Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74535
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 吳俊輝(Jiun-Huei Proty Wu) | |
dc.contributor.author | Wen-Hsuan Lucky Chang | en |
dc.contributor.author | 張文軒 | zh_TW |
dc.date.accessioned | 2021-06-17T08:41:17Z | - |
dc.date.available | 2021-08-19 | |
dc.date.copyright | 2019-08-19 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-07 | |
dc.identifier.citation | [1] Wen-Hsuan Lucky Chang and Jiun-Huei Proty Wu. Time asymmetry of cosmic background evolution in loop quantum cosmology. Physical Review D, 99(12): 123528, 2019.
[2] Wen-Hsuan Lucky Chang and Jiun-Huei Proty Wu. New Approach to Evolving Gravitational Waves in Loop Quantum Cosmology. (summitted to Physical Review D). arXiv:1806.10508. [3] Wen-Hsuan Lucky Chang and Jiun-Huei Proty Wu. Signatures of the gravitational waves from parent universe in the CMB B-mode angular power spectrum. (summited to Physical Review Letters). [4] Wen-Hsuan Lucky Chang and Jiun-Huei Proty Wu. A solution to the UV divergence of scalar perturbation in loop quantum cosmology. (in preparation). [5] Yu-Chiung Lin. Gravitational Waves Predicted from Stellar Binaries and Rotating Neutron Stars. Master thesis, National Taiwan University, 2016. [6] Norriss S. Hetherington. Encyclopedia of Cosmology (Routledge Revivals) : Historical, Philosophical, and Scientific Foundations of Modern Cosmology. Routledge, 2014. [7] Francis Halzen and Alan D. Martin. Quarks and Leptons: An Introductory Course in Modern Particle Physics. Wiley, 1984. [8] Matthew D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge University Press, 2014. [9] Mark Thomson. Modern Particle Physics. Cambridge University Press, 2013. [10] L. D. Landau and E. M. Lifshitz. The Classical Theory of Fields. Butterworth-Heinemann, 4th edition, 1980. [11] Sean Carroll. Spacetime and Geometry: An Introduction to General Relativity. Pearson, 2003. [12] Bernard Schutz. A First Course in General Relativity. Cambridge University Press, 2nd edition, 2009. [13] A. A. Penzias and R. W. Wilson. A Measurement of Excess Antenna Temperature at 4080 Mc/s. The Astrophysical Journal, 142:419, 1965. [14] C. Copi, D. Schramm, and M. Turner. Big-bang nucleosynthesis and the baryon density of the universe. Science, 267(5195):192–199, 1995. [15] P. J. E. Peebles. Principles of Physical Cosmology. Princeton University Press, 1993. [16] Edward Kolb and Michael Turner. The Early Universe. Westview Press, 1994. [17] Scott Dodelson. Modern Cosmology. Academic Press, 2003. [18] Ya.B. Zeldovich and M.Yu. Khlopov. On the concentration of relic magnetic monopoles in the universe. Physics Letters B, 79(3):239–241, 1978. [19] John P. Preskill. Cosmological Production of Superheavy Magnetic Monopoles. Physical Review Letters, 43(19):1365–1368, 1979. [20] Alan H. Guth. Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23(2):347–356, 1981. [21] Andrew R. Liddle and David H. Lyth. Cosmological Inflation and Large-Scale Structure. Cambridge University Press, 2000. [22] Steven Weinberg. Cosmology. Oxford University Press, 2008. [23] S. W. Hawking and R. Penrose. The singularities of gravitational collapse and cosmology. Proceedings of the Royal Society A, 314(1519):529–548, 1970. [24] Martin Bojowald. Isotropic loop quantum cosmology. Classical and Quantum Gravity, 19(10):2717, 2002. [25] Martin Bojowald. Absence of a Singularity in Loop Quantum Cosmology. Physical Review Letters, 86(23):5227–5230, 2001. [26] Abhay Ashtekar, Tomasz Pawlowski, and Parampreet Singh. Quantum nature of the big bang: Improved dynamics. Physical Review D, 74(8):084003, 2006. [27] Abhay Ashtekar, Tomasz Pawlowski, and Parampreet Singh. Quantum nature of the big bang: An analytical and numerical investigation. Physical Review D, 73(12): 124038, 2006. [28] Abhay Ashtekar, Tomasz Pawlowski, and Parampreet Singh. Quantum Nature of the Big Bang. Physical Review Letters, 96(14):141301, 2006. [29] Martin Bojowald. Inflation from Quantum Geometry. Physical Review Letters, 89(26):261301, 2002. [30] Jakub Mielczarek, Thomas Cailleteau, Julien Grain, and Aurelien Barrau. Inflation in loop quantum cosmology: Dynamics and spectrum of gravitational waves. Physical Review D, 81(10):104049, 2010. [31] Julien Grain, Aurélien Barrau, Thomas Cailleteau, and Jakub Mielczarek. Observing the big bounce with tensor modes in the cosmic microwave background: Phenomenology and fundamental loop quantum cosmology parameters. Physical Review D, 82(12):123520, 2010. [32] LIGO Scientific Collaboration and Virgo Collaboration. Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116(6): 061102, 2016. [33] LIGO Scientific Collaboration and Virgo Collaboration. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 116(24):241103, 2016. [34] LIGO Scientific Collaboration and Virgo Collaboration. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 118(22):221101, 2017. [35] LIGO Scientific Collaboration and Virgo Collaboration. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 119(14):1–16, 2017. [36] LIGO Scientific Collaboration and Virgo Collaboration. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 119(16):30–33, 2017. [37] LIGO Scientific Collaboration and Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. The Astrophysical Journal, 848(2):L13, 2017. [38] Antony M. Lewis. Geometric algebra and covariant methods in physics and cosmology. Doctoral thesis, University of Cambridge, 2001. [39] Planck Collaboration. Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters. Astronomy & Astrophysics, 594:A11, 2016. [40] Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astronomy & Astrophysics, 594:A13, 2016. [41] Keck Array and BICEP2 Collaborations. BICEP2/KECK ARRAY V: MEASUREMENTS OF B-MODE POLARIZATION AT DEGREE ANGULAR SCALES AND 150 GHz BY THE KECK ARRAY. The Astrophysical Journal, 811(2):126, 2015. [42] Keck Array and BICEP2 Collaborations. Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. Physical Review Letters, 116(3):031302, 2016. [43] Martin Bojowald. Loop Quantum Cosmology. Living Reviews in Relativity, 8:11, 2005. [44] Kevin Vandersloot. Hamiltonian constraint of loop quantum cosmology. Physical Review D, 71(10):103506, 2005. [45] Martin Bojowald. The semiclassical limit of loop quantum cosmology. Classical and Quantum Gravity, 18(18):L109–L116, 2001. [46] Parampreet Singh and Kevin Vandersloot. Semiclassical states, effective dynamics, and classical emergence in loop quantum cosmology. Physical Review D, 72(8): 084004, 2005. [47] Dah-Wei Chiou and Li-Fang Li. How loopy is the quantum bounce? A heuristic analysis of higher order holonomy corrections in loop quantum cosmology. Physical Review D, 79(6):063510, 2009. [48] Dah-Wei Chiou and Li-Fang Li. Loop quantum cosmology with higher order holonomy corrections. Physical Review D, 80(4):043512, 2009. [49] Martin Bojowald. Inverse scale factor in isotropic quantum geometry. Physical Review D, 64(8):084018, 2001. [50] Jérôme Martin, Christophe Ringeval, Roberto Trotta, and Vincent Vennin. The best inflationary models after Planck. Journal of Cosmology and Astroparticle Physics, 2014(3):039, 2014. [51] Adam G. Riess, Alexei V. Filippenko, Peter Challis, Alejandro Clocchiatti, Alan Diercks, Peter M. Garnavich, Ron L. Gilliland, Craig J. Hogan, Saurabh Jha, Robert P. Kirshner, B. Leibundgut, M. M. Phillips, David Reiss, Brian P. Schmidt, Robert A. Schommer, R. Chris Smith, J. Spyromilio, Christopher Stubbs, Nicholas B. Suntzeff, and John Tonry. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116(3):1009–1038, 1998. [52] Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. arXiv: 1807.06209. [53] Paul J. Steinhardt and Michael S. Turner. Prescription for successful new inflation. Physical Review D, 29(10):2162–2171, 1984. [54] D. S. Salopek and J. R. Bond. Nonlinear evolution of long-wavelength metric fluctuations in inflationary models. Physical Review D, 42(12):3936–3962, 1990. [55] Andrew R. Liddle and David H. Lyth. COBE, gravitational waves, inflation and extended inflation. Physics Letters B, 291(4):391–398, 1992. [56] Andrew R. Liddle, Paul Parsons, and John D. Barrow. Formalizing the slow-roll approximation in inflation. Physical Review D, 50(12):7222–7232, 1994. [57] Planck Collaboration. Planck 2013 results. XXII. Constraints on inflation. Astronomy & Astrophysics, 571:A22, 2014. [58] Planck Collaboration. Planck 2015 results. XX. Constraints on inflation. Astronomy & Astrophysics, 594:A20, 2016. [59] Planck Collaboration. Planck 2018 results. X. Constraints on inflation. arXiv: 1807.06211. [60] Abhay Ashtekar. New Variables for Classical and Quantum Gravity. Physical Review Letters, 57(18):2244–2247, 1986. [61] J. Fernando Barbero. Real Ashtekar variables for Lorentzian signature space-times. Physical Review D, 51(10):5507–5510, 1995. [62] Giorgio Immirzi. Real and complex connections for canonical gravity. Classical and Quantum Gravity, 14(10):L177–L181, 1997. [63] Krzysztof A Meissner. Black-hole entropy in loop quantum gravity. Classical and Quantum Gravity, 21(22):5245–5251, 2004. [64] Dah Wei Chiou and Kai Liu. Cosmological inflation driven by holonomy corrections of loop quantum cosmology. Physical Review D, 81(6):063526, 2010. [65] T Thiemann. Quantum spin dynamics (QSD). Classical and Quantum Gravity, 15(4):839–873, 1998. [66] Jiun-Huei Proty Wu. Analytical and Numerical Approaches to Inflationary Cosmology. Master thesis, The University of Sussex, 1996. [67] Jakub Mielczarek. Tensor power spectrum with holonomy corrections in loop quantum cosmology. Physical Review D, 79(12):123520, 2009. [68] Martin Bojowald and Golam Mortuza Hossain. Loop quantum gravity corrections to gravitational wave dispersion. Physical Review D, 77(2):27, 2007. [69] Frank Bowman. Introduction to Bessel Functions. Dover Publications, 1958. [70] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, 10th edition, 1972. [71] Peter F. Michelson. On detecting stochastic background gravitational radiation with terrestrial detectors. Monthly Notices of the Royal Astronomical Society, 227(4): 933–941, 1987. [72] Nelson Christensen. Measuring the stochastic gravitational-radiation background with laser-interferometric antennas. Physical Review D, 46(12):5250–5266, 1992. [73] Eanna E. Flanagan. Sensitivity of the Laser Interferometer Gravitational Wave Observatory to a stochastic background, and its dependence on the detector orientations. Physical Review D, 48(6):2389–2407, 1993. [74] Alison J. Farmer and E. S. Phinney. The gravitational wave background from cosmological compact binaries. Monthly Notices of the Royal Astronomical Society, 346(4):1197–1214, 2003. [75] T. Regimbau and J. A. de Freitas Pacheco. Stochastic Background from Coalescences of Neutron Star–Neutron Star Binaries. The Astrophysical Journal, 642(1): 455–461, 2006. [76] T Regimbau and V Mandic. Astrophysical sources of a stochastic gravitational-wave background. Classical and Quantum Gravity, 25(18):184018, 2008. [77] T. Regimbau and Scott A. Hughes. Gravitational-wave confusion background from cosmological compact binaries: Implications for future terrestrial detectors. Physical Review D, 79(6):062002, 2009. [78] Alberto Sesana, Francesco Haardt, Piero Madau, and Marta Volonteri. The Gravitational Wave Signal from Massive Black Hole Binaries and Its Contribution to the LISA Data Stream. The Astrophysical Journal, 623(1):23–30, 2005. [79] A. Sesana, A. Vecchio, and C. N. Colacino. The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays. Monthly Notices of the Royal Astronomical Society, 390(1): 192–209, 2008. [80] Valeria Ferrari, Sabino Matarrese, and Raffaella Schneider. Stochastic background of gravitational waves generated by a cosmological population of young, rapidly rotating neutron stars. Monthly Notices of the Royal Astronomical Society, 303(2): 258–264, 1999. [81] T. Regimbau and J. A. de Freitas Pacheco. Cosmic background of gravitational waves from rotating neutron stars. Astronomy & Astrophysics, 376(2):381–385, 2001. [82] Valeria Ferrari, Sabino Matarrese, and Raffaella Schneider. Gravitational wave background from a cosmological population of core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 303(2):247–257, 1999. [83] David M. Coward, Ronald R. Burman, and David G. Blair. The stochastic background of gravitational waves from neutron star formation at cosmological distances. Monthly Notices of the Royal Astronomical Society, 324(4):1015–1022, 2001. [84] David M. Coward, Ronald R. Burman, and David G. Blair. Simulating a stochastic background of gravitational waves from neutron star formation at cosmological distances. Monthly Notices of the Royal Astronomical Society, 329(2):411–416, 2002. [85] T. Regimbau and J. A. de Freitas Pacheco. Gravitational wave background from magnetars. Astronomy & Astrophysics, 447(1):1–7, 2006. [86] Pablo A. Rosado. Gravitational wave background from binary systems. Physical Review D, 84(8):084004, 2011. [87] Michal Dominik, Emanuele Berti, Richard O’ Shaughnessy, Ilya Mandel, Krzysztof Belczynski, Christopher Fryer, Daniel E. Holz, Tomasz Bulik, and Francesco Pannarale. DOUBLE COMPACT OBJECTS. III. GRAVITATIONALWAVE DETECTION RATES. The Astrophysical Journal, 806(2):263, 2015. [88] Chunglee Kim, Benetge Bhakthi, Pranama Perera, and Maura A Mclaughlin. Implications of PSR J0737−3039B for the Galactic NS–NS binary merger rate. Monthly Notices of the Royal Astronomical Society, 448(1):928–938, 2015. [89] Chunglee Kim, Vassiliki Kalogera, Duncan R. Lorimer, and Tiffany White. The Probability Distribution Of Binary Pulsar Coalescence Rates. II. Neutron Star-White Dwarf Binaries. The Astrophysical Journal, 616(2):1109–1117, 2004. [90] Carles Badenes and Dan Maoz. THE MERGER RATE OF BINARY WHITE DWARFS IN THE GALACTIC DISK. The Astrophysical Journal, 749(1):L11, 2012. [91] Jeff J. Andrews, Adrian M. Price-Whelan, and Marcel A. Agüeros. THE MASS DISTRIBUTION OF COMPANIONS TO LOW-MASS WHITE DWARFS. The Astrophysical Journal, 797(2):L32, 2014. [92] Bülent Kiziltan, Athanasios Kottas, Maria De Yoreo, and Stephen E. Thorsett. THE NEUTRON STAR MASS DISTRIBUTION. The Astrophysical Journal, 778(1): 66, 2013. [93] J. Casares and P. G. Jonker. Mass Measurements of Stellar and Intermediate-Mass Black Holes. Space Science Reviews, 183(1-4):223–252, 2013. [94] Janusz Ziókowski. Masses of Black Holes in the Universe. Chinese Journal of Astronomy & Astrophysics Supplement, 8:273–280, 2008. [95] Jerome A. Orosz, James F. Steiner, Jeffrey E. McClintock, Michelle M. Buxton, Charles D. Bailyn, Danny Steeghs, Alec Guberman, and Manuel A. P. Torres. THE MASS OF THE BLACK HOLE IN LMC X-3. The Astrophysical Journal, 794(2): 154, 2014. [96] LIGO Scientific Collaboration. LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 72(7):076901, 2009. [97] LIGO Scientific Collaboration and Virgo Collaboration. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 19, 2016. [98] LIGO Scientific Collaboration and Virgo Collaboration. Advanced LIGO. Classical and Quantum Gravity, 32(7):074001, 2015. [99] ESA/LISA Pathfinder Collaboration. eLISA: Astrophysics and cosmology in the millihertz regime. arXiv:1201.3621. [100] Xiao-Jun Yue and Jian-Yang Zhu. Power spectrum and anisotropy of super inflation in loop quantum cosmology. Physical Review D, 87(6):063518, 2013. [101] Susanne Schander, Aurélien Barrau, Boris Bolliet, Linda Linsefors, Jakub Mielczarek, and Julien Grain. Primordial scalar power spectrum from the Euclidean big bounce. Physical Review D, 93(2):023531, 2016. [102] Jian-Pin Wu and Yi Ling. The cosmological perturbation theory in loop cosmology with holonomy corrections. Journal of Cosmology and Astroparticle Physics, 2010(05):026–026, 2010. [103] Edward Wilson-Ewing. Holonomy corrections in the effective equations for scalar mode perturbations in loop quantum cosmology. Classical and Quantum Gravity, 29(8):085005, 2012. [104] Thomas Cailleteau, Jakub Mielczarek, Aurelien Barrau, and Julien Grain. Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology. Classical and Quantum Gravity, 29(9):095010, 2012. [105] Hassan Firouzjahi. Primordial Universe Inside the Black Hole and Inflation. arXiv:1610.03767. [106] Hideo Kodama and Misao Sasaki. Cosmological Perturbation Theory. Progress of Theoretical Physics Supplement, 78:1–166, 1984. [107] Thomas Cailleteau and Aurelien Barrau. Gauge invariance in loop quantum cosmology: Hamilton-Jacobi and Mukhanov-Sasaki equations for scalar perturbations. Physical Review D, 85(12):123534, 2012. [108] Thomas Cailleteau, Aurélien Barrau, Francesca Vidotto, and Julien Grain. Consistency of holonomy-corrected scalar, vector, and tensor perturbations in loop quantum cosmology. Physical Review D, 86(8), 2012. [109] Martin Bojowald and Jakub Mielczarek. Some implications of signature-change in cosmological models of loop quantum gravity. Journal of Cosmology and Astroparticle Physics, 2015(08):052–052, 2015. [110] Boris Bolliet, Julien Grain, Clément Stahl, Linda Linsefors, and Aurélien Barrau. Comparison of primordial tensor power spectra from the deformed algebra and dressed metric approaches in loop quantum cosmology. Physical Review D, 91(8): 084035, 2015. [111] Erich Kamke. Differentialgleichungen Lösungsmethoden und Lösungen. B. G. Teubner, Leipzig, 10th edition, 1977. [112] Valentin F. Zaitsev and Andrei D. Polyanin. Handbook of Exact Solutions for Ordinary Differential Equations. Chapman and Hall/CRC, Boca Raton, 2nd edition, 2002. [113] Robert W. Brehme. Inside the black hole. American Journal of Physics, 45(5):423, 1977. [114] V. P. Frolov, M. A. Markov, and V. F. Mukhanov. Through a black hole into a new universe? Physics Letters B, 216(3):272–276, 1989. [115] Curtis G. Callan, Steven B. Giddings, Jeffrey A. Harvey, Andrew Strominger, Steven B Giddingst, Jeffrey A Harvey, and Andrew Strominger. Evanescent black holes. Physical Review D, 45(4):R1005–R1009, 1992. [116] V. Mukhanov and R. Brandenberger. A nonsingular universe. Physical Review Letters, 68(13):1969–1972, 1992. [117] Damien A Easson and Robert H Brandenberger. Universe generation from black hole interiors. Journal of High Energy Physics, 2001(06):024–024, 2001. [118] Martin Bojowald. Information loss, made worse by quantum gravity? Frontiers in Physics, 3:33, 2015. [119] S. W. Hawking. Black hole explosions? Nature, 248(5443):30–31, 1974. [120] S. W. Hawking. Particle creation by black holes. Communications in Mathematical Physics, 43(3):199–220, 1975. [121] Don N. Page. Particle emission rates from a black hole: Massless particles from an uncharged, nonrotating hole. Physical Review D, 13(2):198–206, 1976. [122] V.P. Frolov and G.A. Vilkovisky. Spherically symmetric collapse in quantum gravity. Physics Letters B, 106(4):307–313, 1981. [123] Thomas A. Roman and Peter G. Bergmann. Stellar collapse without singularities? Physical Review D, 28(6):1265–1277, 1983. [124] Sean A. Hayward. Formation and Evaporation of Nonsingular Black Holes. Physical Review Letters, 96(3):031103, 2006. [125] Valeri P. Frolov. Information loss problem and a ‘black hole’ model with a closed apparent horizon. Journal of High Energy Physics, 2014(5):49, 2014. [126] Leonardo Modesto. Disappearance of the black hole singularity in loop quantum gravity. Physical Review D, 70(12):124009, 2004. [127] Christian G. Böhmer and Kevin Vandersloot. Loop quantum dynamics of the Schwarzschild interior. Physical Review D, 76(10):104030, 2007. [128] Dah-Wei Chiou. Phenomenological loop quantum geometry of the Schwarzschild black hole. Physical Review D, 78(6):064040, 2008. [129] Leonardo Modesto. Black Hole Interior from Loop Quantum Gravity. Advances in High Energy Physics, 2008:1–12, 2008. [130] Rodolfo Gambini and Jorge Pullin. Black Holes in Loop Quantum Gravity: The Complete Space-Time. Physical Review Letters, 101(16):161301, 2008. [131] Rodolfo Gambini and Jorge Pullin. Loop Quantization of the Schwarzschild Black Hole. Physical Review Letters, 110(21):211301, 2013. [132] Rodolfo Gambini, Javier Olmedo, and Jorge Pullin. Quantum black holes in loop quantum gravity. Classical and Quantum Gravity, 31(9):095009, 2014. [133] Abhay Ashtekar and Martin Bojowald. Black hole evaporation: a paradigm. Classical and Quantum Gravity, 22(16):3349–3362, 2005. [134] G. C. McVittie. The Mass-Particle in an Expanding Universe. Monthly Notices of the Royal Astronomical Society, 93(5):325–339, 1933. [135] Jennie H. Traschen and Robert H. Brandenberger. Particle production during out-of-equilibrium phase transitions. Physical Review D, 42(8):2491–2504, 1990. [136] Lev Kofman, Andrei Linde, and Alexei A. Starobinsky. Reheating after Inflation. Physical Review Letters, 73(24):3195–3198, 1994. [137] Lev Kofman, Andrei Linde, and Alexei A. Starobinsky. Towards the theory of reheating after inflation. Physical Review D, 56(6):3258–3295, 1997. [138] Tullio Regge and John A. Wheeler. Stability of a Schwarzschild Singularity. Physical Review, 108:1063–1069, 1957. [139] Frank J. Zerilli. Effective Potential for Even-Parity Regge-Wheeler Gravitational Perturbation Equations. Physical Review Letters, 24(13):737–738, 1970. [140] C. V. Vishveshwara. Scattering of Gravitational Radiation by a Schwarzschild Black-Hole. Nature, 227(5261):936–938, 1970. [141] Luciano Rezzolla. Gravitational Waves from Perturbed Black Holes and Relativistic Stars. arXiv:gr-qc/0302025. [142] S. Chandrasekhar. The Mathematical Theory of Black Holes. Oxford University Press, Oxford, 1998. [143] C. V. Vishveshwara. Stability of the Schwarzschild Metric. Physical Review D, 1:2870, 1970. [144] William H. Press. Long Wave Trains of Gravitational Waves from a Vibrating Black Hole. The Astrophysical Journal, 170:L105–L108, 1971. [145] Kostas D. Kokkotas and Bernd G Schmidt. Quasi-Normal Modes of Stars and Black Holes. Living Reviews in Relativity, 2, 1999. [146] Hans-Peter Nollert. Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars. Classical and Quantum Gravity, 16(12):R159–R216, 1999. [147] Chris A Clarkson and Richard K Barrett. Covariant perturbations of Schwarzschild black holes. Classical and Quantum Gravity, 20(18):3855–3884, 2003. [148] James W. York. Dynamical origin of black-hole radiance. Physical Review D, 28(12):2929–2945, 1983. [149] Shahar Hod. Bohr’s Correspondence Principle and the Area Spectrum of Quantum Black Holes. Physical Review Letters, 81(20):4293–4296, 1998. [150] Plamen P Fiziev. Exact solutions of Regge–Wheeler equation and quasi-normal modes of compact objects. Classical and Quantum Gravity, 23(7):2447–2468, 2006. [151] Plamen P Fiziev. Exact solutions of Regge-Wheeler equation. Journal of Physics: Conference Series, 66(1):012016, 2007. [152] Hassan Firouzjahi. The spectrum of perturbations inside the Schwarzschild black hole. arXiv:1805.11289. [153] John Preskill. Do Black Holes Destroy Information? arXiv:hep-th/9209058. [154] S. Hossenfelder and L. Smolin. Conservative solutions to the black hole information problem. Physical Review D, 81(6):064009, 2010. [155] C R Stephens, G ’t Hooft, and B F Whiting. Black hole evaporation without information loss. Classical and Quantum Gravity, 11(3):621–647, 1994. [156] Leonard Susskind. The world as a hologram. Journal of Mathematical Physics, 36(11):6377–6396, 1995. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74535 | - |
dc.description.abstract | 我們希望透過觀測宇宙微波背景輻射的 B 模偏振,來探索迴圈量子宇宙學中所預測的「前世宇宙」,特別是驗證由前世宇宙中雙星系統所產生、並且經歷大反彈時期而存活下來的重力波,至今仍可被觀測的可能性。這個研究奠基於使用 ADM 形式描述的動力學,其中考慮了由量子理論所簡化的第零階繞異性修正。本論文提出了一個新的研究架構:利用轉移函數來演化前世宇宙的重力波,藉此得知它們在現今宇宙應有的樣貌。這是個透明且直覺的過程,讓人們能夠精準地討論在不同的迴圈量子宇宙學參數之下,這些來自前世宇宙的重力波將會為宇宙微波背景輻射 B 模偏振帶來什麼影響。我們期待能夠在不久的未來,科學家能夠透過觀測 B 模偏振的頻譜,藉此驗證這些來自前世宇宙的線索。值得一提的是,擁有時間對稱大反彈的宇宙所存在的可能性,已經被卜朗克計劃及 BICEP2 實驗的最新結果所排除。 | zh_TW |
dc.description.abstract | We aim to use the observations of B-mode polarization in the cosmic microwave background (CMB) to probe the ``parent universe' under the context of loop quantum cosmology (LQC). In particular, we investigate the possibility for the gravitational waves (GWs) such as those from the stellar binary systems in the parent universe to survive the big bounce and thus to be still observable today. Our study is based on the background dynamics with the zeroth-order holonomy correction using the Arnowitt-Deser-Misner (ADM) formalism. We propose a new framework in which transfer functions are invoked to bring the GWs in the parent universe through the big bounce, inflation, and big bang to reach today. This transparent and intuitive formalism allows us to accurately discuss the influence of the GWs from the parent universe on the B-mode polarization in the CMB today under backgrounds of different LQC parameters. These features can soon be tested by the forthcoming CMB observations and we note that the LQC backgrounds with symmetric bouncing scenarios are ruled out by the latest observational results from Planck and BICEP2/Keck experiments. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:41:17Z (GMT). No. of bitstreams: 1 ntu-108-F00222018-1.pdf: 26113688 bytes, checksum: 73bb983cf2fb6c02cd4ecb75dbbf86a3 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Units and Physical Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Frequently Used Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Structure of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Loop Quantum Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 The Standard Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 LambdaCDM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Cosmological inflation . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Cosmic Background Dynamics . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Hamiltonian formalism . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 Holonomy corrections . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.3 The quantum bounce . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.4 Realistic models of scalar field . . . . . . . . . . . . . . . . . . . 17 2.3.5 Cosmological deflation . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Evolution of Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Gravitational Waves in LQC . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 Gravitaional-wave equation . . . . . . . . . . . . . . . . . . . . 27 3.2.2 Transfer functions . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.3 Numerical approach to transfer functions . . . . . . . . . . . . . 33 3.3 Inflationary and Deflationary Epochs . . . . . . . . . . . . . . . . . . . . 34 3.3.1 The slow-roll inflation . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2 Transfer functions for inflation . . . . . . . . . . . . . . . . . . . 34 3.3.3 Transfer functions for deflation . . . . . . . . . . . . . . . . . . 37 3.3.4 Transfer functions and their symmetry in de Sitter space . . . . . 38 3.4 Quantum Bounce Epoch . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.1 Definition of quantum bounce epoch . . . . . . . . . . . . . . . . 41 3.4.2 Field-free approximation for effective mass . . . . . . . . . . . . 42 3.4.3 Analytical solutions with field-free approximation . . . . . . . . 43 3.5 Critical Breakthroughs . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5.1 Consistency with Bogoliubov transformation . . . . . . . . . . . 47 3.5.2 Solving the IR suppression problem . . . . . . . . . . . . . . . . 50 3.5.3 Improvement from field-free approximation . . . . . . . . . . . . 52 3.6 Models with a Parent Universe . . . . . . . . . . . . . . . . . . . . . . . 53 3.6.1 Bouncing scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6.2 Signals from the parent universe . . . . . . . . . . . . . . . . . . 55 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Signatures of Pre-existing Gravitational Waves . . . . . . . . . . . . . . 59 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Pre-existing Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . 60 4.2.1 Gravitational-wave background as initial conditions . . . . . . . 60 4.2.2 Astronomical sources of gravitational waves . . . . . . . . . . . 63 4.3 Observational Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.1 Power spectrum of gravitational waves . . . . . . . . . . . . . . 65 4.3.2 CMB B-mode angular power spectrum . . . . . . . . . . . . . . 69 4.3.3 Restriction of chaotic background parameters . . . . . . . . . . . 71 4.3.4 Restriction of R2 background parameters . . . . . . . . . . . . . 75 4.4 Observational Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1 CMB TT, EE, and TE angular power spectra . . . . . . . . . . . 77 4.4.2 CMB B-mode angular power spectrum . . . . . . . . . . . . . . 83 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5 The UV Divergence on Scalar Perturbations . . . . . . . . . . . . . . . . . 85 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2 Scalar Perturbations in LQC . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2.1 Evolutionary equation . . . . . . . . . . . . . . . . . . . . . . . 86 5.2.2 The UV divergence problem . . . . . . . . . . . . . . . . . . . . 89 5.3 The Parent Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3.1 Spacetime geometry . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3.2 Inflaton production . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.3 Black hole perturbations . . . . . . . . . . . . . . . . . . . . . . 97 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.1 Innovation and Achievement . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Outlook in the Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 A The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 | |
dc.language.iso | en | |
dc.title | 以宇宙微波背景B模偏振探索迴圈量子宇宙學中的「前世宇宙」 | zh_TW |
dc.title | Probing 'Parent Universe' in Loop Quantum Cosmology with B-mode Polarization in Cosmic Microwave Background | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 胡德邦(Tak Pong Woo),黃崇源(Chorng-Yuan Hwang),劉國欽(Guo-Chin Liu),林豐利(Feng-Li Lin) | |
dc.subject.keyword | 迴圈量子宇宙學,暴縮,量子反彈,暴脹,重力波,轉移函數,宇宙微波背景輻射,B 模偏振,黑洞,類正態模, | zh_TW |
dc.subject.keyword | LQC,deflation,quantum bounce,inflation,GW,transfer function,CMB,B-mode polarization,black hole,QNM, | en |
dc.relation.page | 120 | |
dc.identifier.doi | 10.6342/NTU201902735 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-07 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
Appears in Collections: | 物理學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf Restricted Access | 25.5 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.