Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74533
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃良得
dc.contributor.authorLi-Chen Pengen
dc.contributor.author彭立成zh_TW
dc.date.accessioned2021-06-17T08:41:10Z-
dc.date.available2020-08-13
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-07
dc.identifier.citation林浩潭。1999。施肥與土壤鹽份累積。青蒜綜合管理: 14-24。
林家棻、張愛華、曾肇清。1973。臺灣主要土壤含氮狀況與其供應情形。中華農業研究,22(3) : 186-203。
邱善美、呂秀英、劉慧瑛。1993。薑黃之生長與發育(2):氮鉀肥用量對生育、產量及品質之影響。中華農業研究,42(4) : 370-379。
胡敏夫、張愛華、呂椿棠、劉新裕。1998。不同氮磷鉀肥施用量與種植密度對仙草產及品質之影響。中華農業研究,47(4) : 259-266。
陳仁炫。2004。土壤與植體營養診斷技術。植物重要防疫檢疫病害診斷鑑定技術研習會專刊,3 : 157-174。
Ahmad, I., N. Jabeen, K. Ziaf, J.M. Dole, M.A.S. Khan, M.A. Bakhtavar, 2017. Macronutrient application affects morphological, physiological, and seed yield attributes of Calendula officinalis L. Canadian Journal of Plant Science, 97: 906-916.
Ahmed, H.M., S. Tavaszi-Sarosi, 2019. Identification and quantification of essential oil content and composition, total polyphenols and antioxidant capacity of Perilla frutescens (L.) Britt. Food Chemistry, 275: 730-738.
Arsenijevic, J., M. Drobac, I. Sostaric, R. Jevdovic, J. Zivkovic, S. Razic, D. Moravcevic, Z. Maksimovic, 2019. Comparison of essential oils and hydromethanol extracts of cultivated and wild growing Thymus pannonicus All. Industrial Crops and Products, 130: 162-169.
Bahadori, M.B., B. Kirkan, C. Sarikurkcu, O. Ceylan, 2019. Metabolite profiling and health benefits of Stachys cretica subsp. mersinaea as a medicinal food. Industrial Crops and Products, 131: 85-89.
Ball, D.F., 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. Journal of Soil Science, 15: 84-92.
Bansod, M., U.N. Harle, 2009. Vitex negundo L: Phytochemical constituents, traditional uses and pharmacological properties: Comprehensive review. Pharmacologyonline, 1: 286-302.
Barber, S.A., 1984. Soil Nutrient Bioavailability: A Mechanistic Approach. Wiley Interscience, New York, USA. pp. 189-191
Benzie, I.F.F., J.J. Strain, 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239: 70-76.
Bistgani, Z.E., S. Ataollah Siadat, A. Bakhshandeh, A. Ghasemi Pirbalouti, M. Hashemi, F. Maggi, M. Reza Morshedloo, 2018. Application of combined fertilizers improves biomass, essential oil yield, aroma profile, and antioxidant properties of Thymus daenensis Celak. Industrial Crops and Products, 121: 434-440.
Blagojevic, P., N. Radulovic, R. Palic, G. Stojanovic, 2006. Chemical composition of the essential oils of serbian wild-growing Artemisia absinthium and Artemisia vulgaris. Journal of Agricultural and Food Chemistry, 54: 4780-4789.
Brand-Williams, W., M.E. Cuvelier, C. Berset, 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28: 25-30.
Brady, N.C., R.R. Weil, 2004. Elements of the nature and properties of soil, Pearson Education, Inc., Upper Saddle River, New Jersey, USA. pp. 420-439.
Bremner, J.M., C.S. Mulvaney, 1982. Nitrogen-total. In: Methods of soil analysis, Part 2, chemical and microbiological properties. American Society of Agronomy, Inc., Madison, Wisconsin, USA. pp. 595-624.
Chang, C.C., M.H. Yang, H.M. Wen, J.C. Chern, 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10: 178-182.
Chattopadhyay, P., S. Banerjee, M.P. Pathak, A. Agnihotri, S. Karmakar, D. Goyary, S. Dhiman, V. Veer, 2014. Acute and subchronic dermal toxicity of Vitex negundo essential oil. Cutaneous and Ocular Toxicology, 33: 16-21.
Cheng, L., M. Han, L.M. Yang, L. Yang, Z. Sun, T. Zhang, 2018. Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellaria baicalensis Georgi under drought stress. Industrial Crops and Products, 122: 473-482.
Chrysargyris, A., C. Panayiotou, N. Tzortzakis, 2016. Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.). Industrial Crops and Products, 83: 577-586.
Chrysargyris, A., E. Papakyriakou, S.A. Petropoulos, N. Tzortzakis, 2019a. The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants. Journal of Hazardous Materials, 368: 584-593.
Chrysargyris, A., S.A. Petropoulos, A. Fernandes, L. Barros, N. Tzortzakis, I. Ferreira, 2019b. Effect of phosphorus application rate on Mentha spicata L. grown in deep flow technique (DFT). Food Chemistry, 276: 84-92.
Chou, C.H., C. Yao, 1983. Phytochemical adaptation of coastal vegetation in Taiwan I. isolation, identification, and biological activities of compounds in Vitex negundo L. Botanical Bulletin of Academia Sinica, 24: 155-168.
Chung, R.S., C.C. Chen, L.T. Ng, 2010. Nitrogen fertilization affects the growth performance, betaine and polysaccharide concentrations of Lycium barbarum. Industrial Crops and Products, 32: 650-655.
De Castro, J.A.M., O.S. Monteiro, D.F. Coutinho, A.A.C. Rodrigues, J.K.R. Da Silva, J.G.S. Maia, 2019. Seasonal and circadian study of a thymol/gamma-terpinene/p-cymene type oil of Ocimum gratissimum L. and its antioxidant and antifungal effects. Journal of the Brazilian Chemical Society, 30: 930-938.
Devi, P.R., S.K. Kumari, C. Kokilavani, 2007. Effect of Vitex negundo leaf extract on the free radicals scavengers in complete Freund's adjuvant induced arthritic rats. Indian Journal of Clinical Biochemistry, 22: 143-147.
Fang, X., C.Y. Li, Y. Yang, M.Y. Cui, X.Y. Chen, L. Yang, 2017. Identification of a novel (-)-5-epieremophilene synthase from Salvia miltiorrhiza via transcriptome mining. Frontiers in Plant Science, 8: 627.
Fidyt, K., A. Fiedorowicz, L. Strzadala, A. Szumny, 2016. Beta-caryophyllene and beta-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer medicine, 5: 3007-3017.
Gantait, S., U.R. Sinniah, P. Suranthran, 2012. Influence of gibberellin A(3) application, pH of the medium, photoperiod and temperature on the enhancement of in vitro flowering in Vitex negundo L. Plant Growth Regulation, 66: 203-209.
Gee, G.W., J.W. Bauder, 1986. Particle Size Analysis. In : Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. American Society of Agronomy, Inc., Madison, Wisconsin, USA. pp. 383-411.
Gershenzon, J., 1994. Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology, 20: 1281-1328.
Gertsch, J., M. Leonti, S. Raduner, I. Racz, J.-Z. Chen, X.-Q. Xie, K.-H. Altmann, M. Karsak, A. Zimmer, 2008. Beta-caryophyllene is a dietary cannabinoid. Proceedings of the National Academy of Sciences, 105: 9099-9104.
Gill, B.S., R. Mehra, Navgeet, S. Kumar, 2018. Vitex negundo and its medicinal value. Molecular Biology Reports, 45: 2925-2934.
Haghighi, T.M., M.J. Saharkhiz, A.R. Khosravi, F.R. Fard, M. Moein, 2017. Essential oil content and composition of Vitex pseudo-negundo in Iran varies with ecotype and plant organ. Industrial Crops and Products, 109: 53-59.
Haider, F., P. Dwivedi, S. Singh, A.A. Naqvi, G. Bagchi, 2004. Influence of transplanting time on essential oil yield and composition in Artemisia annua plants grown under the climatic conditions of sub-tropical north India. Flavour and Fragrance Journal, 19: 51-53.
Hassanpouraghdam, M.B., A. Hassani, L. Vojodi, N. Farad-Akhtar, 2010. Drying method affects essential oil content and composition of basil (Ocimum basilicum L.). Journal of Essential Oil Bearing Plants, 13: 759-766.
Huang, H.C., T.Y. Chang, L.Z. Chang, H.F. Wang, K.H. Yih, W.Y. Hsieh, T.M. Chang, 2012. Inhibition of melanogenesis versus antioxidant properties of essential oil extracted from leaves of Vitex negundo Linn and chemical composition analysis by GC-MS. Molecules, 17: 3902-3916.
Kadir, F.A., N.M. Kassim, M.A. Abdulla, W.A. Yehye, 2013. Hepatoprotective Role of Ethanolic Extract of Vitex negundo in Thioacetamide-Induced Liver Fibrosis in Male Rats. Evidence-Based Complementary and Alternative Medicine, 2013: 739580.
Kamruzzaman, M., S.M.N. Bari, S.M. Faruque, 2013. In vitro and in vivo bactericidal activity of Vitex negundo leaf extract against diverse multidrug resistant enteric bacterial pathogens. Asian Pacific Journal of Tropical Medicine, 6: 352-359.
Khan, A., S. Naz, U. Farooq, M. Shahid, I. Ullah, I. Ali, A. Rauf, Y.N. Mabkhot, 2018. Bioactive chromone constituents from Vitex negundo alleviate pain and inflammation. Journal of Pain Research, 11: 95-102.
Khokra, S.L., O. Prakash, S. Jain, K.R. Aneja, Y. Dhingra, 2008. Essential Oil Composition and Antibacterial Studies of Vitex negundo Linn. Extracts. Indian Journal of Pharmaceutical Sciences, 70: 522-526.
Kougan, G.B., T. Tabopda, V. Kuete, R. Verpoorte, 2013. Simple phenols, phenolic acids, and related esters from the medicinal plants of africa, in: Kuete, V. (Ed.), Medicinal Plant Research in Africa. Elsevier, Oxford, pp. 225-249.
Kujala, T.S., J.M. Loponen, K.D. Klika, K. Pihlaja, 2000. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry, 48: 5338-5342.
Lawlor, D.W., K. Mengel, E.A. Kirkby, 2004. Principles of plant nutrition. Annals of Botany, 93: 479-480.
Lu, C., M. Xue, Y. Liu, A. Liu, H. Wang, 2009. Insecticidal components and toxicity of Vitex negundo (Lamiales: Verbenacea) essential oil to Sitophilus zeamais (Coleoptera: Curculionidae) and their action mechanism. Acta Entomologica Sinica, 52: 159-167.
Mclean, E.O., 1982. Soil pH and lime requirement. In: Page, A.L., Ed., methods of soil analysis. part 2. Chemical and Microbiological Properties. American Society of Agronomy, Inc., Madison, Wisconsin, USA. pp. 199-224.
Mehlich, A., 1984. Mehlich 3 soil test extractant: a modification of mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409-1416.
Mollazadeh, H., H. Hosseinzadeh, 2016. Cinnamon effects on metabolic syndrome: a review based on its mechanisms. Iranian Journal of Basic Medical Sciences, 19: 1258-1270.
Murphy, J., J.P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31-36.
Nell, M., M. Vötsch, H. Vierheilig, S. Steinkellner, K. Zitterl-Eglseer, C. Franz, J. Novak, 2009. Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). Journal of the Science of Food and Agriculture, 89: 1090-1096.
Padalia, R.C., R.S. Verma, A. Chauhan, C.S. Chanotiya, S. Thul, 2016. Phytochemical diversity in essential oil of Vitex negundo L. populations from India. Records of Natural Products, 10: 452-464.
Palhares, R.M., M. Gonçalves Drummond, B. Dos Santos Alves Figueiredo Brasil, G. Pereira Cosenza, M. Das Graças Lins Brandão, G. Oliveira, 2015. Medicinal plants recommended by the world health organization: DNA barcode identification associated with chemical analyses guarantees their quality. PLoS One, 10: e0127866-e0127866.
Pandey, V., A. Patel, D.D. Patra, 2016. Integrated nutrient regimes ameliorate crop productivity, nutritive value, antioxidant activity and volatiles in basil (Ocimum basilicum L.). Industrial Crops and Products, 87: 124-131.
Prasad, E.M., R. Mopuri, M.S. Islam, L.D. Kodidhela, 2017. Cardioprotective effect of Vitex negundo on isoproterenol-induced myocardial necrosis in wistar rats: a dual approach study. Biomedicine and Pharmacotherapy, 85: 601-610.
Rana, S., K.K. Rana, 2014. Review on Medicinal Usefulness of Vitex negundo Linn. Open Access Library Journal, 1: 1-13.
Rappaport, B.D., J. H. Axley, 1984. Potassium chloride for improved urea fertilizer efficiency. Soil Science Society of America Journal, 48: 399-401.
Rhoades, J.D., 1982. Cation exchange capacity. In: Methods of soil analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Inc., Madison, Wisconsin, USA. pp. 149-157.
Roberts, S.C., 2007. Production and engineering of terpenoids in plant cell culture. Nature Chemical Biology, 3: 387-395.
Sahaf, B.Z., S. Moharramipour, M.H. Meshkatalsadat, 2008. Fumigant toxicity of essential oil from Vitex pseudo-negundo against Tribolium castaneum (Herbst) and Sitophilus oryzae (L.). Journal of Asia-Pacific Entomology, 11: 175-179.
Sahoo, Y., P. K. Chand, 1998. Micropropagation of Vitex negundo L., a woody aromatic medicinal shrub, through high-frequency axillary shoot proliferation. Plant Cell Reports, 18: 301-307.
Saklani, S., A.P. Mishra, H. Chandra, M.S. Atanassova, M. Stankovic, B. Sati, M.A. Shariati, M. Nigam, M.U. Khan, S. Plygun, H. Elmsellem, H.a.R. Suleria, 2017. Comparative evaluation of polyphenol contents and antioxidant activities between ethanol extracts of Vitex negundo and Vitex trifolia L. leaves by different methods. Plants, 6: 45.
Scherer, R., M.F. Lemos, M.F. Lemos, G.C. Martinelli, J.D.L. Martins, A.G. Da Silva, 2013. Antioxidant and antibacterial activities and composition of Brazilian spearmint (Mentha spicata L.). Industrial Crops and Products, 50: 408-413.
Schmidt, J.P., J. Cruse-Sanders, J.L. Chamberlain, S. Ferreira, J.A. Young, 2019. Explaining harvests of wild-harvested herbaceous plants: American ginseng as a case study. Biological Conservation, 231: 139-149.
Shi, X.F., J.Z. Chu, Y.F. Zhang, C.Q. Liu, X.Q. Yao, 2017. Nutritional and active ingredients of medicinal chrysanthemum flower heads affected by different drying methods. Industrial Crops and Products, 104: 45-51.
Singh, A., P. Sharma, V. Garg, V. Sharad, 2011. Extraction and analysis of essential oil of Nirgundi (Vitex negundo L.). Der Pharmacia Sinica, 2: 262-266.
Singh, V., R. Dayal, J.P. Bartley, 1999. Volatile constituents of Vitex negundo leaves. Planta Medica, 65: 580-582.
Tandon, V.R., V. Khajuria, B. Kapoor, D. Kour, S. Gupta, 2008. Hepatoprotective activity of Vitex negundo leaf extract againstanti-tubercular drugs induced hepatotoxicity. Fitoterapia, 79: 533-538.
Tiwari, O.P., Y.B. Tripathi, 2007. Antioxidant properties of different fractions of Vitex negundo Linn. Food Chemistry, 100: 1170-1176.
Trivino, M.G., C.B. Johnson, 2000. Season has a major effect on the essential oil yield response to nutrient supply in Origanum majorana. Journal of Horticultural Science and Biotechnology, 75: 520-527.
Utpalendu, J., R. Chattopadhyay, P. Badri, 1999. Preliminary studies on anti-inflammatory activity of Zingiber officinale Rosc., Vitex negundo Linn and Tinospora cordifolia (willid) Miers in albino rats. Indian Journal of Pharmacology 31, 232-233.
Verma, P., A.K. Mathur, S.A. Khan, N. Verma, A. Sharma, 2017. Transgenic studies for modulating terpenoid indole alkaloids pathway in Catharanthus roseus: present status and future options. Phytochemistry Reviews, 16: 19-54.
Villaseñor, I.M., M.R.A. Lamadrid, 2006. Comparative anti-hyperglycemic potentials of medicinal plants. Journal of Ethnopharmacology, 104: 129-131.
Vishwanathan, A.S., R. Basavaraju, 2010. A Review on Vitex negundo L. – A medicinally important plant. European Journal of Biological Sciences, 3: 30-42
Woradulayapinij, W., N. Soonthornchareonnon, C. Wiwat, 2005. In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and Canna indica L. rhizomes. Journal of Ethnopharmacology, 101: 84-89.
Wu, P.S., Y.T. Kuo, S.M. Chen, Y. Li, B.S. Lou. 2014. Gas chromatography-mass spectrometry analysis of photosensitive characteristics in citrus and herb essential oils. Journal of Chromatography and Separation Techniques, 6: 261.
Yan, K., S.J. Zhao, L.X. Bian, X.B. Chen, 2017. Saline stress enhanced accumulation of leaf phenolics in honeysuckle (Lonicera japonica Thunb.) without induction of oxidative stress. Plant Physiology and Biochemistry, 112: 326-334.
Yang, D., X. Du, X. Liang, R. Han, Z. Liang, Y. Liu, F. Liu, J. Zhao, 2012. Different roles of the mevalonate and methylerythritol phosphate pathways in cell growth and tanshinone production of Salvia miltiorrhiza hairy roots. PLoS One, 7: e46797.
Yang, L.L., K.Y. Yen, Y. Kiso, H. Hikino, 1987. Antihepatotoxic actions of formosan plant drugs. Journal of Ethnopharmacology, 19: 103-110.
Yunos, N., R. Ma, B. Ong, R. Abas, 2005. Cytotoxicity evaluations on Vitex negundo anti-inflammatory extracts. Malaysian Journal of Science, 24: 213-217
Yuyama Kamila, T., D. Fortkamp, W.R. Abraham, 2017. Eremophilane-type sesquiterpenes from fungi and their medicinal potential. Biological Chemistry, 399: 13-28.
Zargar, M., A.H. Azizah, A.M. Roheeyati, A.B. Fatimah, F. Jahanshiri, M.S. Pak-Dek, 2011. Bioactive compounds and antioxidant activity of different extracts from Vitex negundo leaf. Journal of Medicinal Plant Research, 5: 2525-2532.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74533-
dc.description.abstract黃荊 (Vitex negundo Linn) 為可食藥用香草植物,主要分布於亞洲及非洲熱帶地區,其具有廣泛的藥理活性如抗蟲、抗菌及抗發炎等。依據《中華藥典》記載,黃荊具有散風祛痰,止咳平喘功能,主要用於治療感冒咳嗽、哮喘及胃痛等病症。黃荊精油的主要活性成分為石竹烯 (β-caryophyllene) 及佛術烯 (eremophilene),其中石竹烯具有抗發炎、抗焦慮及抗憂鬱等功效,而佛術烯則具有抗菌、抗癌及免疫調節等活性。雖然目前已有不少有關黃荊的活性研究報告,但是黃荊栽培技術及肥培管理的相關研究仍非常缺乏,因此本研究的目的為探討施用氮肥及磷肥對黃荊的生長、精油產量及組成分、多酚類含量與抗氧化活性的影響。本研究以田間方式進行,試驗採用隨機完全區集設計 (RCBD),依據肥料施用量共分為氮肥控制組 (無施用肥料)、磷肥控制組 (無施用肥料)、三種量之氮肥處理組 (分別為50、100及200 kg-N ha^(-1)) 及三種量之磷肥處理組 (分別為50、100及200 kg-P ha^(-1)),種植180天後採收黃荊地上部,並分析土壤及植體樣品。結果顯示,200 kg-P ha^(-1)磷肥處理組之生質量及精油產量為最高,且精油中之化學成分種類為最多 (45種)、其次為100 kg-P ha^(-1)磷肥處理組 (42種),200 kg-N ha^(-1) 氮肥處理組及50 kg-P ha^(-1)磷肥處理組之精油則含有40種化學成分。此外,200 kg-P ha^(-1)磷肥處理組也具有最高佛術烯的含量。各處理之間的總酚類及總黃酮類濃度結果並無顯著差異,但隨著氮肥及磷肥施用量增加,氮肥及磷肥處理組之總酚類則有先減少而後增加的現象,而磷肥處理組之總黃酮類含量也有相同的趨勢,推測此結果為氮磷肥施用量比例之差異,影響黃荊對磷的利用,造成總酚類及總黃酮類濃度的改變。抗氧化活性結果顯示,各處理組地上部萃取物及精油之DPPH(1,1-diphenyl-2-picrylhydrazyl)自由基清除力並無顯著差異;隨著氮肥及磷肥施用量增加,氮肥及磷肥處理組地上部萃取物的鐵離子還原力(Ferric reducing antioxidant power;FRAP) 結果則有先減少而後增加的趨勢且與總酚類及總黃酮類濃度結果相似,因此推論黃荊地上部的抗氧化能力與總酚類及總黃酮類濃度有關;然而,黃荊精油之FRAP鐵離子還原力結果顯示,各處理組間並沒有顯著差異,表示不同氮磷肥施用量對黃荊精油之FRAP鐵離子還原力的影響不顯著。本研究說明施用200 kg-P ha^(-1)之磷肥可有效促進黃荊之生質量與精油產量,以及提升黃荊主要活性成分的含量。zh_TW
dc.description.abstractVitex negundo Linn is an edible aromatic medicinal plant, which is distributed throughout tropical Asia and Africa. The shoots of V. negundo possess various medicinal properties, such as pesticidal, anti-fungal, anti-bacterial and anti-inflammatory activity. According to the Chinese Pharmacopoeia, V. negundo is used as a medicinal plant for the treatment of cough, flu, asthma and stomachache. The main bioactive compounds present in V. negundo essential oil are β-caryophyllene and eremophilene. β-caryophyllene possesses anti-inflammatory, anti-depression and anti-anxiety activities, eremophilene possesses anti-microbial, anti-cancer and immunomodulatory properties. To date, although many studies have reported on the bioactivities of V. negundo, information on the cultivation and fertilizer management of V. negundo still remains limited. Therefore, the objective of this study was to evaluate the effects of nitrogen and phosphorus fertilization rates on the biomass, essential oil yield and composition, polyphenol contents and antioxidant activities in V. negundo. This study was conducted under field conditions, eight treatments namely nitrogen control (no fertilizer;NCK), phosphorus control (no fertilizer;PCK), three different rates of nitrogen (50, 100, 200 kg-N ha^(-1)) and three different rates of phosphorus (50, 100, 200 kg-P ha^(-1)). After 180 days of cultivation, soil sample and shoots of V. negundo were collected for chemical analysis. The results showed that at 200 kg-P ha^(-1) phosphorus, V. negundo had the highest biomass and essential oil yield. The essential oil compositions of V. negundo showed that 200 kg-P ha^(-1) treatment had the highest number of volatile components (45 compounds), followed by 42 compounds in 100 kg-P ha^(-1) treatment, 40 compounds in 200 kg-N ha^(-1) treatment and 50 kg-P ha^(-1) treatment. In addition, 200 kg-P ha^(-1) treatment also showed the highest contents of eremophilene (23.44%) content. Total phenolic and total flavonoid contents in shoots of different fertilizer treatments were not significantly different. However, with the increasing rates of nitrogen and phosphorus fertilization, the contents of total phenols in shoots of different nitrogen and phosphorus treatments appear to decrease, and then increased. Similar result also found in the contents of total flavonoid in shoots of different phosphorus treatments. The changes of total phenolic and total flavonoid contents in shoots could be due to the different nitrogen and phosphorus fertilization rates. Antioxidant activity studies of V. negundo shoot extracts and essential oils showed that there were no significantly difference in DPPH(1,1-diphenyl-2-picrylhydrazyl)radical scavenging activity. Antioxidant activity studies of V. negundo essential oils also showed that there were no significantly difference in the FRAP (Ferric reducing antioxidant power) assay. However, the FRAP assay values of the V. negundo shoot extracts were found to decrease, and then increased with increasing nitrogen and phosphorus fertilization rates, its values were similar to the total phenolic and total flavonoid contents, suggesting that the amount of polyphenols might contribute to the antioxidant capacity of V. negundo shoots. In conclusion, this study indicates that 200 kg-P ha^(-1) phosphorus fertilization rates has a positive effect on the biomass, essential oil yield and bioactive compounds of V. negundo.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:41:10Z (GMT). No. of bitstreams: 1
ntu-108-R06623013-1.pdf: 3259945 bytes, checksum: 5428e2a887e41181ee9c3c6c51fff388 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 I
Abstract III
目錄 V
第一章 前言 1
第二章 前人研究 3
一、黃荊簡介 3
二、黃荊之化學成分 3
三、黃荊之藥理作用 4
四、影響植物二次代謝物生合成的因子 6
五、臺灣黃荊栽培現況 7
第三章 材料與方法 9
一、試驗材料與設計 9
二、黃荊採收及樣品處理 11
三、土壤採樣 12
四、土壤性質分析 12
五、植體分析 16
六、統計分析 21
第四章 結果與討論 26
一、氮磷肥不同施用量對土壤化學性質之影響 26
二、氮磷肥不同施用量對黃荊生質量之影響 36
三、氮磷肥不同施用量對黃荊營養元素含量之影響 37
四、氮磷肥不同施用量對黃荊總酚類及總黃酮類含量之影響 43
五、不同採收後處理對黃荊地上部精油含量之影響 46
六、氮磷肥不同施用量對黃荊精油產量之影響 48
七、氮磷肥不同施用量對黃荊精油組成分之影響 50
八、氮磷肥不同施用量對黃荊地上部及其精油抗氧化活性之影響 54
第五章、結論 60
參考文獻 61
附錄 71
dc.language.isozh-TW
dc.title田間氮磷肥施用量對黃荊產量、精油含量及組成分、
多酚含量與抗氧化活性的影響研究
zh_TW
dc.titleEffects of nitrogen and phosphorus fertilization rates on the biomass, essential oil yield and composition, polyphenol contents and antioxidant activity of Vitex negundo Linn. grown under field conditionsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾仁賜,黃文達
dc.subject.keyword黃荊,肥料,精油產量,精油組成,佛術烯,zh_TW
dc.subject.keywordVitex negundo L.,fertilizers,essential oil yield,essential oil composition,eremophilene,en
dc.relation.page101
dc.identifier.doi10.6342/NTU201902748
dc.rights.note有償授權
dc.date.accepted2019-08-07
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
3.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved