請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74552完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林頌然(Hsien Yi Chiu) | |
| dc.contributor.author | Shuo-Jen Yang | en |
| dc.contributor.author | 楊碩仁 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:42:16Z | - |
| dc.date.available | 2023-08-19 | |
| dc.date.copyright | 2019-08-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-07 | |
| dc.identifier.citation | [1] Alleva, E. and D. Santucci (1997). 'Guide for the care and use of laboratory animals.' Ethology 103(12): 1072-1073.
[2] Blank, I. H. (1952). 'Factors which influence the water content of the stratum corneum.' J Invest Dermatol 18(6): 433-440. [3] Blanpain, C. and E. Fuchs (2009). 'Epidermal homeostasis: a balancing act of stem cells in the skin.' Nat Rev Mol Cell Biol 10(3): 207-217. [4] Braun, C. A. and C. M. Anderson (2007). Pathophysiology : functional alterations in human health. Philadelphia, Lippincott Williams & Wilkins. [5] Cicchi, R., D. Kapsokalyvas and F. S. Pavone (2014). 'Clinical nonlinear laser imaging of human skin: a review.' Biomed Res Int 2014: 903589. [6] Clayton, E., D. P. Doupe, A. M. Klein, D. J. Winton, B. D. Simons and P. H. Jones (2007). 'A single type of progenitor cell maintains normal epidermis.' Nature 446(7132): 185-189. [7] Denekamp, J., F. Stewart and B. J. C. P. Douglas (1976). 'Changes in the proliferation rate of mouse epidermis after irradiation: continuous labelling studies.' 9(1): 19-29. [8] Denk, W., J. H. Strickler and W. W. Webb (1990). 'Two-photon laser scanning fluorescence microscopy.' Science 248(4951): 73-76. [9] Eisenhoffer, G. T., P. D. Loftus, M. Yoshigi, H. Otsuna, C. B. Chien, P. A. Morcos and J. Rosenblatt (2012). 'Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia.' Nature 484(7395): 546-549. [10] Eisenhoffer, G. T. and J. Rosenblatt (2013). 'Bringing balance by force: live cell extrusion controls epithelial cell numbers.' Trends Cell Biol 23(4): 185-192. [11] Farhadifar, R., J. C. Roper, B. Aigouy, S. Eaton and F. Julicher (2007). 'The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing.' Curr Biol 17(24): 2095-2104. [12] Fung, M. A. (2010). Inflammatory diseases of the dermis and epidermis. Dermatopathology, Elsevier Inc.: 11-81. [13] Goodwin, P., S. Hamilton and L. Fry (1974). 'The cell cycle in psoriasis.' Br J Dermatol 90(5): 517-524. [14] Helmchen, F. and W. Denk (2005). 'Deep tissue two-photon microscopy.' Nat Methods 2(12): 932-940. [15] Honkura, N., M. Richards, B. Lavina, M. Sainz-Jaspeado, C. Betsholtz and L. Claesson-Welsh (2018). 'Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events.' Nat Commun 9(1): 2746. [16] Hooper, C. E. (1956). 'Cell turnover in epithelial populations.' J Histochem Cytochem 4(6): 531-540. [17] Huck, V., C. Gorzelanny, K. Thomas, V. Getova, V. Niemeyer, K. Zens, T. R. Unnerstall, J. S. Feger, M. A. Fallah, D. Metze, S. Stander, T. A. Luger, K. Koenig, C. Mess and S. W. Schneider (2016). 'From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin.' Sci Rep 6: 22789. [18] Ipponjima, S., T. Hibi and T. Nemoto (2016). 'Three-Dimensional Analysis of Cell Division Orientation in Epidermal Basal Layer Using Intravital Two-Photon Microscopy.' PLoS One 11(9): e0163199. [19] Jia, H. Y., Y. Shi, L. F. Luo, G. Jiang, Q. Zhou, S. Z. Xu and T. C. Lei (2016). 'Asymmetric stem-cell division ensures sustained keratinocyte hyperproliferation in psoriatic skin lesions.' Int J Mol Med 37(2): 359-368. [20] Katoh, H. and Y. Fujita (2012). 'Epithelial homeostasis: elimination by live cell extrusion.' Curr Biol 22(11): R453-455. [21] Kaur, P. (2006). 'Interfollicular epidermal stem cells: identification, challenges, potential.' J Invest Dermatol 126(7): 1450-1458. [22] Klein, A. M., D. P. Doupe, P. H. Jones and B. D. Simons (2007). 'Kinetics of cell division in epidermal maintenance.' Phys Rev E Stat Nonlin Soft Matter Phys 76(2 Pt 1): 021910. [23] Kocgozlu, L., T. B. Saw, A. P. Le, I. Yow, M. Shagirov, E. Wong, R. M. Mege, C. T. Lim, Y. Toyama and B. Ladoux (2016). 'Epithelial Cell Packing Induces Distinct Modes of Cell Extrusions.' Curr Biol 26(21): 2942-2950. [24] Lechler, T. and E. Fuchs (2005). 'Asymmetric cell divisions promote stratification and differentiation of mammalian skin.' Nature 437(7056): 275-280. [25] Lee, J. H., S. Lee, Y. S. Gho, I. S. Song, H. Tchah, M. J. Kim and K. H. Kim (2015). 'Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo.' Exp Eye Res 132: 101-108. [26] Liang, C. C., L. R. You, J. L. Chang, T. F. Tsai and C. M. Chen (2009). 'Transgenic mice exhibiting inducible and spontaneous Cre activities driven by a bovine keratin 5 promoter that can be used for the conditional analysis of basal epithelial cells in multiple organs.' J Biomed Sci 16: 2. [27] Lin, S. J., S. H. Jee and C. Y. Dong (2007). 'Multiphoton microscopy: a new paradigm in dermatological imaging.' Eur J Dermatol 17(5): 361-366. [28] Mackenzie, I. C. (1970). 'Relationship between mitosis and the ordered structure of the stratum corneum in mouse epidermis.' Nature 226(5246): 653-655. [29] Marinari, E., A. Mehonic, S. Curran, J. Gale, T. Duke and B. Baum (2012). 'Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding.' Nature 484(7395): 542-545. [30] Masters, B. R. (2006). Confocal microscopy and multiphoton excitation microscopy : the genesis of live cell imaging. Bellingham, Wash., SPIE Press. [31] Masters, B. R., P. T. So and E. Gratton (1997). 'Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin.' Biophys J 72(6): 2405-2412. [32] Matatall, K. A., C. S. Kadmon and K. Y. King (2018). Detecting hematopoietic stem cell proliferation using BrdU incorporation. Cellular Quiescence, Springer: 91-103. [33] Mesa, K. R., K. Kawaguchi, K. Cockburn, D. Gonzalez, J. Boucher, T. Xin, A. M. Klein and V. Greco (2018). 'Homeostatic Epidermal Stem Cell Self-Renewal Is Driven by Local Differentiation.' Cell Stem Cell 23(5): 677-686 e674. [34] Moll, R., W. W. Franke, D. L. Schiller, B. Geiger and R. Krepler (1982). 'The Catalog of Human Cytokeratins - Patterns of Expression in Normal Epithelia, Tumors and Cultured-Cells.' Cell 31(1): 11-24. [35] Murai, K., G. Skrupskelyte, G. Piedrafita, M. Hall, V. Kostiou, S. H. Ong, T. Nagy, A. Cagan, D. Goulding, A. M. Klein, B. A. Hall and P. H. Jones (2018). 'Epidermal Tissue Adapts to Restrain Progenitors Carrying Clonal p53 Mutations.' Cell Stem Cell 23(5): 687-699 e688. [36] Muzumdar, M. D., B. Tasic, K. Miyamichi, L. Li and L. Luo (2007). 'A global double-fluorescent Cre reporter mouse.' Genesis 45(9): 593-605. [37] Niesner, R., V. Andresen, J. Neumann, H. Spiecker and M. Gunzer (2007). 'The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging.' Biophys J 93(7): 2519-2529. [38] Nyman, J. and I. Turesson (1991). 'Changes in the basal cell density in pig skin after single radiation doses with different dose rates.' Acta Oncol 30(6): 753-759. [39] Nyman, J. and I. Turesson (1994). 'Basal-Cell Density in Human Skin for Various Fractionation Schedules in Radiotherapy.' Radiotherapy and Oncology 33(2): 117-124. [40] Paoli, J., M. Smedh and M. B. Ericson (2009). 'Multiphoton laser scanning microscopy--a novel diagnostic method for superficial skin cancers.' Semin Cutan Med Surg 28(3): 190-195. [41] Pineda, C. M., S. Park, K. R. Mesa, M. Wolfel, D. G. Gonzalez, A. M. Haberman, P. Rompolas and V. Greco (2015). 'Intravital imaging of hair follicle regeneration in the mouse.' Nat Protoc 10(7): 1116-1130. [42] Potten, C. S. (1974). 'The epidermal proliferative unit: the possible role of the central basal cell.' Cell Tissue Kinet 7(1): 77-88. [43] Rendl, M., L. Lewis and E. Fuchs (2005). 'Molecular dissection of mesenchymal-epithelial interactions in the hair follicle.' PLoS Biol 3(11): e331. [44] Rocheleau, J. V. and D. W. Piston (2003). 'Two-photon excitation microscopy for the study of living cells and tissues.' Curr Protoc Cell Biol Chapter 4: Unit 4 11. [45] Rompolas, P., E. R. Deschene, G. Zito, D. G. Gonzalez, I. Saotome, A. M. Haberman and V. Greco (2012). 'Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration.' Nature 487(7408): 496-499. [46] Rompolas, P., K. R. Mesa and V. Greco (2013). 'Spatial organization within a niche as a determinant of stem-cell fate.' Nature 502(7472): 513-518. [47] Rompolas, P., K. R. Mesa, K. Kawaguchi, S. Park, D. Gonzalez, S. Brown, J. Boucher, A. M. Klein and V. Greco (2016). 'Spatiotemporal coordination of stem cell commitment during epidermal homeostasis.' Science 352(6292): 1471-1474. [48] Roy, E., Z. Neufeld, L. Cerone, H. Y. Wong, S. Hodgson, J. Livet and K. Khosrotehrani (2016). 'Bimodal behaviour of interfollicular epidermal progenitors regulated by hair follicle position and cycling.' EMBO J 35(24): 2658-2670. [49] Rubin, E. and H. M. Reisner (2019). Principles of Rubin's pathology. Philadelphia, Wolters Kluwer Health. [50] Sakaue-Sawano, A., H. Kurokawa, T. Morimura, A. Hanyu, H. Hama, H. Osawa, S. Kashiwagi, K. Fukami, T. Miyata, H. Miyoshi, T. Imamura, M. Ogawa, H. Masai and A. Miyawaki (2008). 'Visualizing spatiotemporal dynamics of multicellular cell-cycle progression.' Cell 132(3): 487-498. [51] Stoker, M. G. and H. Rubin (1967). 'Density dependent inhibition of cell growth in culture.' Nature 215(5097): 171-172. [52] Taketo, M., A. C. Schroeder, L. E. Mobraaten, K. B. Gunning, G. Hanten, R. R. Fox, T. H. Roderick, C. L. Stewart, F. Lilly, C. T. Hansen and et al. (1991). 'FVB/N: an inbred mouse strain preferable for transgenic analyses.' Proc Natl Acad Sci U S A 88(6): 2065-2069. [53] Wu, Y. F., H. Y. Tan and S. J. Lin (2019). 'Long-Term Intravital Imaging of the Cornea, Skin, and Hair Follicle by Multiphoton Microscope.' Methods Mol Biol. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74552 | - |
| dc.description.abstract | 表皮作為主要的皮膚屏障,透過不斷更新的基底細胞來抵禦環境中物理及化學性的傷害。而表皮為了維持體內平衡,基底細胞會向上分化成上基底細胞並採隨機分裂方式以補充基底細胞的損失。 濕疹,是最常見的炎性皮膚病變,其特徵在於異常增生性的表皮。然而,上皮細胞透過何種機制在增生過程中達到新的體內平衡仍不清楚,因此在本研究當中,我們建立了一種可以透過活體影像系統、組織學分析和體外細胞培養的方式來驗證異常增生中的基底細胞活體動態。本研究初,我們建立了處理以5% 十二烷基硫酸鈉(SDS)的濕疹模型。我們發現SDS處理後K5+ 和K10+ 細胞從第三天到第七天顯著增加。BrdU脈衝標記表明這些K5+細胞是分裂增殖性的。透過K5CreERT; ROSAmT/mG小鼠的上皮細胞追蹤法,我們的數據表明基底細胞在第一天即分化為上基底細胞,並且在處理過後幾天發現細胞分裂早先於細胞分化。此外,透過K14-H2B-EGFP小鼠的有絲分裂數及表皮增厚度,在處理後的第三天在組織及影像分析上顯著增加,有趣的是,我們還確定基礎細胞密度沒有明顯差異,僅在第3天時呈現數量下降。此外, 我們透過AVIZO Lite軟體來建立K5-H2B-EGFP; ROSAmT/mG小鼠細胞核的3D模型,用以明確定位基底細胞位置,並同樣在第三天發現細胞密度呈現下降,其餘則維持穩定。通過FUCCI小鼠的活體影像,分析呈現基底細胞分裂週期顯著地加快即壽命縮短。為了研究體外基底層過度擁擠的機制,我們從K14-H2B-EGFP鼠中收取K14+細胞並種在PDMS膜上以建立了體外模型。該研究中由於細胞密度低 ,因此K14+ 細胞僅在初始的十二小時成像中發現細胞遷移,之後則停止活動,並在十八小時內都沒觀察到細胞排除的現象。在這項研究中,我們不僅發展了濕疹模型,而且還發現基底細胞會透過加速細胞分化、改變分裂週期時間來維持基底細胞的密度恆定。因此我們認為,或許在未來抑制基底細胞分化或分裂可能是治療濕疹的策略之一。 | zh_TW |
| dc.description.abstract | The epidermis serves as the primary skin barrier against physical and chemical assaults from environmental influences by continually renewed new basal cells. During homeostasis, some basal cells differentiate into the suprabasal layer, while others divide and replenish the population of the basal layer stochastically from the outermost cell loss. Eczema is the most common inflammatory skin disease and is characterized by a hyperplastic epidermis. However, how epithelial cells achieve the new equilibrium in hyperplasia remains unclear. Here, we developed an intravital imaging system utilizing histological analysis, intravital imaging and in vitro cell culture to validate the cell dynamic of basal cells in hyperplasia. At first, we established an eczema model by daily 5% sodium dodecyl sulfate (SDS) treatment. We found that the K5+ and K10+ cells significantly increased from day 3 to day 7 after SDS treatment. BrdU pulse labeling indicated these K5+ cells were highly proliferative. Our data suggested that the basal cells differentiated into the suprabasal cells within 24 hours after treatment and the basal cell division induced differentiation in hyperplasia through single cell tracing in BK5CreERT; ROSAmT/mG mice. In addition, the mitotic events and the thickness of the epidermis in K14-H2B-EGFP transgenic mice dramatically increased on day 3 using long-term and day-by-day imaging, respectively, Interestingly, we also determined the basal cell density maintained a stable level and only decreased on day 3. Additionally, the 3D nucleus volume increased on day 3 by AVIZO lite software. The lifetime of basal cells significantly shortens via live imaging of Fucci mice. To exploit the mechanism of overcrowding in the basal layer, we established an in vitro model by planting K14+ cells from K14-H2B-EGFP transgenic mice on PDMS membrane. Due to low cell density, K14+ cells only undergo migration within 12 hours but no extrusion in 18 hours. In this study, we have not only developed an eczema-like model but also demonstrated a histological and dynamic analysis that basal cell accelerated the basal cell differentiated rate and lifetime of cell cycle to maintain the basal the cell density in a stable equilibrium. The inhibition of basal cell differentiation or division might be a therapeutic strategy of eczema in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:42:16Z (GMT). No. of bitstreams: 1 ntu-108-R06548054-1.pdf: 5613826 bytes, checksum: 02c3c2bc0a9b1a838bf0b8de2e507181 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | CONTENTS
國立臺灣大學碩士學位論文 口試委員會審定書.................. II 誌謝.................................................... III 中文摘要 ................................................ IV ABSTRACT................................................ V CONTENTS................................................ VII LIST OF FIGURES......................................... IX LIST OF TABLES.......................................... X CHAPTER 1 INTRODUCTION.................................. 1 1.1. The advantages of using Two-photon Laser Scanning Fluorescent Microscopy.................................. 1 1.2. The structure and function of epidermis............ 2 1.3. Homeostasis of the epidermis and the function of epidermal stem cells ................................... 4 1.4. Hyperplasia in epidermis........................... 6 1.5. Protein marker in homeostasis and SDS-induced hyperplasia ............................................ 6 1.6. Cell cycle time and turnover rate of basal cells... 8 1.7. Basal cell density................................. 9 1.8. Overcrowding induced cell extrusion ............... 9 CHAPTER 2 EXPERIMENTAL MATERIALS AND METHODS.............11 2.1 Mice lines and breeding ............................. 11 2.2 Intravital imaging by two-photon laser scanning fluorescent microscopy .................................. 12 2.3 The treatment of reproduce SDS-induced contact dermatitis mouse model .................................. 13 2.4 Bromodeoxyuridine (BrdU) drug injection ............. 14 2.5 Topical MMC drug treatment .......................... 14 2.6 Hematoxylin & eosin (H&E) staining and Immunofluorescence staining.............................. 15 2.7 Imaging processing for live-imaging and staining images ............................................... 16 2.8 Epithelial cell tracking in vivo .................... 17 2.9 Calculation of cell density ......................... 18 2.10 Voronoi diagram analysis ........................... 18 2.11 Preparation of E no calcium Media .................. 18 2.12 PDMS membrane production............................ 20 2.13 Preparation for PDMS coated type I collagen......... 21 2.14 Keratinocyte isolation and seeding ................. 21 2.15 Immunofluorescence staining for PDMS ............... 22 2.16 Overcrowding model setup ........................... 23 CHAPTER 3 RESULTS ....................................... 25 3.1 SDS-induced eczema skin model was successfully established ......................................... 25 3.2 Atypical co-expression of K5 and K10 is thickening from day3 ......................................... 26 3.3 Proliferative cells increased dramatically and reached a peak on day 3 ........................... 27 3.4 Inhibition of cell mitosis showed no hyperplasia after topical MMC treatment ................ 28 3.5 Cell cycle lifetime of basal cells changing to response the stimulation ............................. 29 3.6 Cell division is prior to differentiation with epithelial cell tracing ..................................... 30 3.7 Cell density changing in early stage and maintain at a stable state ................................. 30 3.8 Cell migration was observed within 18 hours in overcrowding in vitro model .......................... 31 CHAPTER 4 DISCUSSION.................................. 32 CHAPTER 5 FIGURES AND FIGURE LEGENDS.................. 35 CHAPTER 6 REFERENCE................................... 51 | |
| dc.language.iso | en | |
| dc.subject | 基因轉殖小鼠 | zh_TW |
| dc.subject | 體內平衡 | zh_TW |
| dc.subject | 濕疹 | zh_TW |
| dc.subject | 皮膚炎 | zh_TW |
| dc.subject | 十二烷基硫酸鈉 | zh_TW |
| dc.subject | 細胞動力學 | zh_TW |
| dc.subject | 雙光子顯微鏡 | zh_TW |
| dc.subject | 細胞分化 | zh_TW |
| dc.subject | 活體影像 | zh_TW |
| dc.subject | 縮時攝影 | zh_TW |
| dc.subject | PDMS膜 | zh_TW |
| dc.subject | 細胞密度 | zh_TW |
| dc.subject | 細胞擠壓 | zh_TW |
| dc.subject | 細胞排除 | zh_TW |
| dc.subject | 細胞追蹤 | zh_TW |
| dc.subject | 表皮 | zh_TW |
| dc.subject | Cell tracing | en |
| dc.subject | Extrusion | en |
| dc.subject | Transgenic mice | en |
| dc.subject | Cell density | en |
| dc.subject | PDMS membrane | en |
| dc.subject | Differentiation | en |
| dc.subject | Two-photon microscopy | en |
| dc.subject | Cell dynamics | en |
| dc.subject | Sodium dodecyl sulfate | en |
| dc.subject | Dermatitis | en |
| dc.subject | Eczema | en |
| dc.subject | Homeostasis | en |
| dc.subject | Time-lapse | en |
| dc.subject | Epidermis | en |
| dc.subject | Live-imaging | en |
| dc.title | 基底細胞加快分化速率和細胞週期以維持細胞密度在過度增生上皮組織的調控 | zh_TW |
| dc.title | The regulation of accelerating the basal cell differentiated rate and cell cycle lifetime to maintain the cell density in hyperplasia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱顯益(Hsien-Yi Chiu),趙本秀(Pen-hsiu Chao) | |
| dc.subject.keyword | 表皮,體內平衡,濕疹,皮膚炎,十二烷基硫酸鈉,細胞動力學,雙光子顯微鏡,細胞分化,活體影像,縮時攝影,PDMS膜,細胞密度,基因轉殖小鼠,細胞擠壓,細胞排除,細胞追蹤, | zh_TW |
| dc.subject.keyword | Epidermis,Homeostasis,Eczema,Dermatitis,Sodium dodecyl sulfate,Cell dynamics,Two-photon microscopy,Differentiation,Live-imaging,Time-lapse,PDMS membrane,Cell density,Transgenic mice,Extrusion,Cell tracing, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201901527 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 5.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
