Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫療器材與醫學影像研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74529
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾文毅(Wen-Yih Tseng)
dc.contributor.authorCheng-Hsien Pengen
dc.contributor.author彭政憲zh_TW
dc.date.accessioned2021-06-17T08:40:55Z-
dc.date.available2019-08-27
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-08-07
dc.identifier.citationAcosta-Cabronero, J., Williams, G. B., Pengas, G., & Nestor, P. J. (2009). Absolute diffusivities define the landscape of white matter degeneration in Alzheimer's disease. Brain, 133(2), 529-539. doi:10.1093/brain/awp257
Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magn Reson Med, 44(4), 625-632.
Bennett, I. J., & Madden, D. J. (2014). Disconnected aging: Cerebral white matter integrity and age-related differences in cognition. Neuroscience, 276, 187-205. doi:https://doi.org/10.1016/j.neuroscience.2013.11.026
Bennett, I. J., Madden, D. J., Vaidya, C. J., Howard, D. V., & Howard Jr., J. H. (2010). Age-related differences in multiple measures of white matter integrity: A diffusion tensor imaging study of healthy aging. Hum Brain Mapp, 31(3), 378-390. doi:10.1002/hbm.20872
Bubb, E. J., Metzler-Baddeley, C., & Aggleton, J. P. (2018). The cingulum bundle: Anatomy, function, and dysfunction. Neuroscience & Biobehavioral Reviews, 92, 104-127. doi:https://doi.org/10.1016/j.neubiorev.2018.05.008
Budde, M. D., Xie, M., Cross, A. H., & Song, S.-K. (2009). Axial Diffusivity Is the Primary Correlate of Axonal Injury in the Experimental Autoimmune Encephalomyelitis Spinal Cord: A Quantitative Pixelwise Analysis. The Journal of Neuroscience, 29(9), 2805-2813. doi:10.1523/jneurosci.4605-08.2009
Budzik, J. F., Balbi, V., Le Thuc, V., Duhamel, A., Assaker, R., & Cotten, A. (2011). Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. Eur Radiol, 21(2), 426-433. doi:10.1007/s00330-010-1927-z
Callaghan, P. T., Coy, A., MacGowan, D., Packer, K. J., & Zelaya, F. O. (1991). Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature, 351(6326), 467-469. doi:10.1038/351467a0
Chen, Y. J., Lo, Y. C., Hsu, Y. C., Fan, C. C., Hwang, T. J., Liu, C. M., . . . Tseng, W. Y. (2015). Automatic whole brain tract-based analysis using predefined tracts in a diffusion spectrum imaging template and an accurate registration strategy. Hum Brain Mapp, 36(9), 3441-3458. doi:10.1002/hbm.22854
Davis, S. W., Dennis, N. A., Buchler, N. G., White, L. E., Madden, D. J., & Cabeza, R. (2009). Assessing the effects of age on long white matter tracts using diffusion tensor tractography. NeuroImage, 46(2), 530-541.
Dolan, R. T., Butler, J. S., O'Byrne, J. M., & Poynton, A. R. (2016). Mechanical and cellular processes driving cervical myelopathy. World J Orthop, 7(1), 20-29. doi:10.5312/wjo.v7.i1.20
Dubois, B., Andrade, K., & Levy, R. (2008). Executive Dysfunction and Neuropsychological Testing Handbook of Clinical Neurology (Vol. 89, pp. 35-52): Elsevier.
Ellingson, B. M., Salamon, N., Grinstead, J. W., & Holly, L. T. (2014). Diffusion tensor imaging predicts functional impairment in mild-to-moderate cervical spondylotic myelopathy. The spine journal : official journal of the North American Spine Society, 14(11), 2589-2597. doi:10.1016/j.spinee.2014.02.027
Feldman, H. M., Yeatman, J. D., Lee, E. S., Barde, L. H., & Gaman-Bean, S. (2010). Diffusion tensor imaging: a review for pediatric researchers and clinicians. Journal of developmental and behavioral pediatrics : JDBP, 31(4), 346-356. doi:10.1097/DBP.0b013e3181dcaa8b
Feldman, H. M., Yeatman, J. D., Lee, E. S., Barde, L. H. F., & Gaman-Bean, S. (2010). Diffusion tensor imaging: a review for pediatric researchers and clinicians. Journal of developmental and behavioral pediatrics : JDBP, 31(4), 346-356. doi:10.1097/DBP.0b013e3181dcaa8b
Friman, O., Farneback, G., & Westin, C. (2006). A Bayesian approach for stochastic white matter tractography. IEEE Transactions on Medical Imaging, 25(8), 965-978. doi:10.1109/TMI.2006.877093
Fuchs, P. N., Balinsky, M., & Melzack, R. (1996). Electrical stimulation of the cingulum bundle and surrounding cortical tissue reduces formalin-test pain in the rat. Brain Research, 743(1), 116-123. doi:https://doi.org/10.1016/S0006-8993(96)01035-9
Gaetani, P., Aimar, E., Panella, L., Levi, D., Tancioni, F., Di Ieva, A., . . . Rodriguez y Baena, R. (2006). Functional disability after instrumented stabilization in lumbar degenerative spondylolisthesis: a follow-up study. Funct Neurol, 21(1), 31-37.
Godefroy, O. (2003). Frontal syndrome and disorders of executive functions. Journal of Neurology, 250(1), 1-6. doi:10.1007/s00415-003-0918-2
Herbet, G., Zemmoura, I., & Duffau, H. (2018). Functional Anatomy of the Inferior Longitudinal Fasciculus: From Historical Reports to Current Hypotheses. Frontiers in neuroanatomy, 12, 77-77. doi:10.3389/fnana.2018.00077
Hoshimaru, M. (2010). Neuropsychological improvement in patients with cervical spondylotic myelopathy after posterior decompression surgery. Neurol Med Chir (Tokyo), 50(7), 554-559. doi:10.2176/nmc.50.554
Jones, J. G., Cen, S. Y., Lebel, R. M., Hsieh, P. C., & Law, M. (2013). Diffusion tensor imaging correlates with the clinical assessment of disease severity in cervical spondylotic myelopathy and predicts outcome following surgery. AJNR Am J Neuroradiol, 34(2), 471-478. doi:10.3174/ajnr.A3199
K, O., S, E., T, F., K, Y., K, F., & K, Y. (1987). Myelopathy hand. New clinical signs of cervical cord damage. The Journal of Bone and Joint Surgery. British volume, 69-B(2), 215-219. doi:10.1302/0301-620x.69b2.3818752
Kim, H. J., Tetreault, L. A., Massicotte, E. M., Arnold, P. M., Skelly, A. C., Brodt, E. D., & Riew, K. D. (2013). Differential Diagnosis for Cervical Spondylotic Myelopathy: Literature Review. Spine, 38(22S), S78-S88. doi:10.1097/BRS.0b013e3182a7eb06
Kumar, R., Nguyen, H. D., Macey, P. M., Woo, M. A., & Harper, R. M. (2012). Regional brain axial and radial diffusivity changes during development. Journal of Neuroscience Research, 90(2), 346-355. doi:10.1002/jnr.22757
Kuo, L.-W., Chen, J.-H., Wedeen, V. J., & Tseng, W.-Y. I. (2008). Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. NeuroImage, 41(1), 7-18. doi:https://doi.org/10.1016/j.neuroimage.2008.02.016
Madden, D. J., Bennett, I. J., Burzynska, A., Potter, G. G., Chen, N. K., & Song, A. W. (2012). Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta, 1822(3), 386-400. doi:10.1016/j.bbadis.2011.08.003
Mandonnet, E., Nouet, A., Gatignol, P., Capelle, L., & Duffau, H. (2007). Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain, 130(3), 623-629. doi:10.1093/brain/awl361
Mole, J. P., Subramanian, L., Bracht, T., Morris, H., Metzler-Baddeley, C., & Linden, D. E. J. (2016). Increased fractional anisotropy in the motor tracts of Parkinson's disease suggests compensatory neuroplasticity or selective neurodegeneration. European Radiology, 26(10), 3327-3335. doi:10.1007/s00330-015-4178-1
Mori, H. (1965). Transport, Collective Motion, and Brownian Motion*). Progress of Theoretical Physics, 33(3), 423-455. doi:10.1143/ptp.33.423
Pavuluri, M. N., Yang, S., Kamineni, K., Passarotti, A. M., Srinivasan, G., Harral, E. M., . . . Zhou, X. J. (2009). Diffusion Tensor Imaging Study of White Matter Fiber Tracts in Pediatric Bipolar Disorder and Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 65(7), 586-593. doi:https://doi.org/10.1016/j.biopsych.2008.10.015
Rüber, T., Schlaug, G., & Lindenberg, R. (2012). Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke. Neurology, 79(6), 515-522. doi:10.1212/WNL.0b013e31826356e8
Radanov, B. P., Dvorak, J., & Valach, L. (1992). Cognitive deficits in patients after soft tissue injury of the cervical spine. Spine (Phila Pa 1976), 17(2), 127-131.
Rousseeuw, P. J., Ruts, I., & Tukey, J. W. (1999). The Bagplot: A Bivariate Boxplot. The American Statistician, 53(4), 382-387. doi:10.1080/00031305.1999.10474494
Shedid, D., & Benzel, E. C. (2007). CERVICAL SPONDYLOSIS ANATOMY: PATHOPHYSIOLOGY AND BIOMECHANICS. Neurosurgery, 60(suppl_1), S1-7-S1-13. doi:10.1227/01.neu.0000215430.86569.c4
Shinoura, N., Suzuki, Y., Tsukada, M., Katsuki, S., Yamada, R., Tabei, Y., . . . Yagi, K. (2007). Impairment of Inferior Longitudinal Fasciculus plays a Role in Visual Memory Disturbance. Neurocase, 13(2), 127-130. doi:10.1080/13554790701399254
Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44(1), 83-98. doi:https://doi.org/10.1016/j.neuroimage.2008.03.061
Song, S.-K., Sun, S.-W., Ju, W.-K., Lin, S.-J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage, 20(3), 1714-1722. doi:https://doi.org/10.1016/j.neuroimage.2003.07.005
Spooner, J., Yu, H., Kao, C., Sillay, K., & Konrad, P. (2007). Neuromodulation of the cingulum for neuropathic pain after spinal cord injury. 107(1), 169. doi:10.3171/jns-07/07/0169
Sullivan, E. V., Rohlfing, T., & Pfefferbaum, A. (2010). Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: Relations to timed performance. Neurobiology of Aging, 31(3), 464-481. doi:https://doi.org/10.1016/j.neurobiolaging.2008.04.007
Tekin, S., & Cummings, J. L. (2002). Frontal–subcortical neuronal circuits and clinical neuropsychiatry: An update. Journal of Psychosomatic Research, 53(2), 647-654. doi:https://doi.org/10.1016/S0022-3999(02)00428-2
Tremblay, L., & Schultz, W. (1999). Relative reward preference in primate orbitofrontal cortex. Nature, 398(6729), 704-708. doi:10.1038/19525
Tsai, T.-H., Su, H.-T., Hsu, Y.-C., Shih, Y.-C., Chen, C.-C., Hu, F.-R., & Tseng, W.-Y. I. (2019). White matter microstructural alterations in amblyopic adults revealed by diffusion spectrum imaging with systematic tract-based automatic analysis. British Journal of Ophthalmology, 103(4), 511-516. doi:10.1136/bjophthalmol-2017-311733
Tuch, D. S. (2004). Q-ball imaging. Magn Reson Med, 52(6), 1358-1372. doi:10.1002/mrm.20279
Wedeen, V. J., Hagmann, P., Tseng, W. Y., Reese, T. G., & Weisskoff, R. M. (2005). Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med, 54(6), 1377-1386. doi:10.1002/mrm.20642
Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y., Dai, G., . . . de Crespigny, A. J. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage, 41(4), 1267-1277. doi:10.1016/j.neuroimage.2008.03.036
Wu, J.-C., Ko, C.-C., Yen, Y.-S., Huang, W.-C., Chen, Y.-C., Liu, L., . . . Cheng, H. (2013). Epidemiology of cervical spondylotic myelopathy and its risk of causing spinal cord injury: a national cohort study. 35(1), E10. doi:10.3171/2013.4.focus13122
Yeh, F. C., Verstynen, T. D., Wang, Y., Fernandez-Miranda, J. C., & Tseng, W. Y. (2013). Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One, 8(11), e80713. doi:10.1371/journal.pone.0080713
Zhang, J., Jones, M., DeBoy, C. A., Reich, D. S., Farrell, J. A. D., Hoffman, P. N., . . . Calabresi, P. A. (2009). Diffusion Tensor Magnetic Resonance Imaging of Wallerian Degeneration in Rat Spinal Cord after Dorsal Root Axotomy. The Journal of Neuroscience, 29(10), 3160-3171. doi:10.1523/jneurosci.3941-08.2009
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74529-
dc.description.abstract頸痛病人日益增加,有些會發展為退化性脊椎病並導致脊髓神經病變,其臨床表徵包括感覺喪失、異常疼痛、動作失調、平衡及行走功能受限,並影響注意力、情緒及生活品質等,嚴重者須接受手術治療,但手術後有些仍有許多症狀持續,目前確實的致病機轉機制不明。先前的研究表明,脊髓型頸椎病患者在脊髓水平的平均擴散係數(MD)和分數各向異性(FA)均低於正常人。然而,這種局部變化是否會影響大腦中的白質神經束仍不清楚。在這項研究中,我們旨在比較脊髓型頸椎病患者和健康對照組之間大腦白質微觀結構的差異,並期望找出這些變化的神經束與功能指標的相關性。
我們徵召了27位頸椎脊髓神經病變的病人(年齡:56.63±13.05歲,18名男性9名女性)及27位年齡性別配對之健康中老年人(年齡:55.30±13.03歲,18名男性9名女性),所有受測者皆接受T1權重影像及擴散頻譜造影影像以探討大腦白質的完整性,包括從脊髓到大腦的上行及下行路徑,並以JOA、mJOA、NDI問卷詢問感覺動作功能。我們運用MAP-MRI的組件將擴散頻譜造影的影像計算出4種擴散指標,包括概化部分不等向性(GFA)、軸向擴散係數(AD)、平均擴散係數(MD)及徑向擴散係數(RD)。其後,運用全腦神經束自動化分析(TBAA)來獲得大腦主要76條神經束的四種擴散指標所構成的三維結構腦聯結圖(3D-connectogram),作為我們探討白質神經纖維束結構的依據。我們使用簇群權重(TFCW)分數來進行組分析,我們計算組間每個步驟的效應量以及估計的加權分數,以找出差異最大的神經束步驟區塊。以線性迴歸分析白質完整性與感覺動作認知功能的相關性,控制年齡的因子後,探討有變化之大腦內神經束與功能之相關性。
我們發現頸椎脊髓神經病變病人之脊髓神經病變造成部分上行及下行路徑的神經束病變,且此部分白質變化與動作感覺能力有相關。此外我們發現大腦內與認知功能相關的白質神經束亦有變化,此變化除了與動作感覺功能有關之外,與疼痛睡眠也有相關。顯示頸部脊髓神經束的受傷,除了對大腦有影響,對認知功能的神經束亦有影響。需再進一步探討病人的認知功能與大腦內白質變化的關係。
zh_TW
dc.description.abstractIntroduction: Cervical myelopathy is a common degenerative condition caused by compression on the spinal cord that is characterized by clumsiness in hands and gait imbalance. Patients demonstrated multiple symptoms and signs, including sensory, motor, control and cognition relate complaints. Severe cases require surgery, but in some cases the symptoms still persist after surgery. Previous studies reported that patients with cervical myelopathy showed higher mean diffusivity (MD) and lower fractional anisotropy (FA) than normal subjects between each spinal level. However, whether this local change would affect white matter tracts in the brain is not clear. In this study, we aimed to compare the differences of cerebral white matter microstructural property between patients with cervical myelopathy and health controls, and we aimed to identify the functional correlation of the change tracts in the brain.
Subjects: Two groups of participants were recruited in the study: 27 healthy older adults (age: 56.63 ± 13.05, 18 males and 9 females), 27 patients with cervical myelopathy (age: 55.30 ± 13.03, 18 males and 9 females).
Imaging: All participants received T1-weighted imaging and DSI on a 3T Siemens Prisma MRI System (Siemens Medical, Erlangen, Germany) with a 32-channel phased array head coil in National Taiwan University Hospital. The parameters were as follow. T1-weighted imaging used a three-dimensional magnetization-prepared rapid gradient-echo (MPRAGE) sequence, TR/TE = 2000/3 ms, FOV = 352 x 290 x 208 mm3, flip angle = 9o, resolution = 1 x 1 x 1 mm3. Diffusion spectrum imaging (DSI) used an echo planer imaging (EPI) diffusion sequence, TR/TE = 9600/130 ms, matrix size = 80 x 80, FOV = 200 x 200 mm2, resolution = 2.5 mm, 102 diffusion encoding gradients with bmax = 4000 s/mm2.
Image Quality Assurance (QA): Only images with signal-to-noise ratio (SNR) higher than 25 were included for subsequent analysis.
Analysis: We used whole brain tract-based automatic analysis (TBAA) to obtain a 2D connectogram for each DSI dataset. The connectogram provides generalized fractional anisotropy (GFA), fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD) and radial diffusivity (RD) profiles of 76 white matter tract bundles. Each profile contained 100 sampled values at 100 equidistant steps along the tract. We used threshold free cluster weighted (TFCW) scores for group analysis. We calculated the effect size of each step between groups, and estimated weighted scores to select the most different tract steps among the two groups. We did the linear multiple regression to identify the main contributor of the tracts for the specific functional item.
Result: A total of 23 segments were found to show top 5% difference in the weighted scores of GFA, AD or RD when comparing patients with cervical myelopathy with normal controls. The values of GFA of the affected segments were uniformly lower in patients.
Conclusion: As expected, we found significant reduction in GFA in the sensorimotor tracts, which were supposed to be the primary affected tracts in cervical myelopathy. Moreover, we also found altered tracts that were mostly related to cognitive functions, such as the left fornix, right frontal-striatum to the ventral lateral prefrontal cortex, and the splenium of the corpus callosum. Our results are consistent with previous studies reporting that cognitive dysfunctions may be related to disorders of the cervical spine or spinal cord. We speculate that patients with cervical myelopathy may be subjected to emotion problems due to reduced mobility, which may lead to cognitive decline as reflected by the impairment of cognitive-related tracts. The relationship between cognitive function and white matter changes in the brain needs to be further studied.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:40:55Z (GMT). No. of bitstreams: 1
ntu-108-R06458006-1.pdf: 2867715 bytes, checksum: 4a3e91e8d6e3721b305b920e2e57d881 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會鑑定書………………………………………………………………………i
誌謝……………………………………………………………………………………ii
中文摘要………………………………………………………………………………iii
Abstract…………………………………………………………………………………v
Chapter 1 Introduction…………………………………………………………………1
1.1 Outline…………………………………………………………………………1
1.2 Background……………………………………………………………………1
1.3 Cervical myelopathy also affects cognitive function……………………………2
1.4 White matter microstructure calculated from diffusion MRI……………………3
1.5 Motivation and purpose…………………………………………………………4
Chapter 2 Materials and Methods………………………………………………………5
2.1 Participants………………………………………………………………………5
2.2 Diffusion MRI and Diffusion spectrum imaging (DSI)…………………………6
2.3 MRI data acquisition……………………………………………………………7
2.4 Functional data acquisition………………………………………………………7
2.5 Imaging Quality Assurance and DSI data reconstruction………………………8
2.6 Tract-based automatic analysis (TBAA)………………………………………9
2.7 Threshold-free cluster weighted method (TFCW)……………………………10
2.8 Data analysis…………………………………………………………………12
Chapter 3 Results………………………………………………………………………14
3.1 TFCW results…………………………………………………………………14
3.1.1 GFA result………………………………………………………………14
3.1.2 AD result………………………………………………………………20
3.1.3 RD result………………………………………………………………25
3.2 Linear multiple regression for functional items………………………………29
3.2.1 Eliminating outliners……………………………………………………30
3.2.2 First linear multiple regression…………………………………………31
3.2.3 Second linear multiple regression………………………………………33
Chapter 4 Discussion and conclusion…………………………………………………35
4.1 Summary of TFCW results……………………………………………………35
4.1.1 AD change only…………………………………………………………36
4.1.2 AD change and RD increase……………………………………………37
4.1.3 RD increase only………………………………………………………38
4.1.4 GFA decrease only………………………………………………………39
4.2 The functional role of the tract demonstrating changes in white matter
integrity………………………………………………………………………40
4.2.1 Left cingulum of main body component (CG body L)…………………41
4.2.2 Right inferior longitudinal fasciculus (ILF R)…………………………42
4.2.3 Left corticospinal tract of hand (CST hand L)…………………………42
4.2.4 Left frontal-striatum of orbitofrontal cortex (FS OFC L)………………44
4.2.5 Left frontal-striatum of ventral lateral prefrontal cortex (FS VLPFC L)…45
4.2.6 Left medial lemniscus…………………………………………………45
4.3 Tracts with cognitive function…………………………………………………46
4.4 Limitations and future works…………………………………………………48
4.5 Summary………………………………………………………………………49
References………………………………………………………………………………50
Appendix………………………………………………………………………………55
dc.language.isozh-TW
dc.subject頸椎脊髓神經病變zh_TW
dc.subject擴散頻譜造影zh_TW
dc.subject全腦神經束自動化分析zh_TW
dc.subject白質微結構特性zh_TW
dc.subject感覺和運動功能zh_TW
dc.subjectsensory and motor functionen
dc.subjectcervical myelopathyen
dc.subjecttract-based automatic analysisen
dc.subjectdiffusion spectrum imagingen
dc.subjectwhite matter microstructural characteristicsen
dc.title頸椎脊髓病變患者之大腦白質完整性與感覺和運動功能相關:擴散頻譜影像研究zh_TW
dc.titleCerebral white matter tract integrity is associated with sensory and motor functions in patients with cervical degenerative myelopathy: A diffusion spectrum imaging studyen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王淑芬(Shu-Fen Wang),賴達明(Dar-Ming Lai)
dc.subject.keyword頸椎脊髓神經病變,擴散頻譜造影,全腦神經束自動化分析,白質微結構特性,感覺和運動功能,zh_TW
dc.subject.keywordcervical myelopathy,diffusion spectrum imaging,tract-based automatic analysis,white matter microstructural characteristics,sensory and motor function,en
dc.relation.page63
dc.identifier.doi10.6342/NTU201902699
dc.rights.note有償授權
dc.date.accepted2019-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫療器材與醫學影像研究所zh_TW
顯示於系所單位:醫療器材與醫學影像研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved