請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74542
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江茂雄(Mao-Hsiung Chiang) | |
dc.contributor.author | Bo-Yen Chen | en |
dc.contributor.author | 陳柏延 | zh_TW |
dc.date.accessioned | 2021-06-17T08:41:42Z | - |
dc.date.available | 2024-08-12 | |
dc.date.copyright | 2019-08-12 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-07 | |
dc.identifier.citation | [1] J. Twidell and G. Gaudiosi, 'Offshore Wind Power', 1 ed., Multi-Science Publishing Co. Ltd., 2014.
[2] Jan De Nul Provides Scour Protection for Butendiek OWF, 2014. [Online]. Available:https://subseaworldnews.com/2014/09/22/jan-de-nul-provides-scour-protection-for-butendiek-owf/ [3] Side Stone Dumping Vessel Jan Steen, 2014. [Online]. Available:https://www.b3d-design.com [4] D. J. Cerda Salzmann, 'Development of the Access System for Offshore Wind Turbines,' Ph.D. dissertation, Delft University of Technology, 2007. [5] CTruk, 'Products and Systems-MPC22', 2015. [Online]. Available: http://www.ctruk.com/products-and-systems/MPC22 [6] S. W. Bedford, 'Access Apparatus for Transferring from Vessels to Fixed Structures,' U.S. Patent 8 925 130 B2, Jan. 6, 2015. [7] S. Leske, 'Device for the Safe Transfer of Personnel or Material from an Object Constructureured as a Boat to an Object Moving relative Thereto and Boat Comprising the Device,' U.S. Patent 2011/0038691 A1, Feb. 17, 2011. [8] Momac-robotics.de, 'Download MOTS - Momac Offshore Access System', 2015. [Online]. Available:http://www.momac-robotics.de/Download-MOTS.html. [9] S. Leske. 'Momac Offshore Transfer System'. [Online].Available: http://www.momac-robotics.de/db/docs/MOTS-presentation-GB-V110310-Handout-version.pdf [10] Ampelmann, 'E-type-Ampelmann',2015. [Online]. Available: http://www.ampelmann.nl/products/e-type/. [11] J. A. Keuning, 'Vessel with System for Transferring Persons or Goods and such System,'European Patent 2 716 539 A1, Sep. 4, 2014. [12] Houlder, 'TAS steps up to turbine access challenge - Houlder', 2014. [Online]. Available:https://www.houlderltd.com/tas-turbine-access-system-steps-access-challenge/. [13] G. Lebret, K. Liu, and F. L. Lewis, 'Dynamic analysis and control of a Stewart platform manipulator,' Journal of Robotic Systems Vol. 10, pp. 629-655, 1993. [14] T. S. M. B. Dasgupta 'Close-form dynamic equations of the General Stewart platform through the Newton-Euler approach,' Mechanism and Machine Theory, vol. 33, 1998. [15] L. W. Tsai, 'Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work,' Journal of Mechanical Design, Vol. 122, 2000. [16] A. Fournier, ‘‘A simple Model of Ocean Waves’’, Computer Graphics,Vol. 20, No.3, pp.75-84, July 1986. [17] D. Peachy, ‘‘Modeling Waves and Surf’’, Computer Graphics, Vol. 20, No.3, pp.65-74, July 1986. [18] Pauline Y. Ts’o and Brain A. Barsky, “Modeling and Rendering Waves’’, ACM Transactions of Grapgics, Vol.6, No.3, pp.191-214, July 1987. [19] K. I. Anjyo, ‘‘Semi-globalization of stochastic spectral synthesis’’, Visual Computer, pp.1-12, Spingger-verlag 1991. [20] D. B. Perng and J. L. Tsai, “A New Simulation Model for Waves Generation,” Journal of Information Science and Engineering, Vol. 13, No. 1, March 1996, pp. 153-163. (SCI)(EI) [21] Y. Fu, 'Introduction of Marine Physics', National Compilation Hall, 1984. [22] P. A. Lu, 'Ship Dynamics', National Compilation Hall, 1999. [23] Pinkster, J.M.J. Journée and Jakob., Introduction in Ship Hydromechanics. s.l. : Delft University of Technology, 2002. [24] B. Kinsman, “Wind Waves: Generation and Propagation on the Ocean Surface”, Dover,1984. [25] C. Y. Tzeng and J. F. Chen, 'Fundamental Properties of Linear Ship Steering Dynamic Models.' Journal of Marine Science and Technology, Vol. 7, No. 2, pp.79-88, 1999. [26] D. Sandaruwan, N. Kodikara, C. Keppitiyagama and R. Rosa, 'A Six Degrees of Freedom Ship Simulation System for Maritime Education”, The International Journal on Advances in ICT for Emerging Regions, Vol. 3, No.2, pp. 34-47, 2010. [27] R. S. Hartenberg and J. Denavit 'Kinematic synthesis of linkages[M].' New York: McGraw-Hill 1964. [28] M. W. Spong, S. Hutchinson, and M. Vidyasaga, 'Robot Modeling and Control', 1 ed., John Wiley & Sons Inc., 2006. [29] Y. P. Yeh, M.H. Chiang, F. L. Yang, Y.N. Chen, 'Integrated Control of Clamping Force and Energy-saving in Hydraulic Injection Moulding Machines Using Decoupling Fuzzy Sliding-mode Control,' International Journal of Advanced Manufacturing Engineering, vol. 27, pp. 53-62, November 2005. [30] K. Harib and K. Srinivasan, 'Kinematic and dynamic analysis of Stewart platform-based machine tool structures,' Robotica, vol. 21, pp. 541-554, 2003. [31] E. Richer and Y. Hurmuzlu, 'A high performance pneumatic force actuator system: Part I—Nonlinear mathematical model,' Journal of Dynamic Systems, Measurement, and Control, Vol. 122, pp. 416-425, 1999. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74542 | - |
dc.description.abstract | 本研究旨在發展適用於台灣離岸風場運轉維護所需之調平系統,包含側向拋石落管系統(SSDS)、三軸主動式補償船艏安全登塔梯系統(TAS with 3-DOF compensation)、六軸主動式補償船艏安全登塔梯系統(TAS with 6-DOF compensation)三大部分。三者皆包含機構設計、液壓驅動系統、控制系統設計、動態模型及閉迴路動態模擬分析之建立。實驗部分則針對三軸及六軸主動式補償船艏安全登塔梯系統建立全尺寸實驗機台進行驗證。
本研究根據財團法人船舶暨海洋產業研發中心依台灣海峽海況之設計條件,所提供之船舶設計及船體運動,側向拋石落管系統針對三自由度(Roll, Pitch, Heave)設計三軸運動控制系統,改善落石範圍,在海況有義波高1米、週期7.5秒下,落石點之範圍在補償後可改善至未補償的1/16,滿足設計條件之需求並達到精準拋石之目的。三軸及六軸主動式補償船艏安全登塔梯系統部分,亦根據船舶中心所提供之船體運動,並針對特定入塢方式,設計對應之三軸及六軸船艏安全登塔梯系統補償船體運動。三軸船艏安全登塔梯系統在海況有義波高1米、週期7.5秒下,在模擬及實驗中,登塔系統之末端點在垂向運動皆能減少至未補償的1/2、橫搖運動皆能減少至未補償的1/5、垂向加速度皆能減少至未補償的1/2。六軸船艏安全登塔梯系統在海況有義波高0.5米、週期7.5秒下,登塔系統之末端點在三旋轉自由度(Roll, Pitch, Yaw)皆能減少至未補償的1/5,在另三自由度(Sway, Surge, Heave)皆能減少至未補償的1/2。無論是三軸或六軸船艏安全登塔梯系統,皆滿足設計條件之需求並使維修人員能夠安全進入離岸風機塔柱。 動態模擬以機構動態模擬軟體ADAMS建立動態模型;而正逆向運動學、液壓系統動態模擬及控制器以MATLAB/SIMULINK進行實現;最終將ADAMS動態模型匯出至MATLAB/SIMULINK進行整合模擬,進行全系統整合動態模擬分析,分別驗證這三種機構之可行性。 實驗部分,分別開發三軸及六軸船艏安全登塔梯系統實驗原型系統,配合控制策略進行離岸風機登塔系統閉迴路控制實驗,驗證模擬之準確性,有效降低登塔點垂向高度變化、登塔點橫搖角度及登塔點垂向加速度,實現離岸風機船艏安全登塔梯系統主動運動控制補償。 | zh_TW |
dc.description.abstract | The purpose of this study is to develop the hydraulic compensation systems suitable for the operation and maintenance of offshore wind farms in Taiwan Strait, including a Side Stone Dumping System (SSDS), a Turbine Access System (TAS) with 3-DOF compensation and a Turbine Access System (TAS) with 6-DOF compensation. The proposed three systems include novel integration of mechanism design, hydraulic driving systems, control systems, dynamic modeling and closed-loop dynamic simulation. The test rigs of the TAS with 3-DOF compensation and the TAS with 6-DOF compensation were set up for the experimental verification.
According to the Taiwan Strait sea condition based ship motion proposed by the Ship and Ocean Industries R&D Center (SOIC), SSDS with three-axial active motion control system was designed to limit the range of dumping rocks and achieve accurate dumping. Under the sea conditions with wave period of 7.5 sec and significant wave height of 1 m, the range of dumping rocks can be reduced to 1/16 compared with no compensation, and the requirements of design conditions are satisfied in accordance with the simulation results. In addition, this study developed two different TAS to ensure safety during maintenance, such as TAS with 3-DOF compensation and TAS with 6-DOF compensation. In both simulation and experiment of TAS with 3-DOF compensation under sea conditions with wave period of 7.5 sec and significant wave height of 1 m, the vertical displacement, roll angle and vertical acceleration of end effecter can be reduced to 1/2, 1/5 and 1/2 compared with no compensation, respectively. Besides, in both simulation and experiment of TAS with 6-DOF compensation under sea conditions with wave period of 7.5 sec and significant wave height of 0.5 m, the 6-DOF roll, pitch, yaw, sway, surge and heave of end effector can be reduced to 1/5, 1/5, 1/5, 1/2, 1/2 and 1/2 compared with no compensation, respectively. Therefore, whether TAS with 3-DOF or 6-DOF compensation, the requirements of design conditions can be satisfied by the simulation and experiments results. In the simulation, the dynamic modelling of the mechanism was implemented by ADAMS software. The dynamic modeling of hydraulic driving system and control system were derived and implemented via MATLAB/SIMULINK. Then, the dynamic simulation of SSDS, TAS with 3-DOF compensation and TAS with 6-DOF compensation were achieved through the co-simulation of ADAMS and MATLAB/SIMULINK to verify the active compensation control performance of all three systems. In the experiment, the full-scale TAS test rigs were set up to verify the performance of the active compensation control systems experimentally. The vertical height, rolling angle, pitching angle, yawing angle and vertical acceleration of the TAS end effector can be reduced and validated by practical experiments. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:41:42Z (GMT). No. of bitstreams: 1 ntu-108-D02525006-1.pdf: 20051335 bytes, checksum: 05b38b8fdd84c6227a565e2e1e80c80f (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT vi CONTENTS ix LIST OF FIGURES xii LIST OF TABLES xxi NOMENCLATURE xxii Chapter 1 Introduction 1 1.1 Preface 1 1.2 Literature Review 2 1.2.1 Side Stone Dumping System 2 1.2.2 Turbine Access System 3 1.3 Motivation 7 Chapter 2 System Layout 10 2.1 Layout of Side Stone Dumping System 10 2.2 Layout of TAS with 3-DOF compensation 16 2.3 Layout of TAS with 6-DOF compensation 24 Chapter 3 Analysis of Kinematics 31 3.1 Kinematics of Side Stone Dumping System 32 3.1.1 DH method in Side Stone Dumping System 32 3.1.2 Inverse Kinematics of Side Stone Dumping System 33 3.2 Inverse Kinematics of TAS with 3-DOF Compensation 36 3.3 Inverse Kinematics of TAS with 6-DOF Compensation 39 Chapter 4 Analysis of Dynamics 44 4.1 Dynamic Modeling of Hydraulic Servo System 44 4.1.1 Dynamic Model of Valve Spool 44 4.1.2 Flow Equation 45 4.1.3 Continuity Equation 47 4.2 Dynamic Model of Mechanism 48 4.2.1 Dynamic Model of Side Stone Dumping System 48 4.2.2 Dynamic Model of TAS with 3-DOF compensation 50 4.2.3 Dynamic Model of TAS with 6-DOF compensation 52 Chapter 5 Control Theory and Controller Design 55 5.1 Fuzzy Sliding Mode Controller 55 5.2 Controller Design 59 5.2.1 Control System Layout for Simulation of Side Stone Dumping System 59 5.2.2 Control System Layout of the of TAS with 3-DOF compensation 60 5.2.3 Control System Layout of the of TAS with 6-DOF compensation 62 Chapter 6 Simulations 64 6.1 Simulation of Side Stone Dumping System 64 6.2 Simulation of TAS with 3-DOF Compensation 82 6.3 Simulation of TAS with 6-DOF Compensation 99 Chapter 7 Experiment 136 7.1 Experiments of TAS with 3-DOF compensation 136 7.2 Experiments of TAS with 6-DOF Compensation 145 Chapter 8 Conclusions 164 REFERENCE 167 | |
dc.language.iso | en | |
dc.title | 液壓多軸運動控制系統應用於台灣離岸風場施工船舶之研究 | zh_TW |
dc.title | The Hydraulic Multi-Axial Active Motion Control System for Construction Vessels of Taiwan Offshore Wind Farms | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 陳義男 | |
dc.contributor.oralexamcommittee | 林榮慶,黃正利,郭興家,邱逢琛,吳聰能 | |
dc.subject.keyword | 側向落管系統,離岸風機登塔系統,主動式運動補償控制,運動平台,運動學分析,動態模擬,實驗原型, | zh_TW |
dc.subject.keyword | side stone dumping system,turbine access system,active compensation control system,motion platform,kinematics analysis,dynamic simulation,experiment, | en |
dc.relation.page | 170 | |
dc.identifier.doi | 10.6342/NTU201902756 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-07 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 19.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。