626-636 (2007). [53] Available: https://www.taiwan.net.tw/m1.aspx?sNo=0001121&id=9328 [54] 中華民國內政部,「鋼骨鋼筋混凝土構造設計規範與解說」,台內營字第0930082917號 (2004)。 [55] Han, L.-H., Li, W., and Bjorhovde, R., 'Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members,' Journal of Constructional Steel Research, Vol. 100, pp. 211-228 (2014). [56] Xiao, Y., He, W.H., and Choi, K.K., 'Confined concrete-filled tubular columns,' Journal of structural engineering, Vol. 131, No. 3, pp. 488-497 (2005). [57] Morino, S. and Tsuda, K., 'Design and construction of concrete-filled steel tube column system in Japan,' Earthquake Engineering Engineering Seismology, Vol. 4, No. 1, pp. 51-73 (2003). [58] Nakai, H., Matsui, S., Yoda, T., and Kurita, A., 'Trends in Steel-Concrete Composite Bridges in Japan,' Structural Engineering International, Vol. 8, No. 1, pp. 30-34 (1998). [59] Brian, U., 'Static Long-Term Effects in Short Concrete-Filled Steel Box Columns under Sustained Loading,' Structural Journal, Vol. 98, No. 1 (2001). [60] Naguib, W. and Mirmiran, A., 'Creep modeling for concrete-filled steel tubes,' Journal of Constructional Steel Research, Vol. 59, No. 11, pp. 1327-1344 (2003). [61] Ichinose, L.H., Watanabe, E., and Nakai, H., 'An experimental study on creep of concrete filled steel pipes,' Journal of Constructional Steel Research, Vol. 57, No. 4, pp. 453-466 (2001). [62] Baiant, Z.P., 'Mathematical modeling of creep and shrinkage of concrete,' Creep shrinkage in concrete structures, p. 163 (1988). [63] Bažant, Z.P. and Wu, S.T., 'Rate-type creep law of aging concrete based on Maxwell chain,' Matériaux et Construction, Vol. 7, No. 1, pp. 45-60 (1974). [64] Takács, P.F., 'Deformations in concrete cantilever bridges: observations and theoretical modelling,' Ph.D Dissertation, Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway (2002). [65] Roylance, D., Engineering viscoelasticity. pp. 1-37 (2001). [66] Hu, H.T., Huang, C.S., and Chen, Z.L., 'Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination,' Journal of Constructional Steel Research, Vol. 61, No. 12, pp. 1692-1712 (2005). [67] Hu, H.T., Su, F.C., and Elchalakani, M., 'Finite element analysis of CFT columns subjected to pure bending moment,' Steel Composite Structures, Vol. 10, No. 5, pp. 415-428 (2010). [68] Chithira, K. and Baskar, K., 'Experimental and Numerical Investigation on Circular CFT Columns under Eccentric Load Condition with and without Shear Connectors,' International Journal of Earth Sciences Engineering Structures, Vol. 5, No. 01, pp. 169-179 (2012). [69] Jayaganesh, S., Jeyaraju, R.M., Ganapathy, G.P., and Jegan, J., Effects of Concentrical Partial (Local) Compression on the Structural Behavior of Concrete Filled Steel Tubular Column. pp. 1-9 (2015). [70] El-Heweity, M.M., 'On the performance of circular concrete-filled high strength steel columns under axial loading,' Alexandria Engineering Journal, Vol. 51, No. 2, pp. 109-119 (2012). [71] Chang, X., Luo, X., Zhu, C., and Tang, C., 'Analysis of circular concrete-filled steel tube (CFT) support in high ground stress conditions,' Tunnelling Underground Space Technology, Vol. 43, pp. 41-48 (2014). [72] Hwang, J.Y. and Kwak, H.G., 'FE analysis of circular CFT columns considering bond-slip effect: A numerical formulation,' Mechanical Sciences, Vol. 9, No. 2, pp. 245-257 (2018). [73] Furlong, R.W., 'Strength of steel-encased concrete beam columns,' Journal of the Structural Division, Vol. 93, No. 5, pp. 113-124 (1967). [74] Cheng, X.d., Li, G.y., and Ye, G.r., 'Three-dimensional nonlinear analysis of creep in concrete filled steel tube columns,' Journal of Zhejiang University-SCIENCE A, Vol. 6, No. 8, pp. 826-835 (2005). [75] Kwon, S.H., Kim, T.H., Kim, Y.Y., and Kim, J.K., 'Long-term behaviour of square concrete-filled steel tubular columns under axial service loads,' Magazine of Concrete Research, Vol. 59, No. 1, pp. 53-68 (2007). [76] Kim, J.K. and Kown, S.H., 'Long-term behaviour of rectangulart CFT columns under service loads,' Structure Concrete and Time (2005). [77] Han, B., Wang, Y.F., Wang, Q., and Zhang, D.J., 'Creep analysis of CFT columns subjected to eccentric compression loads,' Computers Concrete International, Vol. 11, No. 4, pp. 291-304 (2013). [78] Abedi, K., Nabati, A., Afshin, H., and Ferdousi, A., 'Investigation into behavior of cft circular columns under long-term axial and cyclic loadings,' Asian journal of civil engineering, Vol. 16, No. 3, pp. 322-346 (2015). [79] 汪丁敏、代春輝、劇錦三、蔣秀根,「鋼管混凝土軸心受壓構件的徐變預測模型及其徐變性能分析」,工程力學,第34卷,第6號,第166-177頁 (2017)。 [80] Chen, W.-F. and Han, D.-J., Plasticity for structural engineers. J. Ross (2007). [81] Branson, D.E. and Christiason, M.L., 'Time dependent concrete properties related to design-strength and elastic properties, creep, and shrinkage,' Special Publication, Vol. 27, pp. 257-278 (1971). [82] Rhodes, J.A. and Carreira, D.J., 'Prediction of creep, shrinkage, and temperature effects in concrete structures,' Hills, United States & American Concrete Institute (1982). [83] Comite Euro-International Du Beton, Model code for concrete structures (1990). [84] fib model code for concrete structures 2010. Lausanne, Switzerland: Ernst & Sohn, a Wiley brand (2013). [85] Gardner, N.J. and Lockman, M.J., 'Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete,' Materials Journal, Vol. 98, No. 2 (2001). [86] Gardner, N.J. and Tsuruta, H., 'Is superposition of creep strains valid for concretes subjected to drying creep?,' Materials Journal, Vol. 101, No. 5, pp. 409-415 (2004). [87] 王丞,「建置及應用資料庫以發展台灣自充填混凝土收縮預測公式」,碩士論文(指導教授:陳振川),國立臺灣大學土木工程學研究所,台北 (2017)。 [88] 劉庭愷,「建置及應用資料庫以發展台灣混凝土潛變預測公式」,碩士論文(指導教授:陳振川),國立臺灣大學土木工程學研究所,台北 (2017)。 [89] Poppe, A.M. and De Schutter, G., 'Creep and shrinkage of self-compacting concrete,' in First International Symposium on Design, Performance and Use of Self-Consolidating Concrete, China, of Conference, pp. 329-336, Place,Published (2005). [90] Code, CEB-FIP Model, 'Evaluation of the time dependent behavior of concrete,' Bulletin d’Information, No. 199 (1990). [91] Larson, K.H., 'Evaluating the time-dependent deformations and bond characteristics of a self-consolidating concrete mix and the implication for pretensioned [sic] bridge applications,' Ph. D Dissertation, Department of Civil Engineering Kansas State University (2006) [92] Cordoba, B., 'Creep and shrinkage of self-consolidating concrete (SCC),' Master Dissertation, Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming (2007). [93] AISC, Specification for structural steel buildings. Chicago (2016). [94] Standard for Structural Calculation of Steel Reinforced Concrete (1999). [95] Standard for Structural Calculation of Steel Reinforced Concrete (2001). [96] 日本建築學會,「混凝土充填鋼管構造設計指南」,東京 (2012)。. [97] 中華人民共和國住房和城鄉建設部,「鋼管混凝土結構技術規範」,中華人民共和國住房和城鄉建設部,北京 (2014). [98] Malm, R. and Sundquist, H., 'Time-dependent analyses of segmentally constructed balanced cantilever bridges,' Engineering Structures, Vol. 32, No. 4, pp. 1038-1045 (2010). [99] 王詠寬,「台灣長跨懸臂節塊施工預力混凝土橋梁長期變形研究」,碩士論文(指導教授:陳振川),國立臺灣大學土木工程學研究所,台北 (2018)。 [100] 陳振川、吳子良、游雅如,「鋼管混凝土建築結構設計分析之新法」,中華民國第14屆結構工程及第4屆地震工程研討會,第1022號 (2018)。 [101] ASCE 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers (ASCE) (2017). [102] 黃國倫,「鋼管混凝土結構螺栓式接頭耐震行為之有限元素分析研究」,博士論文(指導教授:鍾立來、吳賴雲),國立臺灣大學土木工程學研究所,台北 (2007)。 [103] 洪沛甫、張宏成、楊培堅,「SRC 高層建築物於鋼骨材質選用之探討」,第十屆中華民國結構工程研討會,第002號 (2010)。 [104] Sravana, P., Sarika, P., Rao, S., Sekhar, S., and Apparao, G., 'Studies on relationship between water/binder ratio and compressive strength of high volume fly ash concrete,' American Journal of Engineering Research, Vol. 2, No. 8, pp. 115-122 (2013). [105] 中華民國鋼結構協會,「鋼結構極限設計法規範及解說」,臺北 (2008)。 [106] 台灣內政部營建署,「混凝土結構設計規範」,臺北市 (2002)。 [107] Huang, C. et al., 'Axial load behavior of stiffened concrete-filled steel columns,' Vol. 128, No. 9, pp. 1222-1230. (2002) [108] Giakoumelis, G. and Lam, D., 'Axial capacity of circular concrete-filled tube columns,' Journal of Constructional Steel Research, Vol. 60, No. 7, pp. 1049-1068. (2004) [109] Yu, Z.W., Ding, F.X., and Cai, C.S., 'Experimental behavior of circular concrete-filled steel tube stub columns,' Journal of Constructional Steel Research, Vol. 63, No. 2, pp. 165-174. (2007) [110] de Oliveira, W.L.A., De Nardin, S., de Cresce El Debs, A.L.H., and El Debs, M.K., 'Influence of concrete strength and length/diameter on the axial capacity of CFT columns,' Journal of Constructional Steel Research, Vol. 65, No. 12, pp. 2103-2110. (2009) [111] Zhang, D.J., Ma, Y.S., and Wang, Y., 'Compressive behavior of concrete filled steel tubular columns subjected to long-term loading,' Thin-Walled Structures, Vol. 89, pp. 205-211. (2015) [112] Kim, C.S., Park, H.G., Choi, I.R., and Chung, K.S., 'Effect of Sustained Load on Ultimate Strength of High-Strength Composite Columns Using 800-MPa Steel and 100-MPa Concrete,' Vol. 143, No. 3, p. 04016189. (2017) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74578 | - |
dc.description.abstract | 鋼管混凝土柱(Concrete-filled steel tubular column,簡稱CFT)高強度、高韌性且具有良好的耐震性能。其核心混凝土若使用自充填混凝土,澆置過程無須振動搗實,可加速施工時程,故CFT柱常成為台灣高樓層建築物結構柱的選擇。
早期鋼管內灌混凝土是為了增加構件的側向勁度,並延緩挫曲行為的發生。然而近幾年,工程師開始在設計階段將核心混凝土納入承受垂直荷載的材料。混凝土一旦受力,潛變就會隨時間持續發展,而柱構件為了保持其斷面力平衡,混凝土會將承擔的部分軸力移轉至鋼管,這些移轉量可能會使鋼管降伏,影響結構物的安全。此外,隨著科技進步,自充填混凝土的強度已可達90MPa,強度越高的混凝土,水膠比越低。過低水膠比的混凝土會產生大量自體收縮,使構件間應力移轉現象愈嚴重。 本研究以有限元素分析軟體ABAQUS建置三維鋼管混凝土柱模型,考慮混凝土潛變收縮行為引致之構件內部應力移轉的情形。另外,台灣粒料強度及彈性模數不佳,造成混凝土配比中漿體量大於國際,長期變形亦受影響。若直接引用國外潛變收縮公式會造成模擬分析失準。因此本研究將整理比較國內外混凝土潛變收縮公式,選擇可適當描述台灣混凝土長期變形的預測式。 模擬結果顯示,在初始鋼骨應力為0.6f_y的情況下,無論荷載是否偏心,考慮混凝土潛變收縮效應的最終鋼應力皆有機會超出《鋼構造建築物鋼結構設計技術規範》檢核標準。而且在使用高強度自充填混凝土及構件高寬厚比的極端情況下,鋼應力可上升0.33f_y,將大幅超過原始設計值。構件寬厚比及鋼管降伏強度顯著影響最終鋼應力,設計時應避免高寬厚比及低鋼管降伏強度的組合。各國鋼管混凝土柱潛變收縮規範仍相當簡略,僅注重短期荷載效應。建議台灣應修訂《鋼骨鋼筋混凝土構造設計規範與解說》並納入混凝土長期變形對於鋼管應力的影響。 | zh_TW |
dc.description.abstract | Concrete-filled steel tubular (CFT) columns show not only high strength and high ductility but also exhibit favorable seismic performance. Besides, CFT columns infilled with self-consolidating concrete (SCC) shorten construction time because of its self-compacting characteristics. As a result, these kind of structural members have been widely adopted in high-rise buildings in Taiwan.
The primary intent of concrete infill is to increase lateral stiffness of member and delay the local buckling of the steel tubular. However, in the recent future, engineers begin to incorporate concrete in materials subjected to axial load during design. Once concrete is subjected to load, development of concrete creep begins. In order to maintain the equilibrium of forces of CFT section, part of axial load of concrete will be transferred to steel tubular which leads to the growth of steel stress. Furthermore, with the ever-changing nature of technology, concrete compressive strength of SCC has reached up to 90 MPa. In general, the higher the concrete compressive strength is, the lower the water cement ratio is. Concrete with low water cement ratio intensifies the rise of steel stress in CFT columns on account of high autogenous shrinkage. A three-dimensional finite element model of CFT column, which takes account of the phenomenon of concrete creep and shrinkage, is developed to evaluate stress transfer between concrete and steel in ABAQUS. According to recent research, there is a characteristic of high amount of paste in concrete mix designs in Taiwan owing to the soft nature of coarse aggregates. It is not appropriate to directly adopt foreign prediction formulas which will lead to underestimate long term deformation of concrete in the CFT columns. Consequently, this study compares different creep and shrinkage prediction formulas for concrete to gain a better result of the research. The analysis results show that under the condition of initial steel stress of 0.6f_y, the final steel stress of CFT column is probably not qualified according to “Design and Technique Specifications of Steel Structures for Buildings” owing to the long term deformation of infilled concrete whether the load is eccentric or not. In the extreme case of high concrete compressive strength of SCC and high diameter to thickness ratio, the steel stress significantly exceeds the original design value with 0.33f_y. Apart from this, combination of high diameter to thickness ratio and low yield strength of steel should be avoided during design due to the considerable growth of steel stress. However, specifications among countries so far merely focus on the short term loading performances of CFT columns, while its time dependent behavior is deficient. It is suggested that relevant specifications should be revised in “Design Specifications and Commentary of Steel Reinforced Concrete Structures” in Taiwan. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:43:46Z (GMT). No. of bitstreams: 1 ntu-108-R06521228-1.pdf: 6294360 bytes, checksum: 67ef5d8951140248b09aac2b0c1d7d41 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目錄 V 表目錄 X 圖目錄 XII 第一章、 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 3 1.3 研究流程圖 5 第二章、 文獻回顧 6 2.1 混凝土的體積穩定性 6 2.1.1 混凝土潛變 6 2.1.2 混凝土收縮 16 2.2 自充填混凝土 26 2.2.1 自充填混凝土定義 26 2.2.2 自充填混凝土的發展 27 2.2.3 自充填混凝土與搗實混凝土之比較 28 2.3 台灣混凝土的配比特性 31 2.4 鋼管混凝土柱 33 2.4.1 鋼管混凝土柱介紹 33 2.4.2 內灌混凝土的體積穩定性 36 2.4.3 鋼管混凝土柱的極限承載力 37 2.5 混凝土潛變數值模型 43 2.5.1 黏彈性材料模型 44 2.5.2 材料組成律之推導 45 2.6 鋼管混凝土柱的模擬 47 2.6.1 考慮混凝土長期變形文獻 47 2.6.2 鋼管的降伏準則 53 第三章、 國內外潛變收縮預測公式 55 3.1 ACI 209R-92 55 3.1.1 潛變公式 56 3.1.2 收縮公式 57 3.2 CEB MC10 58 3.2.1 潛變公式 58 3.2.2 收縮公式 59 3.3 GL2000 60 3.3.1 潛變公式 61 3.3.2 收縮公式 62 3.4 Model B4 62 3.4.1 時間對溫度的修正 64 3.4.2 潛變公式 64 3.4.3 收縮公式 67 3.5 Model B4-TW 72 3.5.1 潛變公式 73 3.5.2 收縮公式 75 3.6 Model B4-TW SCC 78 3.6.1 潛變公式 79 3.6.2 收縮公式 81 3.7 Poppe and De Schutter 83 3.7.1 潛變公式 83 3.7.2 收縮公式 84 3.8 Larson 84 3.8.1 潛變公式 85 3.8.2 收縮公式 85 3.9 Cordoba 85 3.9.1 潛變公式 86 3.9.2 收縮公式 87 3.10 國內外收縮潛變預測公式比較 87 第四章、 國內外鋼管混凝土柱相關設計規範 93 4.1 ANSI/AISC 360-16 (美國) 93 4.2 鐵骨鐵筋混凝土構造計算規準同解說(日本) 95 4.3 钢管混凝土结构技术规范GB 50936-2014 (中國) 96 4.4 鋼骨鋼筋混凝土構造設計規範與解說(台灣) 99 4.5 各國鋼管混凝土柱規範比較 100 第五章、 鋼管混凝土柱有限元素分析 103 5.1 ABAQUS簡介 103 5.2 混凝土材料的潛變模擬 105 5.2.1 ABAQUS潛變材料模型 105 5.2.2 ABAQUS潛變擬合結果 107 5.3 混凝土材料的收縮模擬 109 5.4 鋼管混凝土柱有限元素分析 110 5.4.1 案例資訊 110 5.4.2 幾何模型 111 5.4.3 材料性質 111 5.4.4 分析假設條件 113 5.4.5 材料介面的交互作用 113 5.4.6 載重及邊界條件 114 5.4.7 網格劃分及元素選擇 115 5.4.8 分析步驟 116 第六章、 分析結果與討論 117 6.1 參數分析 117 6.1.1 影響基本潛變的參數 117 6.1.2 影響自體收縮的參數 123 6.1.3 小結 127 6.2 案例分析結果 129 6.3 分析新設計之斷面 131 6.3.1 僅考慮基本潛變 131 6.3.2 僅考慮自體收縮 134 6.3.3 考量收縮潛變 136 6.3.4 規範檢核 140 6.3.5 小結 140 6.4 極端情況之討論 141 6.4.1 分析結果 142 6.4.2 小結 144 第七章、 工程建議 146 7.1 自體收縮 146 7.1.1 設計方法 146 7.1.2 自體收縮應力移轉圖表 147 7.2 基本潛變 149 7.3 鋼管混凝土柱建議設計流程 150 第八章、 結論與建議 153 8.1 結論 153 8.2 建議 155 第九章、 參考文獻 157 | |
dc.language.iso | zh-TW | |
dc.title | 鋼管混凝土柱受潛變及收縮影響研究 | zh_TW |
dc.title | Study of the Influence of Creep and Shrinkage on Concrete Filled Steel Tubular Columns | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖文正,謝紹松,吳子良 | |
dc.subject.keyword | 鋼管混凝土柱,潛變,收縮,應力移轉,有限元素法, | zh_TW |
dc.subject.keyword | CFT,creep,shrinkage,stress transfer,finite element method, | en |
dc.relation.page | 169 | |
dc.identifier.doi | 10.6342/NTU201902574 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-07 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 6.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。